Stand structure optimization and adjustment of natural forest in Changbai Mountains based on AHP-CRITIC combination weight method
-
摘要:
目的 合理采伐能促进林木生长,提高林分生产力。探索林分空间结构优化,以期为该地区天然林林分采伐木的选择提供新的指导工具。 方法 本文采用4块不同优势树种的天然林固定样地监测数据,基于混交度(M)、角尺度(W)、大小比数(U)和Hegyi竞争指数(CI)4种空间结构指数,根据AHP-CRITIC 组合赋权法构建单木采伐指数(Fi),分析不同强度的采伐模拟前后林分空间结构变化。 结果 4个样地采伐后的空间结构均得到一定程度的优化:混交度提高,林木大小分化程度减少,林分水平分布格局趋向于随机分布,林分竞争压力也得到很大的缓解。其中竞争指数随着采伐强度的增加呈现持续下降的趋势,在30%采伐强度下最多减少了24.80% ~ 34.88%,大小比数最多减少了24.97%,混交度最高提升了12.76%。采伐木主要集中于林分密度较大的区域,采伐木的胸径以中小型居多。 结论 对于天然纯林,适度加大采伐强度可以更好地调节林分空间结构,而对于天然混交林,进行相对较低强度的采伐可以在其整体结构获得优化的同时保持较高程度的树种混交。研究同时证明了AHP-CRITIC 组合赋权法用于构建采伐指数的合理性,基本实现了对长白山地区天然林林分结构的优化调整,可为合理选取采伐木、科学经营森林提供技术支持。 -
关键词:
- 采伐模拟 /
- 空间结构 /
- AHP-CRITIC组合赋权法 /
- 采伐木
Abstract:Objective Rational cutting can promote the growth of trees and increase the productivity of stands. It is of no important practical significance to determine cutting with the aim of optimizing the spatial structure of stands. In this study, the natural forest composed of different tree species in Changbai Mountain of northeastern China was taken as the object, and the combination weight method of AHP-CRITIC was adopted to construct single tree cutting index, in order to provide a new guiding tool for the selection of natural forest cutting wood in this area. Method In this paper, the monitoring data of 4 natural forest fixed samples with different dominant tree species were adopted, four spatial structure indexes, including mingling degrees (M), uniform angle index (W), dominance degrees (U) and Hegyi competition index (CI) were used, and the individual tree felling index (Fi) was constructed according to AHP-CRITIC combination weight method. The spatial structure changes of stand before and after cutting simulation with different intensities were analyzed. Result After cutting, the spatial structure of the four sample plots was optimized to a certain extent: the mingling degrees increased, the degree of tree size differentiation decreased, the horizontal distribution pattern of stand tended to random distribution, and the pressure of stand competition was greatly relieved. The competition index showed a trend of continuous decline with the increase of cutting intensity. Under 30% cutting intensity, the competition index decreased by 24.80%−34.88% at most, the size ratio decreased by 24.97% at most, and the mixing degree increased by 12.76% at the highest. The felled trees were mainly concentrated in the area with high density, and most of the felled trees were small and medium-sized in DBH. Conclusion Through comparative analysis of data before and after simulated cutting, it is proved that for natural pure forest, moderately increasing cutting intensity can better regulate the spatial structure of the stand, while for natural mixed forest, relatively low intensity cutting can optimize its overall structure and maintain a higher degree of tree species mixing. At the same time, the research proves that it is reasonable for AHP-CRITIC combination weight method to construct cutting index, which basically realizes the optimization and adjustment of natural forest stand structure in Changbai Mountain, and can provide technical support for reasonable selection of cutting wood and reasonable management of forest. -
表 1 样地信息统计表
Table 1. Statistical table of sample plot information
样地号
Sample plot No.树种组成
Tree species composition调查年份
Year of observation面积/hm2
Area/ha平均胸径
Mean DBH/cm平均高
Average height/m林分密度/(株∙hm−2)
Stand density/(tree∙ha−1)1 7A1P1PK1B 2003 0.20 20.8 19.5 740 2 4PK3A1P1T1AP 2009 0.30 27.0 20.4 337 3 4L2P2A1BC1T 2007 0.30 21.8 20.7 800 4 7P2A1PK 2009 0.25 26.5 19.9 432 注:A. 冷杉;P. 云杉;PK. 红松;B. 白桦;T. 椴树;AP.色木槭;L. 落叶松;BC. 枫桦。Notes: A, Abies nephrolepis; P, Picea koraiensis; PK, Pinus koraiensis; B, Betula platyphylla; T, Tilia amurensis; AP, Acer pictum; L, Larix gmelinii ; BC, Betula costata. 表 2 基于AHP-CRITIC法的各指标综合权重值
Table 2. Comprehensive weight value of each indicator based on the AHP-CRITIC method
样地号
Sample plot No.赋权方法
Weighting method大小比数
Neighborhood
comparison (U)角尺度
Uniform angle
index (W)混交度
Mingling
degree (M)竞争指数
Competition
index (CI)1 AHP 0.286 0.142 0.286 0.286 CRITIC 0.339 0.230 0.249 0.182 组合赋权 Combination weighting 0.318 0.197 0.263 0.222 2 AHP 0.286 0.142 0.286 0.286 CRITIC 0.290 0.300 0.266 0.144 组合赋权 Combination weighting 0.288 0.246 0.273 0.193 3 AHP 0.286 0.142 0.286 0.286 CRITIC 0.355 0.281 0.246 0.118 组合赋权 Combination weighting 0.335 0.241 0.258 0.166 4 AHP 0.286 0.142 0.286 0.286 CRITIC 0.317 0.253 0.243 0.187 组合赋权 Combination weighting 0.304 0.208 0.261 0.227 表 3 样地在不同采伐强度下的林分结构参数统计
Table 3. Stand structure parameter statistics at different harvesting intensities in the sample plots
样地号
Sample
plot No.采伐强度
Cuttting
intensity/%U W M CI 采伐指数
Felling
index (F)径阶数量
Number of
diameter
class (D)树种数量
Number of
tree species
(nSP)相邻径阶
株数之比
Ratio of
neighboring
diameter class
number (Q)1 0 0.482 0.500 0.662 1.689 0.673 17 7 1.347 5 0.481 (−0.25%) 0.487 (−2.60%) 0.705 (6.49%) 1.558 (−7.80%) 0.695 (3.33%) 17 7 1.322 10 0.462(−4.02%) 0.497(−0.68%) 0.729(10.26%) 1.525(−9.72%) 0.711(5.72%) 17 7 1.327 15 0.449(−6.73%) 0.486(−2.90%) 0.743(12.27%) 1.411(−16.47%) 0.725(7.73%) 17 7 1.319 20 0.442(−8.18%) 0.469(−6.15%) 0.731(10.46%) 1.361(−19.44%) 0.737(9.63%) 17 7 1.297 25 0.459(−4.71%) 0.459(−8.20%) 0.730(10.27%) 1.311(−22.41%) 0.750(11.47%) 17 7 1.326 30 0.461(−4.40%) 0.465(−7.02%) 0.706(6.73%) 1.262(−25.29%) 0.762(13.32%) 17 7 1.324 2 0 0.485 0.592 0.783 2.068 0.678 21 10 1.338 5 0.461(−5.02%) 0.566(−4.31%) 0.820(4.75%) 1.836(−11.18%) 0.699(3.17%) 21 10 1.326 10 0.471(−2.88%) 0.578(−2.37%) 0.832(6.24%) 1.660(−19.71%) 0.712(5.14%) 21 10 1.311 15 0.469(−3.30%) 0.575(−2.93%) 0.846(8.10%) 1.652(−20.12%) 0.729(7.59%) 21 10 1.263 20 0.472(−2.69%) 0.583(−1.45%) 0.856(9.37%) 1.643(−20.55%) 0.741(9.40%) 21 10 1.291 25 0.475(−2.02%) 0.529(−10.56%) 0.868(10.80%) 1.522(−26.37%) 0.753(11.19%) 21 10 1.292 30 0.463(−4.64%) 0.537(−9.24%) 0.883(12.76%) 1.346(−34.88%) 0.769(13.47%) 21 10 1.334 3 0 0.474 0.501 0.779 2.244 0.711 20 11 1.322 5 0.462(−2.44%) 0.507(1.17%) 0.797(2.25%) 2.192(−2.32%) 0.727(2.26%) 20 11 1.313 10 0.468(−1.26%) 0.483(−3.64%) 0.817(4.94%) 2.026(−9.69%) 0.741(4.18%) 20 11 1.300 15 0.468(−1.31%) 0.482(−3.84%) 0.812(4.20%) 1.967(−12.32%) 0.753(5.88%) 20 11 1.301 20 0.467(−1.38%) 0.471(−6.12%) 0.797(2.25%) 1.881(−16.15%) 0.764(7.36%) 20 11 1.290 25 0.465(−1.83%) 0.483(−3.58%) 0.803(3.12%) 1.788(−20.33%) 0.774(8.80%) 20 11 1.287 30 0.463(−2.36%) 0.472(−5.77%) 0.803(3.10%) 1.687(−24.80%) 0.785(10.31%) 20 11 1.344 4 0 0.496 0.546 0.657 1.814 0.644 20 5 1.665 5 0.477(−3.86%) 0.534(−2.26%) 0.674(2.60%) 1.647(−9.18%) 0.666(3.36%) 20 5 1.599 10 0.452(−8.87%) 0.532(−2.69%) 0.690(5.07%) 1.643(−9.45%) 0.678(5.23%) 20 5 1.570 15 0.432(−12.94%) 0.521(−4.62%) 0.699(6.39%) 1.496(−17.51%) 0.694(7.67%) 20 5 1.521 20 0.411(−17.27%) 0.527(−3.59%) 0.701(6.66%) 1.459(−19.58%) 0.705(9.41%) 20 5 1.507 25 0.389(−21.56%) 0.524(−4.10%) 0.712(8.28%) 1.374(−24.25%) 0.720(11.70%) 20 5 1.546 30 0.372(−24.97%) 0.520(−4.76%) 0.735(11.80%) 1.361(−24.99%) 0.731(13.41%) 20 5 1.538 注:括号里数据表示采伐后相对于采伐前的变化率。Note: the data in parentheses indicate the rate of change after cutting relative to before cutting. -
[1] Buongiorno J, Michie B R. A matrix model of uneven-aged forest management[J]. Forest Science, 1980, 26(4): 609−625. [2] Gove J H, Fairweather S E. Optimizing the management of uneven-aged forest stands: a stochastic approach[J]. Forest Science, 1992, 38(3): 623−640. [3] 沈林. 基于空间结构云冷杉林择伐优化决策模型研究[D]. 北京: 北京林业大学, 2013.Shen L. Study on selective cutting optimization decision model based on spatial structure of spruce-fir forest[D]. Beijing: Beijing Forestry University, 2013. [4] 肖智慧, 李志洪, 薛春泉, 等. 梅县典型针阔混交林林分直径结构的动态变化规律[J]. 中南林业科技大学学报, 2013, 33(6): 17−21.Xiao Z H, Li Z H, Xue C Q, et al. Diameter distribution and dynamics of typical coniferous and broad-leaved mixed forests in Meizhou County, Guangdong Province[J]. Journal of Central South University of Forestry & Technology, 2013, 33(6): 17−21. [5] 吴志军, 苏东凯, 牛丽君, 等. 阔叶红松林森林资源可持续利用方案[J]. 生态学报, 2015, 35(1): 24−30.Wu Z J, Su D K, Niu L J, et al. Evaluation of a sustainable forest utilization program for broadleaved Korean pine mixed forests in the Changbai Mountain region of Northeast China[J]. Acta Ecologica Sinica, 2015, 35(1): 24−30. [6] 廖宝文, 张乔民. 中国红树林的分布、面积和树种组成[J]. 湿地科学, 2014, 12(4): 435−440.Liao B W, Zhang Q M. Area, distribution and species composition of mangroves in China[J]. Wetland Science, 2014, 12(4): 435−440. [7] 徐庆祥, 卫星, 王庆成, 等. 抚育间伐对兴安落叶松天然林生长和土壤理化性质的影响[J]. 森林工程, 2013, 29(3): 6−9.Xu Q X, Wei X, Wang Q C, et al. Impact of thinning on growth and soil properties of natural Larix gmelinii forest[J]. Forest Engineering, 2013, 29(3): 6−9. [8] 明安刚, 张治军, 谌红辉, 等. 抚育间伐对马尾松人工林生物量与碳贮量的影响[J]. 林业科学, 2013, 49(10): 1−6. doi: 10.11707/j.1001-7488.20131001Ming A G, Zhang Z J, Chen H H, et al. Effects of thinning on the biomass and carbon storage in Pinus massoniana plantation[J]. Scientia Silvae Sinicae, 2013, 49(10): 1−6. doi: 10.11707/j.1001-7488.20131001 [9] 魏红洋, 董灵波, 刘兆刚. 大兴安岭主要森林类型林分空间结构优化模拟[J]. 应用生态学报, 2019, 30(11): 3824−3832.Wei H Y, Dong L B, Liu Z G. Spatial structure optimization simulation of main forest types in Great Xing’an Mountains, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3824−3832. [10] 管惠文, 董希斌, 张甜, 等. 间伐强度对大兴安岭落叶松天然次生林水文性能的影响[J]. 南京林业大学学报(自然科学版), 2018, 61(6): 68−76.Guan H W, Dong X B, Zhang T, et al. Effects of thinning on hydrological properties of the natural secondary Larix gmelinii forest in the Daxing’an Mountains[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 61(6): 68−76. [11] 朱玉杰, 董希斌. 大兴安岭地区落叶松用材林不同抚育间伐强度经营效果评价[J]. 林业科学, 2016, 52(12): 29−38.Zhu Y J, Dong X B. Evaluation of the effects of different thinning intensities on larch forest in Great Xing’an Mountains[J]. Scientia Silvae Sinicae, 2016, 52(12): 29−38. [12] 曹小玉, 李际平, 胡园杰, 等. 杉木生态林林分间伐空间结构优化模型[J]. 生态学杂志, 2017, 36(4): 1134−1141.Cao X Y, Li J P, Hu Y J, et al. Spatial structure optimizing model of stand thinning of Cunninghamia lanceolata ecological forest[J]. Chinese Journal of Ecology, 2017, 36(4): 1134−1141. [13] 汤孟平, 唐守正, 雷相东, 等. 林分择伐空间结构优化模型研究[J]. 林业科学, 2004, 40(5): 25−31. doi: 10.11707/j.1001-7488.20040504Tang M P, Tang S Z, Lei X D, et al. Study on spatial structure optimizing model of stand selection cutting[J]. Scientia Silvae Sinicae, 2004, 40(5): 25−31. doi: 10.11707/j.1001-7488.20040504 [14] 仇建习, 汤孟平, 娄明华, 等. 基于Hegyi改进模型的毛竹林空间结构和竞争分析[J]. 生态学报, 2016, 36(4): 1058−1065.Qiu J X, Tang M P, Lou M H, et al. Analysis of the spatial structure and competition with a Phyllostachys edulis standbased on an improved Hegyi model[J]. Acta Ecologica Sinica, 2016, 36(4): 1058−1065. [15] Li Y, Hui G, Wang H, et al. Selection priority for harvested trees according to stand structural indices[J]. Iforest - Biogeosciences and Forestry, 2017, 10(3): 561−566. doi: 10.3832/ifor2115-010 [16] 赖国桢, 汪雁楠, 黄宝祥, 等. 林分空间结构优化栅格间伐模型[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 199−205.Lai G Z, Wang Y N, Huang B X, et al. A grid thinning model based on forest spatial structure optimization[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(3): 199−205. [17] Ye S, Zheng Z, Diao Z, et al. Effects of thinning on the spatial structure of Larix principis-rupprechtii plantation[J/OL]. Sustainability, 2018, 10(4): 1250[2021−12−06]. https://doi.org/10.3390/su10041250. [18] Dong L, Wei H, Liu Z. Optimizing forest spatial structure with neighborhood-based indices: four case studies from Northeast China[J]. Forests, 2020, 11(4): 413. doi: 10.3390/f11040413 [19] 罗宁, 贺墨琳, 高华, 等. 基于改进的AHP-CRITIC组合赋权与可拓评估模型的配电网综合评价方法[J]. 电力系统保护与控制, 2021, 49(16): 86−96.Luo N, He M L, Gao H, et al. Comprehensive evaluation method for a distribution network based on improved AHP-CRITIC combination weighting and an extension evaluation model[J]. Power System Protection and Control, 2021, 49(16): 86−96. [20] 惠刚盈, 胡艳波. 混交林树种空间隔离程度表达方式的研究[J]. 林业科学研究, 2001, 14(1): 23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004Hui G Y, Hu Y B. Measuring species spatial isolation in mixed forests[J]. Forest Research, 2001, 14(1): 23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004 [21] 惠刚盈. 角尺度−一个描述林木个体分布格局的结构参数[J]. 林业科学, 1999, 35(1): 37−42.Hui G Y. The neighbourhood pattern: a new structure parameter for describing distribution of forest tree position[J]. Scientia Silvae Sinicae, 1999, 35(1): 37−42. [22] 惠刚盈. 一个新的林分空间结构参数−大小比数[J]. 林业科学研究, 1999, 12(1): 1−6. doi: 10.3321/j.issn:1001-1498.1999.01.001Hui G Y. A new parameter for stand spatial structure: neighbourhood comparison[J]. Forest Research, 1999, 12(1): 1−6. doi: 10.3321/j.issn:1001-1498.1999.01.001 [23] Hegyi F. A simulation model for managing Jack-pine stands simulationn[J]. Stockholm:Sweden Royal College of Forest, 1974, 30: 74−90. [24] 吴晓永. 云冷杉针阔混交林结构特征分析及优化调整[D]. 北京: 北京林业大学, 2020.Wu X Y. Structural characteristics analysis and optimal adjustment of spruce-fir conifer and broadleaf mixed forest stands[D]. Beijing: Beijing Forestry University, 2013. [25] 吴晓永, 杨华, 吕延杰, 等. 云杉−白桦混交林结构特征分析[J]. 北京林业大学学报, 2019, 41(1): 64−72.Wu X Y, Yang H, Lü Y J, et al. Analysis of structure characteristics in Picea asperata-Betula platyphylla mixed forests[J]. Journal of Beijing Forestry University, 2019, 41(1): 64−72. [26] 李建, 李晓宇, 曹静, 等. 长白山次生针阔混交林群落结构特征及群落动态[J]. 生态学报, 2020, 40(4): 1195−1206.Li J, Li X Y, Cao J, et al. Community structure and dynamics of secondary coniferous and broad-leaved mixed forest in Changbai Mountains[J]. Acta Ecologica Sinica, 2020, 40(4): 1195−1206. [27] 林富成, 王维芳, 门秀莉, 等. 兴安落叶松人工林空间结构优化[J]. 北京林业大学学报, 2021, 43(4): 68−76.Lin F C, Wang W F, Men X L, et al. Spatial structure optimal of Larix gmelinii plantation[J]. Journal of Beijing Forestry University, 2021, 43(4): 68−76. [28] 赵晨昊, 王建军, 周光, 等. 基于空间结构优化的金盆山天然混交林采伐模拟[J]. 西南林业大学学报(自然科学), 2022, 42(5): 126−133.Zhao C H, Wang J J, Zhou G, et al. Logging simulation of natural mixed forest in Jinpen Mountain based on optimization of spatial structure[J]. Journal of Southwest Forestry University (Natural Science), 2022, 42(5): 126−133. [29] 惠刚盈, 胡艳波, 赵中华. 结构化森林经营研究进展[J]. 林业科学研究, 2018, 31(1): 85−93.Hui G Y, Hu Y B, Zhao Z H. Research progress of structure-based forest management[J]. Forest Research, 2018, 31(1): 85−93. [30] 李存庆, 董灵波, 刘兆刚. 抚育采伐强度对天然落叶松林林分结构和蓄积的影响[J]. 东北林业大学学报, 2021, 49(5): 1−5.Li C Q, Dong L B, Liu Z G. Effect of tending cutting intensity on the stand structure and accumulation of natural larch forest[J]. Journal of Northeast Forestry University, 2021, 49(5): 1−5. [31] 向博文, 曾思齐, 甘世书, 等. 湖南次生栎林空间结构优化[J]. 中南林业科技大学学报, 2019, 39(8): 33−40.Xiang B W, Zeng S Q, Gan S S, et al. Spatial structure optimization of Quercus in Hunan[J]. Journal of Central South University of Forestry & Technology, 2019, 39(8): 33−40. -