Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

联合微波与光学时间序列影像的马尾松林松材线虫病遥感识别

童彤, 林思美, 李林源, 罗涛, 黄华国

童彤, 林思美, 李林源, 罗涛, 黄华国. 联合微波与光学时间序列影像的马尾松林松材线虫病遥感识别[J]. 北京林业大学学报, 2024, 46(3): 40-52. DOI: 10.12171/j.1000-1522.20220453
引用本文: 童彤, 林思美, 李林源, 罗涛, 黄华国. 联合微波与光学时间序列影像的马尾松林松材线虫病遥感识别[J]. 北京林业大学学报, 2024, 46(3): 40-52. DOI: 10.12171/j.1000-1522.20220453
Tong Tong, Lin Simei, Li Linyuan, Luo Tao, Huang Huaguo. Remote sensing recognition of pine wilt disease in Pinus massoniana forest combined with microwave and optical time-series images[J]. Journal of Beijing Forestry University, 2024, 46(3): 40-52. DOI: 10.12171/j.1000-1522.20220453
Citation: Tong Tong, Lin Simei, Li Linyuan, Luo Tao, Huang Huaguo. Remote sensing recognition of pine wilt disease in Pinus massoniana forest combined with microwave and optical time-series images[J]. Journal of Beijing Forestry University, 2024, 46(3): 40-52. DOI: 10.12171/j.1000-1522.20220453

联合微波与光学时间序列影像的马尾松林松材线虫病遥感识别

基金项目: 国家自然科学基金项目(41971289),国家自然科学基金青年科学基金项目(42101328),国家林业和草原局重大应急科技项目(ZD202001)。
详细信息
    作者简介:

    童彤。主要研究方向:森林病虫害遥感监测。Email:tong_tong17@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号

    责任作者:

    李林源,博士,讲师。主要研究方向:森林干扰定量遥感。Email:lilinyuan@bjfu.edu.cn 地址:同上。

  • 中图分类号: S771.8

Remote sensing recognition of pine wilt disease in Pinus massoniana forest combined with microwave and optical time-series images

  • 摘要:
    目的 

    大范围准确监测林区松材线虫病感染情况对森林疫情防治和经营管理具有重要作用。现有研究往往采用单时相或少量时相数据,松材线虫病遥感监测易受森林背景和非寄主树木影响,导致监测精度存在较大的不确定性。此外,单一数据源往往对病害特征刻画不足,例如被动光学数据侧重描述森林冠层水平结构信息,但易受云雨影响造成数据缺失,而主动微波数据对森林垂直结构和水分含量敏感,但存在噪声高、色素敏感性低以及地形影响大等问题。因此,联合主动微波与被动光学时间序列遥感影像数据,有望在降低环境因素影响的同时追踪同一林分的时序变化特征,进而提升松材线虫病探测的准确性与鲁棒性。

    方法 

    利用厘米级分辨率无人机影像标记样本,联合Sentinel-1 C波段微波和Sentinel-2光学时间序列数据,构建基于极端梯度提升算法的松材线虫病害监测模型。分别评估微波模型、光学模型和微波与光学联合模型在松材线虫病监测方面的性能,以及最优模型在不同环境因子下的表现。

    结果 

    (1)联合了微波和光学的模型精度(总体精度为80.62%,Kappa 系数为0.61)略高于单一光学模型的精度(总体精度为79.58%,Kappa系数为0.59),并明显高于单一微波模型的精度(总体精度为68.87%,Kappa系数为0.36),说明了微波与光学时间序列联合数据在松材线虫病害监测中具有优势;(2)模型通常在缓坡、阳坡、低海拔、高覆盖度条件下展现出更高精度。

    结论 

    本研究充分利用多源遥感卫星数据,为松材线虫病大范围准确监测提供了新的技术支撑。

    Abstract:
    Objective 

    Large-scale and accurate monitoring of pine wilt disease (PWD) plays an important role in forest epidemic prevention and management. Existing studies often use single-phase data, resulting in greater uncertainty in the accuracy of monitoring PWD, which is easily affected by forest background and non-host trees. In addition, single data have the limitation of insufficient characterization of disease characteristics. For example, passive optical data focus on describing the horizontal structure of forest canopy, and are easily affected by cloud and rain, resulting in missing data; Active microwave data are sensitive to forest vertical structure and moisture content, but there are problems such as high noise, low pigment sensitivity and large terrain impact. Therefore, the combination of active microwave and passive optical time-series images is expected to reduce the impact of environmental factors while tracking the time-series change characteristics of the same forest stand, which helps to improve the accuracy and robustness of PWD monitoring.

    Method 

    First, using centimeter-level resolution drone images to obtain samples. Based on extreme gradient boosting algorithm, PWD monitoring models were constructed by combining Sentinel-1 C-band microwave and Sentinel-2 optical time-series images. The performance of microwave model, optical model, combined microwave and optical model in the monitoring of PWD was evaluated respectively. At the same time, compare the performance of the optimal model under different environment conditions.

    Result 

    (1) The accuracy of combined microwave and optical model (overall accuracy = 80.62%, Kappa coefficient = 0.61) was slightly higher than that of the single optical model (overall accuracy = 79.58%, Kappa coefficient = 0.59), but significantly higher than that of the single microwave model (overall accuracy = 68.87%, Kappa coefficient = 0.36), and its showed the value of combined microwave and optical time-series data in the monitoring of PWD. (2) The analysis of different environment conditions showed that the model generally exhibited higher accuracy under gentle slope, sunny slope, low altitude, and high coverage conditions.

    Conclusion 

    This study makes full use of multi-source remote sensing satellite data and provides new technical support for large-scale accurate monitoring of PWD.

  • 马尾松(Pinus massoniana)为松属乔木,在我国分布甚广,从华东、华南到华中、西南均有分布,是一种重要的荒山造林树种。马尾松松针是主要药用部位,与其他松科植物相比,富含黄酮及多酚类化合物,此外还含有多糖、挥发油、木脂素、莽草酸等成分,具有抗氧化、抑菌防腐、降糖降血脂、抗癌和护肝的功效,多用于食品工业和医药领域[1-2]

    目前,松科植物活性成分的提取方法为有机溶剂浸提、以微波、超声波等辅助提取,乙醇为常用溶剂。徐丽珊等[3]通过对水提法和醇提法进行比较,发现水提法对提取松针黄酮类化合物的影响优于醇提法。张霞[4]以超声波辅助乙醇提取油松松针中的类黄酮,最高提取率为3.66%。战英等[5]通过微波辅助乙醇提取红松(Pinus koraiensis)松针总黄酮提取率为3.37%。王冉等[6]利用超声波辅助乙醇提取红松松针总黄酮,得率约为5.82%。赵玉红等[7]对樟子松(Pinus sylvestris)树皮中的松多酚进行提取,对比了有机溶剂提取法、超声波–复合酶法和超声辅助提取法对提取效果的影响,研究发现:目前的提取方法普遍存在溶剂消耗量大、提取效率低和提取物纯度低等问题,如水提后的粗提物中除含有目标产物黄酮类化合物外,还会混入一些可溶物,如氨基酸、多糖、蛋白质等,会大大影响产物的纯度。因此,探索一种选择性强、绿色高效的提取方法来实现松针中黄酮类和多酚类的快速提取十分必要。

    Abbott等[8]于2003年在离子液体之后首次提出一种新型绿色溶剂—低共熔溶剂(deep eutectic solvent,DES),它保有离子液体的大部分优势,而且克服了其高毒性,高成本,生物降解性差等弊端。DES主要由氢键供体和氢键受体通过较强的分子间氢键作用相结合,使其具备特殊的理化性质,如可忽略的挥发性和黏度的可调整能力。此外,在提取天然产物的过程中,DES可以与目标物形成较强作用力的分子间氢键,使其具有优于传统溶剂的选择性和萃取能力,并且可提高不稳定的生物活性成分的稳定性[9-10]。刘珊等[11]以金钱草(Lysimachia christinae)为原料,通过共晶溶剂与超声结合提取黄酮,最终得到的黄酮提取率为7.198 mg/g。因此,在本实验中,采用超声辅助低共熔溶剂法在单因素和响应面优化设计实验的基础上,进一步调整和优化了马尾松针叶中黄酮类和多酚类化合物的提取工艺,以确定最佳提取条件;测试了从马尾松松针中提取的黄酮和多酚的抗氧化作用;同时,比较了乙醇提取法与超声辅助低共熔溶剂法提取能力的差异,为松针中活性物质的提取提供了一定的理论依据和实践基础。

    所用马尾松松针采集于2019年8月,湖南省祁阳县大江林场。DPPH·、ABTS+·、芦丁、没食子酸为标准品,纯度大于98%,其余所用试剂均为分析纯。

    将鲜马尾松松针通过清洗去杂,干净的原料经自然风干及低温干燥,破碎为80目粉末,冷藏备用。

    取10.0 mg没食子酸标准品配制成1 g/L的母液,分别取0.25、0.50、0.75、1.00、1.25 mL上述配制好的母液置于5个25 mL容量瓶中,用蒸馏水定容,得到0.01、0.02、0.03、0.04、0.05 g/L溶液。取上述5种溶液各1.00 mL,以1.00 mL蒸馏水作空白对照,再分别加入5.00 mL的0.2 mol/L福林酚溶液,摇匀,静置5 min后,再分别加入4.00 mL的10%碳酸钠溶液,摇匀后置于45 ℃水浴15 min。使用紫外分光光度计(北京普析通用),在波长为765 nm下测定上述溶液的吸光值,以没食子酸质量浓度(g/L)为横坐标(X1),吸光值(A)为纵坐标(Y1),绘制标准曲线[12]。得到线性回归方程:Y1 = 115.76X1 + 0.001 8,R21 = 0.999 2。

    对提取液使用蒸馏水稀释,并按照上述方法进行多酚含量的测定,将测得的吸光度值带入回归方程,得到多酚质量浓度,并按照式(1)计算提取液中多酚得率:

    y1=c1v1D11000m1×100% (1)

    式中:y1为多酚得率,%;c1为回归方程计算出的提取液中多酚质量浓度,g/L;v1为提取前溶液体积,mL;m1为提取前松针质量,g;D1为提取液稀释倍数。

    取5.0 mg芦丁标准品配置成0.1 g/L的母液,分别取2.00、4.00、6.00、8.00、10.00 mL上述配置好的母液置于容量瓶中,加入相应量70%乙醇使各容量瓶溶液总体积为10 mL。以70%乙醇作空白对照。再分别加入5%亚硝酸钠溶液1.00 mL,摇匀后静置6 min,再加入10%硝酸铝溶液1.00 mL,摇匀后静置6 min后加入10%氢氧化钠溶液10.00 mL,摇匀后加入70%乙醇定容,摇匀静置15 min。在波长为510 nm下测吸光值,以芦丁质量浓度(g/L)为横坐标(X2),吸光值(A)为纵坐标(Y2),绘制标准曲线[13]。得到线性回归方程:Y2 = 12.654X2 – 0.000 9, R22 = 0.999 7。

    对提取液使用乙醇稀释,并按照上述方法进行黄酮含量的测定,将测得的吸光度值带入回归方程,得到黄酮质量浓度,并按照式(2)计算提取液中黄酮得率:

    y2=c2v2D21000m2×100% (2)

    式中:y2为黄酮得率,%;c2为回归方程计算出的提取液中黄酮质量浓度,g/L;v2为提取前溶液体积,mL;m2为提取前松针质量,g;D2为提取液稀释倍数。

    3种低共熔溶剂配制方案如表1,在恒温水浴锅中,保持温度在60 ~ 62 ℃,磁力搅拌1 h,冷却至室温。分别使用3种低共熔溶剂与马尾松松针以液料比10 mL/g混合,在300 W、44 ℃的超声条件下56 min,对黄酮和多酚进行提取。

    表  1  不同类型低共熔溶剂配制方案
    Table  1.  Different types of deep eutectic solvents
    低共熔溶剂 Deep eutectic solvent溶剂体系构成 Composition of solvent system摩尔比 Mole ratio
    氢受体 Hydrogen acceptor氢供体 Hydrogen bond donors水 Water
    DES-1 氯化胆碱 Choline chloride 丙三醇 Glycerol 水 Water 1∶1∶4
    DES-2 氯化胆碱 Choline chloride 葡萄糖 Glucose 水 Water 1∶1∶4
    DES-3 氯化胆碱 Choline chloride 尿素 Carbamide 水 Water 1∶1∶4
    下载: 导出CSV 
    | 显示表格

    准确称取0.900 0 g马尾松松针粉于指形管中,以马尾松松针中多酚、黄酮得率为评价指标进行单因素试验,分别考察低共熔溶剂类型(DES-1、DES-2、DES-3)、液料比(8、10、12、14、16、18 mL/g),超声功率(240、270、300、330、360、390 W)、超声时间(30、45、60、75、90、105、120 min)、超声温度(30、35、40、45、50、55 ℃)对提取物得率的影响。

    根据单因素实验结果,采用Box-Behnken试验设计方法,利用Design-Expert 8.0.6 trial设计4因素3水平的响应面工艺优化试验,对超声波辅助低共熔溶剂提取马尾松松针提取物的工艺参数进行优化。

    在96孔板的孔中依次加入不同质量浓度梯度的样液50 μL以及稀释好的DPPH·溶液200 μL,充分混匀于517 nm波长下测定吸光值Ai。用200 μL 95%乙醇代替DPPH·溶液,测定吸光度值Aj。用50 μL 95%乙醇代替不同质量浓度梯度的样液,使用全波长酶标仪(BioTek Instruments, Inc.)测定吸光度值A0[14]。根据式(3)计算活性物质对DPPH·清除率:

    k1=A0Ai+AjA0×100% (3)

    式中:k1为DPPH·清除率;Ai为样品液的吸光度值;Aj为样品空白管的吸光度值;A0为空白对照管的吸光度值。

    将7.4 mmol/L ABTS+·溶液与2.6 mmol/L过硫酸钾溶液按体积比1∶1混合,室温避光静置12 ~ 14 h,用pH7.4的PBS溶液稀释至在734 nm处吸光度值为(0.70 ± 0.02),备用。在96孔板中依次加入30 μL不同质量浓度梯度的样液,270 μL ABTS+·溶液,静置6 min,在734 nm处测吸光度值,得到A1。用30 μL pH7.4的PBS溶液代替样液,测定吸光度值,得到A0。用270 μL pH7.4 PBS溶液代替ABTS+·溶液,测定吸光度值,得到A2[14]。根据式(4)计算活性物质对ABTS+·清除率k2

    k2=(1A1A2A0)×100% (4)

    式中:k2为ABTS+·清除率,%;A0为空白对照吸光度值;A1为样液吸光度值;A2为样液空白管吸光度值。

    在5 mL离心管中依次加入0.5 mL不同质量浓度的样液,0.5 mL 0.2 mol/L pH6.6磷酸盐缓冲液,0.5 mL 1%铁氰化钾溶液,摇匀,50 ℃水浴20 min后,迅速冷却,再依次加入0.5 mL 10%三氯乙酸溶液,摇匀,在4 000 r/min条件下离心10 min。在96孔板中依次加入150 μL上述离心后不同质量浓度的上清液,150 μL蒸馏水,30 μL0.1%氯化铁溶液,混匀,静置10 min,在700 nm处测吸光度值[15]

    以液料比10 mL/g、超声功率300 W、超声温度44 ℃、超声波辅助提取56 min作为多酚、黄酮的提取条件,3种不同低共熔溶剂对多酚、黄酮的得率的影响如表2所示。

    表  2  提取溶剂对多酚、黄酮得率的影响
    Table  2.  Effects of extraction solvent on yield of polyphenol and flavone
    低共熔溶剂种类
    Types of deep eutectic solvents
    多酚得率
    Polyphenol yield/%
    黄酮得率
    Flavone yield/%
    DES-1 7.66AB 10.11A
    DES-2 8.07A 10.05A
    DES-3 7.38B 9.15A
    注:同列数值后不同大写字母表示差异显著(P < 0.05)。Note: values in the same column followed by different capital letters mean that the difference is significant at P < 0.05 level.
    下载: 导出CSV 
    | 显示表格

    表2可知DES-2对多酚的提取效果最佳,这是由于DESs与多酚类化合物之间的氢键作用力[16],当氯化胆碱为氢受体,氢供体分别为多糖、多元醇类、酰胺类等化合物时,多糖类对马尾松松针中的多酚结构更适合提取[17];DES-1对黄酮的提取效果最佳,而DES-2与DES-1提取黄酮的得率接近,且该溶剂体系重复性良好,利于实验的重复进行。综上,选择DES-2即氯化胆碱和葡萄糖制备的低共熔溶剂作为对马尾松松针提取物的最佳提取溶剂。

    不同液料比、超声功率、超声时间、超声温度对马尾松松针提取物得率的影响,结果见图1

    图  1  不同单因素对提取物得率的影响
    Figure  1.  Effects of different single factors on extract yield

    图1可知,随着液料比、超声功率、超声时间和超声温度的逐渐增加,松针提取物的得率总体趋势相似,先上升后下降,这可能是因为随着提取溶剂的增加,增大了原料与溶剂的接触面积,促使马尾松松针中的活性成分不断溶出并扩散至溶剂中,得率呈上升趋势;而前期实验增加超声功率和超声时间,则可以更充分地对马尾松松针组织的细胞壁进行破坏,与此同时温度的升高,也增加了马尾松松针中活性物质的溶出量。但当超声功率大于300 W,超声时间超过60 min和液料比大于10 mL/g时,继续改变因素水平值,提取物得率呈下降趋势或变化不显著,这可能是在超声时间较长或超声功率过高的情况下,组织的细胞壁不能够进一步被破坏,与此同时,已溶出的物质被破坏,导致得率降低。超声功率增加到330 W左右时,马尾松松针组织内的某些物质与黄酮类化合物一同被溶出,干扰黄酮含量测定,而后又被破坏,导致黄酮得率值未随功率的改变而呈现出规律性变化;当溶剂增加到一定程度时,萃取剂已将提取物充分提出,再继续增加溶剂可能导致提取物重新吸附到待提取物中,导致得率下降。

    根据单因素的实验结果,分别以马尾松松针中多酚、黄酮得率为响应值,以液料比,超声功率,超声时间,超声温度为自变量,进行响应面分析实验,实验方案及结果如表3所示。

    表  3  响应面实验方案及结果
    Table  3.  Response surface design and experimental results
    试验号
    Experiment No.
    液料比
    Liquid-solid ratio/(mL·g−1)
    超声时间
    Ultrasonic time/min
    超声温度
    Ultrasonic temperature/℃
    超声功率
    Ultrasonic power/W
    多酚得率
    Polyphenol yield/%
    黄酮得率
    Flavone yield/%
    1 10 60 35 270 6.367 9.132
    2 8 60 55 300 6.186 9.919
    3 12 60 35 300 6.459 9.773
    4 10 75 45 330 6.465 9.126
    5 8 75 45 300 6.628 9.071
    6 10 60 55 330 6.828 9.593
    7 10 60 35 330 6.569 9.303
    8 8 60 45 330 6.361 8.892
    9 10 45 45 270 6.465 9.889
    10 8 60 45 270 6.485 8.691
    11 12 60 55 300 6.922 10.184
    12 10 60 45 300 7.571 10.548
    13 10 45 35 300 6.027 9.830
    14 10 60 55 270 6.511 10.120
    15 10 60 45 300 7.617 10.245
    16 10 45 55 300 6.655 9.633
    17 10 60 45 300 7.513 10.364
    18 8 60 35 300 6.204 8.633
    19 10 75 35 300 6.454 8.316
    20 8 45 45 300 5.969 9.771
    21 10 75 55 300 6.897 9.303
    22 12 60 45 330 6.127 9.694
    23 10 75 45 270 6.741 9.600
    24 12 75 45 300 6.279 9.979
    25 10 60 45 300 7.686 10.390
    26 10 45 45 330 6.384 9.936
    27 12 60 45 270 6.721 9.109
    28 10 60 45 300 7.277 10.054
    29 12 45 45 300 5.636 10.192
    下载: 导出CSV 
    | 显示表格

    多酚得率的变幅为5.636% ~ 7.686%,黄酮得率的变幅为8.316% ~ 10.548%,对实验数据进行回归拟合,得到马尾松松针多酚得率的回归方程y3、黄酮得率的回归方程y4和方差分析表(表4表5)。

    表  4  多酚方差分析表
    Table  4.  Anova for response surface quadratic model of polyphenol
    方差来源 Variance source平方和 Sum of squares自由度 Degree of freedom均方 Mean squareFP显著性 Significance
    模型 Model 6.360 14 0.450 6.90 0.0004 **
    A 8.060 × 10−3 1 8.060 × 10−3 0.12 0.7317
    B 0.450 1 0.450 6.86 0.0202 *
    C 0.310 1 0.310 4.66 0.0487 *
    D 0.026 1 0.026 0.39 0.5418
    AB 6.400 × 10−5 1 6.400 × 10−5 9.718 × 10−4 0.9756
    AC 0.058 1 0.058 0.88 0.3646
    AD 0.055 1 0.055 0.84 0.3753
    BC 8.556 × 10−3 1 8.556 × 10−3 0.13 0.7239
    BD 9.506 × 10−3 1 9.506 × 10−3 0.14 0.7097
    CD 3.306 × 10−3 1 3.306 × 10−3 0.05 0.8259
    A2 3.180 1 3.180 48.28 < 0.0001 **
    B2 2.510 1 2.510 38.13 < 0.0001 **
    C2 1.240 1 1.240 18.84 0.0007 **
    D2 1.280 1 1.280 19.44 0.0006 **
    残差 Residual 0.920 14 0.066
    失拟项 Lack of fit 0.820 10 0.082 3.37 0.1265 不显著 Not significant
    纯误差 Pure error 0.098 4 0.024
    总和 Total 7.290 28
    注:**为差异极显著(P < 0.01),*为差异显著(P < 0.05)。下同。Notes:** means highly significant difference (P < 0.01), * means significant difference (P < 0.05). The same below.
    下载: 导出CSV 
    | 显示表格
    表  5  黄酮方差分析表
    Table  5.  Anova for response surface quadratic model of flavone
    方差来源 Variance source平方和 Sum of squares自由度 Degree of freedom均方 Mean squareFP显著性 Significance
    模型 Model 7.580 14 0.540 4.45 0.004 2 **
    A 1.300 1 1.300 10.72 0.005 5 **
    B 1.240 1 1.240 10.19 0.006 5 **
    C 1.180 1 1.180 9.72 0.007 6 **
    D 7.500 × 10−7 1 7.500 × 10−7 6.169 × 10−6 0.998 1
    AB 0.059 1 0.059 0.49 0.496 4
    AC 0.19 1 0.190 1.57 0.230 1
    AD 0.037 1 0.037 0.30 0.590 5
    BC 0.350 1 0.350 2.88 0.111 6
    BD 0.068 1 0.068 0.56 0.467 3
    CD 0.120 1 0.120 1.00 0.333 8
    A2 1.080 1 1.080 8.91 0.009 8 **
    B2 0.650 1 0.650 5.34 0.036 6 *
    C2 1.200 1 1.200 9.86 0.007 2 **
    D2 1.700 1 1.700 13.96 0.002 2 **
    残差 Residual 1.700 14 0.120
    失拟项 Lack of fit 1.570 10 0.160 4.64 0.076 3 不显著 Not significant
    纯误差 Pure error 0.140 4 0.034
    总和 Total 9.280 28
    下载: 导出CSV 
    | 显示表格

    y3 = 7.53 + 0.026A + 0.19B + 0.16C – 0.046D – 4.000 × 10−3AB + 0.12AC – 0.12AD – 0.046BC – 0.049BD + 0.029CD – 0.70A2 – 0.62B2 – 0.44C2 – 0.44D2

    式中:A为液料比(mL/g),B为超声时间(min),C为超声温度(℃),D为超声功率(W)。

    y4 = 10.32 + 0.33A – 0.32B + 0.31C + 2.500 × 10−4D + 0.12AB – 0.22AC + 0.096AD + 0.30BC – 0.13BD – 0.17CD – 0.41A2 – 0.32B2 – 0.43C2 – 0.51D2

    该回归模型的P = 0.000 4 < 0.01,有极显著差异,失拟项为0.126 5 > 0.05,差异不显著,模型稳定性较好,相关系数r = 0.873 5,Radj 2 = 0.746 9,说明拟合度良好;残差由随机误差引起,残差越小表明回归模型的拟合精度越高,由表4可知,该模型的残差为0.92,说明该模型有较好的拟合程度;纯误差越小表明实验过程中误差越低,该模型的纯误差为0.098,表明实验误差基本可忽略不计,可用于马尾松松针总多酚提取实验预测及结果分析。对回归模型显著性分析可知,因素A2B2C2D2对多酚得率影响极显著(P < 0.01),因素BC对多酚得率影响显著(0.01 < P < 0.05),因素AD和交互项ABACADBCBDCD因素相互交互作用对多酚得率的影响不显著(P > 0.05)。由表4模型的分析方差可得ABCD 4个因素对多酚得率的影响顺序为B(超声时间) > C(超声温度) > D(超声功率) > A(液料比)。

    该回归模型的P = 0.004 2 < 0.01,有极显著差异,失拟项为0.076 3 > 0.05,差异不显著,模型稳定性较好,相关系数r = 0.816 6,Radj 2 = 0.633 2,说明拟合度较好,残差为1.70,纯误差为0.14,表明该模型的拟合程度较高且实验误差可忽略不计,可用于马尾松松针总黄酮提取实验预测及结果分析。对回归模型显著性分析可知,因素ABCA2C2D2对黄酮得率影响极显著(P < 0.01),B2对黄酮得率影响显著(0.01 < P < 0.05),交互项ABACADBCBDCD因素的交互作用对黄酮得率的影响不显著(P > 0.05)。由表5模型的方差分析,可以得出ABCD 4个因素对黄酮得率的影响顺序为:A(液料比) > B(超声时间) > C(超声温度) > D(超声功率)。

    通过响应面分析得到超声波辅助低共熔溶剂提取马尾松松针中多酚、黄酮最佳工艺条件为:液料比10.284 mL/g,超声时间59.87 min,超声温度47.65 ℃,超声功率298.63 W,在此条件下,多酚得率为7.539%,黄酮得率为10.406%,为实际操作中更便于控制,调整最佳工艺为:液料比10 mL/g,超声时间60 min,超声温度48 ℃,超声功率300 W。在此条件下进行最优工艺的验证,计算出多酚得率为7.387%,黄酮得率为10.377%,实际得率与模型预测值的误差分别为2.0%和0.2%,证明模型理论预测值与实际值拟合效果良好。

    精密称取1.0000 g马尾松松针粉,按照液料比50 mL/g加入60%乙醇,搅拌均匀,恒温水浴,50 ℃浸提60 min。抽滤,得到浸提液,再将浸提液旋转蒸发、冻干,得到醇提物冻干粉,冷藏,备用。

    按照1.2.2和1.2.3的方法,对低共熔溶剂提取物和乙醇提取物进行多酚和黄酮得率的测定,结果如图2所示。由图2可知:在相同提取时间和提取温度条件下,低共熔溶剂和乙醇提取松针中多酚得率分别为7.39%、6.63%,黄酮得率分别为10.38%、9.59%。采用低共熔溶剂进行提取可得到更多的活性物质,溶剂用量少,价格低,可获得更高的得率,降低了制备成本,与乙醇溶剂提取相比,多酚和黄酮的得率分别提高了11%和8%。

    图  2  不同提取方法活性物质的得率对比
    标有不同大写字母表示差异极显著(P < 0.01),标有不同小写字母表示差异显著(P < 0.05)。Different capital letters mean very significant difference (P < 0.01), different lowercase letters mean significant difference (P < 0.05).
    Figure  2.  Contrast of the yield of active substances by different extraction methods

    低共熔溶剂提取物和醇提物对DPPH·清除能力对比曲线如图3所示。由图3可知:低共熔溶剂提取物和醇提物中活性成分对DPPH·的清除能力的剂量效应趋势差异不显著(P > 0.05)。低共熔溶剂提取物和乙醇提取物中多酚的IC50值分别为3.200、3.368 mg/L;黄酮的IC50值分别为4.950、5.197 mg/L,低共熔溶剂提取物对DPPH·自由基清除作用略高于乙醇提取物。

    图  3  松针活性成分对DPPH·自由基清除率的影响
    Figure  3.  Effects of active components in pine needles on DPPH· radical scavenging

    低共熔溶剂提取物和醇提物对ABTS+·清除能力对比曲线如图4。由图4可知:在试验质量浓度范围内,随着多酚、黄酮质量浓度的增加,清除率逐渐提升至平稳,且低共熔溶剂提取物中的活性成分清除能力更强,存在显著剂量–效应关系。通过计算,低共熔溶剂提取物和乙醇提取物中多酚的IC50值分别为1.217、1.506 mg/L;黄酮的IC50值分别为1.634、2.598 mg/L。综上,低共熔溶剂提取物对ABTS+·自由基清除效果显著优于乙醇提取物。

    图  4  松针活性成分对ABTS+·自由基清除的影响
    Figure  4.  Effects of active components in pine needles on ABTS+· radical scavenging

    低共熔溶剂提取物和醇提物总还原能力对比曲线如图5。还原力是评价物质抗氧化能力的重要指标,还原力越强,说明其清除自由基能力越强。由图5可知:在相同浓度梯度条件下,随着活性物质质量浓度提高,吸光度值所反映出来的还原能力越强,且低共熔溶剂提取物的还原能力均显著强于乙醇提取物(P < 0.05)。

    图  5  不同溶剂提取物中活性成分总还原能力对比
    Figure  5.  Comparison of total reducing power of active components in different solvent extracts

    低共熔溶剂作为绿色环保的提取溶剂,具有提取效率高、构成简单、易采购、成本低、环保性和食品安全性良好的优势。本研究采用超声波辅助低共熔溶剂提取马尾松松针中多酚类化合物和黄酮类化合物,通过响应面优化出最佳工艺为:氯化胆碱–葡萄糖–水(摩尔比为1∶1∶4)、液料比10 mL/g、超声时间60 min、超声功率300 W、超声温度48 ℃。在此条件下,多酚得率为7.387%,黄酮得率为10.377%,较相同条件下的乙醇提取法,两种活性成分得率分别提高了11%和8%,溶剂使用量减少了5倍。

    低共熔溶剂提取法能够良好保持提取物活性,通过与乙醇提取物对比DPPH·和ABTS+·的清除能力以及总还原能力,结果表明:低共熔溶剂提取物对自由基的清除能力和还原能力均强于醇提物,总还原能力和ABTS+·清除能力达到显著差异水平(P < 0.05)。这说明低共熔溶剂提取有效活性成分的能力更强,且对活性物质具有良好的保护性,不易破坏结构。

    综上所述,低共熔溶剂作为一种可生物降解的新型绿色溶剂,由于黏度大、熔点高,在实践推广中还存在一定限制,本研究筛选的低共熔溶剂能实现较高的提取效率,黏度相对适宜,且提取物可采取树脂吸附方式实现纯化和脱溶,具备工业可实现性。马尾松松针中含有丰富的活性物质,且具有较强的抗氧化能力,在食品和药用方面具有很好的利用价值。采用新型提取方法制备的马尾松松针活性物质得率高,活性好,成本低,为马尾松资源的综合利用,开发高附加值产品,以及产业转化提供理论依据和研究基础。

  • 图  1   研究区与无人机野外调查位置

    Figure  1.   Study area and locations of UAV survey

    图  2   网格区域统计示意图

    Figure  2.   Schematic diagram of grid zonal statistic

    图  3   联合Sentinel-1和Sentinel-2时间序列数据的松材线虫病害遥感识别技术路线

    Figure  3.   Workflow of monitoring pine wilt disease through the integration of Sentinel-1 and Sentinel-2 time-series data

    图  4   Sentinel-1影像预处理示意图

    Figure  4.   Sentinel-1 image preprocessing schematic diagram

    图  5   健康林分和受害林分的特征时序曲线

    Figure  5.   Characteristic time-series curves extracted from healthy and diseased stands

    图  6   不同光学植被指数组合条件下的时序监测模型总体精度与Kappa系数比较

    [OPT]指全部光学植被指数组合,[OPT2]指由GARI、NDMI、RDVI和DSWI组成的光学植被指数组合,“−”表示从指数组合中移除单个指数。[OPT] represents all optical vegetation index group, [OPT2] represents the optical vegetation index group composed of GARI, NDMI, RDVI and DSWI, “−” represents removing a single index from the index group.

    Figure  6.   Comparison of overall accuracy and Kappa coefficient of time-series monitoring models based on different optical vegetation index group

    图  7   不同微波与光学植被指数组合条件下的时序监测模型总体精度与Kappa系数比较

    [OS]指全部微波和光学植被指数组合,[OS2]指由DSWI、σVVσVH组成的植被指数组合,“−”表示从指数组合中移除单个指数。[OS] represents all microwave and optical vegetation index group, [OS2] represents the vegetation index group composed of DSWI,σVV and σVH, “−” represents removing a single index from the index group.

    Figure  7.   Comparison of overall accuracy and Kappa coefficient of time-series monitoring models based on different microwave and optical vegetation indices group

    图  8   联合时序监测模型提取松材线虫病受害区分布图

    Figure  8.   Maps of PWD infestation area classified by combined time-series monitoring model

    图  9   不同环境因子条件下的时序监测模型的总体精度与Kappa系数比较

    Figure  9.   Comparison of overall accuracy and Kappa coefficient of time-series monitoring models under different environment conditions

    图  10   健康样本和受害样本的特征参数在灾前灾后的箱式图

    Figure  10.   Characteristic boxplots extracted from healthy and diseased samples before and after disaster

    表  1   本研究所使用的微波与光学植被指数及其计算公式

    Table  1   Microwave and optical vegetation indices used in this study and their formula

    植被指数 Vegetation index 计算公式 Formula 参考文献 Reference
    病害水分胁迫指数 Disease-water stress index (DSWI) B8+B3B11+B4 [31]
    绿度大气阻抗植被指数 Green atmospherically resistant index (GARI) B8(B31.7×(B2B4))B8+(B31.7×(B2B4)) [32]
    修改型归一化差异水体指数 Modified normalized difference water index (MNDWI) B3B11B3+B11 [33]
    归一化燃烧比 Normalized burn ratio (NBR) B8B12B8+B12 [34]
    归一化差异湿度指数 Normalized difference moisture index (NDMI) B8B11B8+B11 [35]
    归一化差异植被指数 Normalized difference vegetation index (NDVI) B8B4B8+B4 [36]
    重整化差异植被指数 Renormalized difference vegetation index (RDVI) B8B4B8+B4 [37]
    极化比 Polarization ratio (PR) σVVσVH [38]
    雷达植被指数 Radar vegetation index (RVI) 4/(10σVVσVH10+1) [39]
    注:B2B3B4B8B11B12分别代表蓝、绿、红、近红、短波红外1和短波红外2波段反射率;σVVσVH分别为同极化和交叉极化下后向散射系数。Notes: B2, B3, B4, B8, B11 and B12 represent the reflection values of the blue band, the green band, the red band, the near infrared band, the short-wave infrared band 1, and the short-wave infrared band 2, respectively. σVV and σVH represent the co-polarized and cross-polarized backscattering coefficient.
    下载: 导出CSV

    表  2   单一微波数据的时序模型分类精度

    Table  2   Classification accuracy of time-series monitoring model using individual microwave data

    指数组合
    Index group
    总体精度
    Overall accuracy/%
    Kappa系数
    Kappa coefficient
    制图精度 Producer’s accuracy/% 用户精度 User’s accuracy/%
    健康类 Healthy 受害类 Diseased 健康类 Healthy 受害类 Diseased
    [SAR] 68.87 0.36 54.71 80.92 70.93 67.73
    注:[SAR]指全部微波植被指数组合。Note: [SAR] represents all microwave vegetation index group.
    下载: 导出CSV

    表  4   不同微波与光学植被指数组合条件下的时序监测模型制图精度与用户精度比较

    Table  4   Comparison of producer accuracy and user accuracy of time-series monitoring models based on different microwave and optical vegetation index group %

    指数组合
    Index group
    制图精度
    Producer accuracy
    用户精度
    User accuracy
    健康类
    Healthy
    受害类
    Diseased
    健康类
    Healthy
    受害类
    Diseased
    [OS] 81.61 77.48 75.52 83.20
    [OS]PR 81.61 78.24 76.15 83.33
    [OS]RVI 82.06 77.48 75.62 83.54
    [OS2] 83.86 77.86 76.33 85.00
    下载: 导出CSV

    表  5   不同环境因子条件下的时序监测模型的制图精度与用户精度比较

    Table  5   Comparison of producer accuracy and user accuracy of time-series monitoring models under different environment conditions %

    环境因子
    Environment factor
    制图精度
    Producer accuracy
    用户精度
    User accuracy
    健康类
    Healthy
    受害类
    Diseased
    健康类
    Healthy
    受害类
    Diseased
    陡坡 Steep slope 87.25 88.75 87.84 88.20
    缓坡 Gentle slope 93.59 93.56 93.86 93.27
    阳坡 Sunny slope 93.71 91.09 90.11 94.36
    阴坡 Shady slope 89.48 91.22 91.45 89.21
    高海拔 High altitude 87.50 85.71 86.19 97.07
    低海拔 Low altitude 93.93 96.60 96.39 94.28
    密林 Dense forest 92.07 92.17 91.79 92.44
    疏林 Sparse forest 89.07 89.73 90.23 88.51
    下载: 导出CSV

    表  3   不同光学植被指数组合条件下的时序监测模型制图精度与用户精度比较

    Table  3   Comparison of producer accuracy and user accuracy of time-series monitoring models based on different optical vegetation index group %

    指数组合
    Index group
    制图精度
    Producer’s accuracy
    用户精度
    User’s accuracy
    健康类
    Healthy
    受害类
    Diseased
    健康类
    Healthy
    受害类
    Diseased
    [OPT] 73.99 75.95 72.37 77.43
    [OPT]MNDWI 80.27 75.57 73.66 81.82
    [OPT]NBR 76.68 77.10 74.03 79.53
    [OPT]NDVI 74.44 80.15 76.15 78.65
    [OPT2] 78.03 78.24 75.32 80.71
    [OPT2]GARI 78.92 77.86 75.21 81.27
    [OPT2]NDMI 80.72 77.48 75.31 82.52
    [OPT2]RDVI 79.82 77.86 75.42 81.93
    DSWI 81.61 77.86 75.83 83.27
    下载: 导出CSV
  • [1] 樊改丽. 基于中国知网的“松材线虫病”相关研究文献计量分析[J]. 植物检疫, 2018, 32(4): 18−25.

    Fan G L. Bibliometric analysis of pine wilt disease based on China National Knowledge Infrastructure[J]. Plant Quarantine, 2018, 32(4): 18−25.

    [2] 秦军. 基于深度学习的多平台遥感松材线虫病害监测方法[D]. 合肥: 安徽大学, 2021.

    Qin J. Deep learning based multi-platform remote sensing method for pine wood nematode disease monitoring[D]. Hefei: Anhui University, 2021.

    [3] 杨鼎, 秦思源, 迟世宽, 等. 基于CiteSpace的国内外松材线虫病研究现状及热点分析[J]. 自然保护地, 2022, 2(2): 115−128.

    Yang D, Qin S Y, Chi S K, et al. Research status and hotspot analysis of pine wood nematode disease based on CiteSpace[J]. Natural Protected Areas, 2022, 2(2): 115−128.

    [4] 许格希, 余荣兵, 杨昌旭, 等. 基于GIS空间技术和MaxEnt模型预测川西松材线虫病入侵风险[J]. 北京林业大学学报, 2023, 45(9): 104−115.

    Xu G X, Yu R B, Yang C X, et al. Prediction of invasion risk of pine wilt disease based on GIS spatial technology and MaxEnt model in western Sichuan Province of southwestern China[J]. Journal of Beijing Forestry University, 2023, 45(9): 104−115.

    [5] 陈玉惠, 叶建仁, 魏初奖, 等. 松材线虫侵染对马尾松、黑松水分及其相关代谢的影响[J]. 植物病理学报, 2005, 35(3): 201−207.

    Chen Y H, Ye J R, Wei C J, et al. Effects of pine wood nematode (PWN) infection on water regime and metabolism of related to hosts[J]. Acta Phytopathologica Sinica, 2005, 35(3): 201−207.

    [6] 朱克恭. 松材线虫病研究综述[J]. 世界林业研究, 1995(4): 28−33.

    Zhu K G. Studies on pine disease caused by Bursaphelenchus xylophilus: a review[J]. World Forestry Research, 1995(4): 28−33.

    [7] 武红敢. 卫星遥感技术在森林病虫害监测中的应用[J]. 世界林业研究, 1995(2): 24−29.

    Wu H G. Application of satellite remote sensing technology in the assessment of forest damage[J]. World Forestry Research, 1995(2): 24−29.

    [8] 徐华潮, 骆有庆, 张廷廷, 等. 松材线虫自然侵染后松树不同感病阶段针叶光谱特征变化[J]. 光谱学与光谱分析, 2011, 31(5): 1352−1356.

    Xu H C, Luo Y Q, Zhang T T, et al. Changes of reflectance spectra of pine needles in different stage after being infected by pine wood nematode[J]. Spectroscopy and Spectral Analysis, 2011, 31(5): 1352−1356.

    [9]

    Woodhouse I H. Introduction to microwave remote sensing[M]. Boca Raton: CRC Press, 2006.

    [10]

    Zhang J C, Huang Y B, Pu R L, et al. Monitoring plant diseases and pests through remote sensing technology: a review[J/OL]. Computers and Electronics in Agriculture, 2019, 165: 104943[2022−03−21]. https://www.sciencedirect.com/science/article/pii/S016816991930290X.

    [11]

    Franklin S E, Wulder M A, Skakun R S, et al. Mountain pine beetle red-attack forest damage classification using stratified landsat TM data in British Columbia, Canada[J]. Photogrammetric Engineering & Remote Sensing, 2003, 69(3): 283−288.

    [12]

    White J C, Wulder M A, Brooks D, et al. Detection of red attack stage mountain pine beetle infestation with high spatial resolution satellite imagery[J]. Remote Sensing of Environment, 2005, 96(3−4): 340−351.

    [13]

    Rahimzadeh-Bajgiran P, Weiskittel A, Kneeshaw D, et al. Detection of annual spruce budworm defoliation and severity classification using Landsat imagery[J/OL]. Forests, 2018, 9(6): 357[2022−04−05]. https://www.mdpi.com/1999-4907/9/6/357.

    [14]

    Prabhakar M, Prasad Y G, Thirupathi M, et al. Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae)[J]. Computers and Electronics in Agriculture, 2011, 79(2): 189−198. doi: 10.1016/j.compag.2011.09.012

    [15]

    Apan A, Held A, Phinn S, et al. Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery[J]. International Journal of Remote Sensing, 2004, 25(2): 489−498. doi: 10.1080/01431160310001618031

    [16]

    Xu H R, Ying Y B, Fu X P, et al. Near-infrared spectroscopy in detecting leaf miner damage on tomato leaf[J]. Biosystems Engineering, 2007, 96(4): 447−454. doi: 10.1016/j.biosystemseng.2007.01.008

    [17]

    Lin Q N, Huang H G, Chen L, et al. Using the 3D model RAPID to invert the shoot dieback ratio of vertically heterogeneous Yunnan pine forests to detect beetle damage[J/OL]. Remote Sensing of Environment, 2021, 260: 112475[2022−03−21]. https://www.sciencedirect.com/science/article/abs/pii/S0034425721001930.

    [18]

    Li X Y, Shabanov N V, Chen L, et al. Modeling solar-induced fluorescence of forest with heterogeneous distribution of damaged foliage by extending the stochastic radiative transfer theory[J/OL]. Remote Sensing of Environment, 2022, 271: 112892[2022−03−21]. https://www.sciencedirect.com/science/article/abs/pii/S0034425722000062.

    [19]

    Ortiz S, Breidenbach J, Kändler G. Early detection of bark beetle green attack using TerraSAR-X and RapidEye data[J]. Remote Sensing, 2013, 5(4): 1912−1931. doi: 10.3390/rs5041912

    [20]

    Tanase M A, Aponte C, Mermoz S, et al. Detection of windthrows and insect outbreaks by L-band SAR: a case study in the Bavarian Forest National Park[J]. Remote Sensing of Environment, 2018, 209: 700−711. doi: 10.1016/j.rse.2018.03.009

    [21] 薛娟. 联合多时相光学和InSAR数据的云南松切梢小蠹虫害监测研究[D]. 北京: 北京林业大学, 2018.

    Xue J. Fusing multi-temporal optical and InSAR to monitor the damage degrees of shoot beetle in Yunnan pine forest[D]. Beijing: Beijing Forestry University, 2018.

    [22]

    Tiwari V, Kumar V, Matin M A, et al. Flood inundation mapping-Kerala 2018; Harnessing the power of SAR, automatic threshold detection method and Google Earth Engine[J/OL]. PLoS ONE, 2020, 15(8): e0237324[2021−11−22]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237324.

    [23]

    Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine: planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202: 18−27. doi: 10.1016/j.rse.2017.06.031

    [24]

    Li L, Mu X, Jiang H, et al. Review of ground and aerial methods for vegetation cover fraction (fCover) and related quantities estimation: definitions, advances, challenges, and future perspectives[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 199: 133−156. doi: 10.1016/j.isprsjprs.2023.03.020

    [25]

    Potapov P, Li X Y, Hernandez-Serna A, et al. Mapping global forest canopy height through integration of GEDI and Landsat data[J/OL]. Remote Sensing of Environment, 2021, 253: 112165[2021−11−26]. https://www.sciencedirect.com/science/article/abs/pii/S0034425720305381.

    [26]

    Farr T G, Rosen P A, Caro E, et al. The shuttle radar topography mission[J/OL]. Reviews of Geophysics, 2007, 45(2)[2021−22−25]. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2005rg000183.

    [27]

    Sexton J O, Song X P, Feng M, et al. Global, 30-m resolution continuous fields of tree cover: landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error[J]. International Journal of Digital Earth, 2013, 6(5): 427−448. doi: 10.1080/17538947.2013.786146

    [28]

    Vollrath A, Mullissa A, Reiche J. Angular-based radiometric slope correction for Sentinel-1 on Google Earth Engine[J/OL]. Remote Sensing, 2020, 12(11): 1867[2022−03−16]. https://www.mdpi.com/2072-4292/12/11/1867.

    [29]

    Lee J, Grunes M R, De Grandi G. Polarimetric SAR speckle filtering and its implication for classification[J]. IEEE Transactions on Geoscience and remote sensing. 1999, 37(5): 2363-2373. DOI: 10.1109/36.789635

    [30]

    Yin F, Lewis P E, Gomez-Dans J L, et al. A sensor invariant atmospheric correction method: application to Sentinel-2/MSI and Landsat 8/OLI[J/OL]. EarthArXiv[Preprint]. 2019[2021−11−22]. https://eartharxiv.org/repository/view/1034.

    [31]

    Apan A, Held A, Phinn S, et al. Formulation and assessment of narrow-band vegetation indices from EO-1 Hyperion imagery for discriminating sugarcane disease[C]//Proceeding of the Spatial Sciences Institute Biennial Conference (SSC 2003). Canberra: Spatial Sciences Institute, 2003: 1−13.

    [32]

    Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment, 1996, 58(3): 289−298. doi: 10.1016/S0034-4257(96)00072-7

    [33]

    Xu H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(14): 3025−3033. doi: 10.1080/01431160600589179

    [34]

    Cocke A E, Fulé P Z, Crouse J E. Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data[J]. International Journal of Wildland Fire, 2005, 14(2): 189-198. DOI: 10.1071/WF04010.

    [35]

    Wilson E H, Sader S A. Detection of forest harvest type using multiple dates of Landsat TM imagery[J]. Remote Sensing of Environment, 2002, 80(3): 385−396. doi: 10.1016/S0034-4257(01)00318-2

    [36]

    Rouse J W, Haas R H, Schell J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[J/OL]. NASA Special Publication, 1974, 351: 309[2022−03−25]. https://ntrs.nasa.gov/citations/19740022614.

    [37]

    Roujean J, Breon F. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J]. Remote Sensing of Environment, 1995, 51(3): 375−384. doi: 10.1016/0034-4257(94)00114-3

    [38]

    Blaes X, Defourny P, Wegmuller U, et al. C-band polarimetric indexes for maize monitoring based on a validated radiative transfer model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(4): 791−800. doi: 10.1109/TGRS.2005.860969

    [39]

    Nasirzadehdizaji R, Balik S F, Abdikan S, et al. Sensitivity analysis of multi-temporal sentinel-1 SAR parameters to crop height and canopy coverage[J/OL]. Applied Sciences, 2019, 9(4): 655[2022−01−14]. https://www.mdpi.com/2076-3417/9/4/655.

    [40]

    Press W H, Teukolsky S A. Savitzky-Golay smoothing filters[J]. Computers in Physics, 1990, 4(6): 669−672. doi: 10.1063/1.4822961

    [41]

    Simoes R, Camara G, Queiroz G, et al. Satellite image time series analysis for big earth observation data[J/OL]. Remote Sensing, 2021, 13(13): 2428[2021−10−08]. https://www.mdpi.com/2072-4292/13/13/2428.

    [42]

    Keogh E, Lin J. Clustering of time-series subsequences is meaningless: Implications for previous and future research[J]. Knowledge and Information Systems, 2005, 8(2): 154−177. doi: 10.1007/s10115-004-0172-7

    [43]

    Chen T Q, Guestrin C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. San Francisco: Association for Computing Machinery, 2016: 785−794.

    [44]

    Hickey J, Birnie R, Zhao M X. Oleoresin, chemistry and spectral reflectance in stressed lodgepole and white bark pine, mammoth mountain, California[C]//Proceedings of the tenth JPL airborne earth science workshop. Pasadena: National Aeronautics and Space Administration, 2001: 1−10.

    [45]

    Steele-Dunne S C, Friesen J, van de Giesen N. Using diurnal variation in backscatter to detect vegetation water stress[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2618−2629. doi: 10.1109/TGRS.2012.2194156

    [46]

    van Emmerik T, Steele-Dunne S C, Judge J, et al. Impact of diurnal variation in vegetation water content on radar backscatter from maize during water stress[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7): 3855−3869. doi: 10.1109/TGRS.2014.2386142

    [47] 张王菲. 星载SAR遥感反演中地形辐射校正的关键技术研究[D]. 昆明: 昆明理工大学, 2018, 138.

    Zhang W F. Research on key techniques of terrain radiation correction in spaceborne SAR remote sensing retrieval[D]. Kunming: Kunming University of Science and Technology, 2018, 138.

    [48] 李慧敏. 基于微波遥感数据的森林参数反演[D]. 成都: 电子科技大学, 2017: 78.

    Li H M. Inversion of forest parameters using microwave remote sensing data[D]. Chengdu: University of Electronic Science and Technology of China, 2017: 78.

    [49] 边金虎, 李爱农, 王少楠, 等. 基于MODIS NDVI的Landsat TM影像地形阴影区光谱信息恢复方法研究[J]. 遥感技术与应用, 2016, 31(1): 12−22.

    Bian J H, Li A N, Wang S N, et al. Restoration of information obscured by mountain shadows for Landsat TM images based on MODIS NDVI[J]. Remote Sensing Technology and Application, 2016, 31(1): 12−22.

  • 期刊类型引用(13)

    1. 黄瑜,张锡宇,赵海桃,石统帅,邱隽蒙,符群. 沙棘叶提取物的体外抗氧化及乙酰胆碱酯酶抑制能力. 精细化工. 2024(02): 391-400 . 百度学术
    2. 秦汝兰,吕重宁,王丹萍,关颖丽,张立秋. 不同初加工方法对大三叶升麻酚酸类化学成分及抗氧化活性影响. 人参研究. 2024(03): 36-41 . 百度学术
    3. 李海洋,袁峻,孙巍巍. 松针油再生沥青流变性能与再生机理研究. 林业工程学报. 2024(04): 147-153 . 百度学术
    4. 李子煜,吴婷,马帅楠,徐晓云. 不同干燥方式对西兰花茎和叶品质的影响. 食品科学. 2024(14): 179-188 . 百度学术
    5. 竹娟,王译晗,陈立莉,曲文鑫,刘荣. 芍药花提取物中黄酮的测定及其体外抗氧化和降脂活性研究. 天然产物研究与开发. 2024(11): 1838-1844+1899 . 百度学术
    6. 乔勤勤,安婉营,马静然,张乐乐,刘艳红. 预处理方式对荠菜干燥特性和品质的影响. 鞍山师范学院学报. 2024(06): 59-64 . 百度学术
    7. 石统帅,吴小杰,钟明旭,赵海桃,邱隽蒙,符群. 超声辅助双水相萃取黑果腺肋花楸果实抗氧化成分. 中南林业科技大学学报. 2023(01): 191-202 . 百度学术
    8. 张家旭,王信,董学凤,叶倩女,郭玉儿,彭腾腾,尹盼盼,李海燕,石晓峰. 电感耦合等离子体质谱(ICP-MS)法结合化学计量学分析比较6种松针中无机元素的含量. 中国无机分析化学. 2023(03): 278-285 . 百度学术
    9. 周佳悦,候艳丽,王凡予,郭庆启. 超声辅助低共熔溶剂提取红松树皮原花青素及动力学研究. 食品工业科技. 2023(14): 229-236 . 百度学术
    10. 张锡宇,黄瑜,石统帅,赵海桃,邱隽蒙,符群. 超声波-半仿生法提取桑叶黄酮及其活性的研究. 北京林业大学学报. 2023(09): 147-156 . 本站查看
    11. 问娟娟,刘浪浪,张少荟,高艳蓉,张爽. 基于低共熔溶剂提取黄酮类化合物研究进展. 精细化工中间体. 2023(05): 6-11 . 百度学术
    12. 周新宇,吕重宁,秦汝兰. 刺玫果中花色苷提取工艺优化及抗氧化性分析. 食品工业科技. 2022(04): 178-186 . 百度学术
    13. 罗文峰,陈金峰,陈坤进. 松针洗手液的研究. 广州化工. 2022(17): 60-62 . 百度学术

    其他类型引用(7)

图(10)  /  表(5)
计量
  • 文章访问数:  477
  • HTML全文浏览量:  59
  • PDF下载量:  60
  • 被引次数: 20
出版历程
  • 收稿日期:  2022-11-08
  • 修回日期:  2023-01-05
  • 网络出版日期:  2024-02-28
  • 刊出日期:  2024-03-24

目录

/

返回文章
返回