高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于AHP-CRITIC组合赋权法的长白山天然林空间结构优化调整

张岚棋 李丽 杨华 谢伊

张岚棋, 李丽, 杨华, 谢伊. 基于AHP-CRITIC组合赋权法的长白山天然林空间结构优化调整[J]. 北京林业大学学报, 2023, 45(8): 74-83. doi: 10.12171/j.1000-1522.20220479
引用本文: 张岚棋, 李丽, 杨华, 谢伊. 基于AHP-CRITIC组合赋权法的长白山天然林空间结构优化调整[J]. 北京林业大学学报, 2023, 45(8): 74-83. doi: 10.12171/j.1000-1522.20220479
Zhang Lanqi, Li Li, Yang Hua, Xie Yi. Stand structure optimization and adjustment of natural forest in Changbai Mountains based on AHP-CRITIC combination weight method[J]. Journal of Beijing Forestry University, 2023, 45(8): 74-83. doi: 10.12171/j.1000-1522.20220479
Citation: Zhang Lanqi, Li Li, Yang Hua, Xie Yi. Stand structure optimization and adjustment of natural forest in Changbai Mountains based on AHP-CRITIC combination weight method[J]. Journal of Beijing Forestry University, 2023, 45(8): 74-83. doi: 10.12171/j.1000-1522.20220479

基于AHP-CRITIC组合赋权法的长白山天然林空间结构优化调整

doi: 10.12171/j.1000-1522.20220479
基金项目: “十四五”国家重点研发计划项目(2021YFD220040401)
详细信息
    作者简介:

    张岚棋。主要研究方向:森林结构与生长模型模拟。Email:15680832191@163.com 地址:100083 北京市海淀区清华东路 35 号北京林业大学林学院

    责任作者:

    杨华,教授。主要研究方向:森林资源监测与评价。Email:huayang8747@163.com 地址:同上

  • 中图分类号: S758.5+2

Stand structure optimization and adjustment of natural forest in Changbai Mountains based on AHP-CRITIC combination weight method

  • 摘要:   目的  合理采伐能促进林木生长,提高林分生产力。探索林分空间结构优化,以期为该地区天然林林分采伐木的选择提供新的指导工具。  方法  本文采用4块不同优势树种的天然林固定样地监测数据,基于混交度(M)、角尺度(W)、大小比数(U)和Hegyi竞争指数(CI)4种空间结构指数,根据AHP-CRITIC 组合赋权法构建单木采伐指数(Fi),分析不同强度的采伐模拟前后林分空间结构变化。  结果  4个样地采伐后的空间结构均得到一定程度的优化:混交度提高,林木大小分化程度减少,林分水平分布格局趋向于随机分布,林分竞争压力也得到很大的缓解。其中竞争指数随着采伐强度的增加呈现持续下降的趋势,在30%采伐强度下最多减少了24.80% ~ 34.88%,大小比数最多减少了24.97%,混交度最高提升了12.76%。采伐木主要集中于林分密度较大的区域,采伐木的胸径以中小型居多。  结论  对于天然纯林,适度加大采伐强度可以更好地调节林分空间结构,而对于天然混交林,进行相对较低强度的采伐可以在其整体结构获得优化的同时保持较高程度的树种混交。研究同时证明了AHP-CRITIC 组合赋权法用于构建采伐指数的合理性,基本实现了对长白山地区天然林林分结构的优化调整,可为合理选取采伐木、科学经营森林提供技术支持。

     

  • 图  1  4个样地各空间结构指数随着采伐强度增加的变化趋势

    Figure  1.  Trends of spatial structure indices of four stands with increasing cutting intensity

    图  2  不同树种的采伐木相对于整个核心区树木的频率分布

    Figure  2.  Frequency distribution of harvested wood of different tree species relative to trees in the entire core area

    图  3  30%采伐强度下采伐木位置

    Figure  3.  Logging position under 30% cutting intensity

    表  1  样地信息统计表

    Table  1.   Statistical table of sample plot information

    样地号
    Sample plot No.
    树种组成
    Tree species composition
    调查年份
    Year of observation
    面积/hm2
    Area/ha
    平均胸径
    Mean DBH/cm
    平均高
    Average height/m
    林分密度/(株∙hm−2
    Stand density/(tree∙ha−1)
    1 7A1P1PK1B 2003 0.20 20.8 19.5 740
    2 4PK3A1P1T1AP 2009 0.30 27.0 20.4 337
    3 4L2P2A1BC1T 2007 0.30 21.8 20.7 800
    4 7P2A1PK 2009 0.25 26.5 19.9 432
    注:A. 冷杉;P. 云杉;PK. 红松;B. 白桦;T. 椴树;AP.色木槭;L. 落叶松;BC. 枫桦。Notes: A, Abies nephrolepis; P, Picea koraiensis; PK, Pinus koraiensis; B, Betula platyphylla; T, Tilia amurensis; AP, Acer pictum; L, Larix gmelinii ; BC, Betula costata.
    下载: 导出CSV

    表  2  基于AHP-CRITIC法的各指标综合权重值

    Table  2.   Comprehensive weight value of each indicator based on the AHP-CRITIC method

    样地号
    Sample plot No.
    赋权方法
    Weighting method
    大小比数
    Neighborhood
    comparison (U)
    角尺度
    Uniform angle
    index (W)
    混交度
    Mingling
    degree (M)
    竞争指数
    Competition
    index (CI)
    1 AHP 0.286 0.142 0.286 0.286
    CRITIC 0.339 0.230 0.249 0.182
    组合赋权 Combination weighting 0.318 0.197 0.263 0.222
    2 AHP 0.286 0.142 0.286 0.286
    CRITIC 0.290 0.300 0.266 0.144
    组合赋权 Combination weighting 0.288 0.246 0.273 0.193
    3 AHP 0.286 0.142 0.286 0.286
    CRITIC 0.355 0.281 0.246 0.118
    组合赋权 Combination weighting 0.335 0.241 0.258 0.166
    4 AHP 0.286 0.142 0.286 0.286
    CRITIC 0.317 0.253 0.243 0.187
    组合赋权 Combination weighting 0.304 0.208 0.261 0.227
    下载: 导出CSV

    表  3  样地在不同采伐强度下的林分结构参数统计

    Table  3.   Stand structure parameter statistics at different harvesting intensities in the sample plots

    样地号
    Sample
    plot No.
    采伐强度
    Cuttting
    intensity/%
    UWMCI采伐指数
    Felling
    index (F)
    径阶数量
    Number of
    diameter
    class (D)
    树种数量
    Number of
    tree species
    (nSP)
    相邻径阶
    株数之比
    Ratio of
    neighboring
    diameter class
    number (Q)
    100.4820.5000.6621.6890.6731771.347
    50.481 (−0.25%)0.487 (−2.60%)0.705 (6.49%)1.558 (−7.80%)0.695 (3.33%)1771.322
    100.462(−4.02%)0.497(−0.68%)0.729(10.26%)1.525(−9.72%)0.711(5.72%)1771.327
    150.449(−6.73%)0.486(−2.90%)0.743(12.27%)1.411(−16.47%)0.725(7.73%)1771.319
    200.442(−8.18%)0.469(−6.15%)0.731(10.46%)1.361(−19.44%)0.737(9.63%)1771.297
    250.459(−4.71%)0.459(−8.20%)0.730(10.27%)1.311(−22.41%)0.750(11.47%)1771.326
    300.461(−4.40%)0.465(−7.02%)0.706(6.73%)1.262(−25.29%)0.762(13.32%)1771.324
    200.4850.5920.7832.0680.67821101.338
    50.461(−5.02%)0.566(−4.31%)0.820(4.75%)1.836(−11.18%)0.699(3.17%)21101.326
    100.471(−2.88%)0.578(−2.37%)0.832(6.24%)1.660(−19.71%)0.712(5.14%)21101.311
    150.469(−3.30%)0.575(−2.93%)0.846(8.10%)1.652(−20.12%)0.729(7.59%)21101.263
    200.472(−2.69%)0.583(−1.45%)0.856(9.37%)1.643(−20.55%)0.741(9.40%)21101.291
    250.475(−2.02%)0.529(−10.56%)0.868(10.80%)1.522(−26.37%)0.753(11.19%)21101.292
    300.463(−4.64%)0.537(−9.24%)0.883(12.76%)1.346(−34.88%)0.769(13.47%)21101.334
    300.4740.5010.7792.2440.71120111.322
    50.462(−2.44%)0.507(1.17%)0.797(2.25%)2.192(−2.32%)0.727(2.26%)20111.313
    100.468(−1.26%)0.483(−3.64%)0.817(4.94%)2.026(−9.69%)0.741(4.18%)20111.300
    150.468(−1.31%)0.482(−3.84%)0.812(4.20%)1.967(−12.32%)0.753(5.88%)20111.301
    200.467(−1.38%)0.471(−6.12%)0.797(2.25%)1.881(−16.15%)0.764(7.36%)20111.290
    250.465(−1.83%)0.483(−3.58%)0.803(3.12%)1.788(−20.33%)0.774(8.80%)20111.287
    300.463(−2.36%) 0.472(−5.77%) 0.803(3.10%) 1.687(−24.80%)0.785(10.31%) 20111.344
    400.4960.5460.6571.8140.6442051.665
    50.477(−3.86%)0.534(−2.26%)0.674(2.60%) 1.647(−9.18%)0.666(3.36%) 2051.599
    100.452(−8.87%)0.532(−2.69%)0.690(5.07%) 1.643(−9.45%)0.678(5.23%) 2051.570
    150.432(−12.94%)0.521(−4.62%) 0.699(6.39%) 1.496(−17.51%)0.694(7.67%) 2051.521
    200.411(−17.27%)0.527(−3.59%) 0.701(6.66%) 1.459(−19.58%)0.705(9.41%) 2051.507
    250.389(−21.56%)0.524(−4.10%) 0.712(8.28%) 1.374(−24.25%)0.720(11.70%) 2051.546
    300.372(−24.97%)0.520(−4.76%) 0.735(11.80%) 1.361(−24.99%)0.731(13.41%) 2051.538
    注:括号里数据表示采伐后相对于采伐前的变化率。Note: the data in parentheses indicate the rate of change after cutting relative to before cutting.
    下载: 导出CSV
  • [1] Buongiorno J, Michie B R. A matrix model of uneven-aged forest management[J]. Forest Science, 1980, 26(4): 609−625.
    [2] Gove J H, Fairweather S E. Optimizing the management of uneven-aged forest stands: a stochastic approach[J]. Forest Science, 1992, 38(3): 623−640.
    [3] 沈林. 基于空间结构云冷杉林择伐优化决策模型研究[D]. 北京: 北京林业大学, 2013.

    Shen L. Study on selective cutting optimization decision model based on spatial structure of spruce-fir forest[D]. Beijing: Beijing Forestry University, 2013.
    [4] 肖智慧, 李志洪, 薛春泉, 等. 梅县典型针阔混交林林分直径结构的动态变化规律[J]. 中南林业科技大学学报, 2013, 33(6): 17−21.

    Xiao Z H, Li Z H, Xue C Q, et al. Diameter distribution and dynamics of typical coniferous and broad-leaved mixed forests in Meizhou County, Guangdong Province[J]. Journal of Central South University of Forestry & Technology, 2013, 33(6): 17−21.
    [5] 吴志军, 苏东凯, 牛丽君, 等. 阔叶红松林森林资源可持续利用方案[J]. 生态学报, 2015, 35(1): 24−30.

    Wu Z J, Su D K, Niu L J, et al. Evaluation of a sustainable forest utilization program for broadleaved Korean pine mixed forests in the Changbai Mountain region of Northeast China[J]. Acta Ecologica Sinica, 2015, 35(1): 24−30.
    [6] 廖宝文, 张乔民. 中国红树林的分布、面积和树种组成[J]. 湿地科学, 2014, 12(4): 435−440.

    Liao B W, Zhang Q M. Area, distribution and species composition of mangroves in China[J]. Wetland Science, 2014, 12(4): 435−440.
    [7] 徐庆祥, 卫星, 王庆成, 等. 抚育间伐对兴安落叶松天然林生长和土壤理化性质的影响[J]. 森林工程, 2013, 29(3): 6−9.

    Xu Q X, Wei X, Wang Q C, et al. Impact of thinning on growth and soil properties of natural Larix gmelinii forest[J]. Forest Engineering, 2013, 29(3): 6−9.
    [8] 明安刚, 张治军, 谌红辉, 等. 抚育间伐对马尾松人工林生物量与碳贮量的影响[J]. 林业科学, 2013, 49(10): 1−6. doi: 10.11707/j.1001-7488.20131001

    Ming A G, Zhang Z J, Chen H H, et al. Effects of thinning on the biomass and carbon storage in Pinus massoniana plantation[J]. Scientia Silvae Sinicae, 2013, 49(10): 1−6. doi: 10.11707/j.1001-7488.20131001
    [9] 魏红洋, 董灵波, 刘兆刚. 大兴安岭主要森林类型林分空间结构优化模拟[J]. 应用生态学报, 2019, 30(11): 3824−3832.

    Wei H Y, Dong L B, Liu Z G. Spatial structure optimization simulation of main forest types in Great Xing’an Mountains, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3824−3832.
    [10] 管惠文, 董希斌, 张甜, 等. 间伐强度对大兴安岭落叶松天然次生林水文性能的影响[J]. 南京林业大学学报(自然科学版), 2018, 61(6): 68−76.

    Guan H W, Dong X B, Zhang T, et al. Effects of thinning on hydrological properties of the natural secondary Larix gmelinii forest in the Daxing’an Mountains[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 61(6): 68−76.
    [11] 朱玉杰, 董希斌. 大兴安岭地区落叶松用材林不同抚育间伐强度经营效果评价[J]. 林业科学, 2016, 52(12): 29−38.

    Zhu Y J, Dong X B. Evaluation of the effects of different thinning intensities on larch forest in Great Xing’an Mountains[J]. Scientia Silvae Sinicae, 2016, 52(12): 29−38.
    [12] 曹小玉, 李际平, 胡园杰, 等. 杉木生态林林分间伐空间结构优化模型[J]. 生态学杂志, 2017, 36(4): 1134−1141.

    Cao X Y, Li J P, Hu Y J, et al. Spatial structure optimizing model of stand thinning of Cunninghamia lanceolata ecological forest[J]. Chinese Journal of Ecology, 2017, 36(4): 1134−1141.
    [13] 汤孟平, 唐守正, 雷相东, 等. 林分择伐空间结构优化模型研究[J]. 林业科学, 2004, 40(5): 25−31. doi: 10.11707/j.1001-7488.20040504

    Tang M P, Tang S Z, Lei X D, et al. Study on spatial structure optimizing model of stand selection cutting[J]. Scientia Silvae Sinicae, 2004, 40(5): 25−31. doi: 10.11707/j.1001-7488.20040504
    [14] 仇建习, 汤孟平, 娄明华, 等. 基于Hegyi改进模型的毛竹林空间结构和竞争分析[J]. 生态学报, 2016, 36(4): 1058−1065.

    Qiu J X, Tang M P, Lou M H, et al. Analysis of the spatial structure and competition with a Phyllostachys edulis standbased on an improved Hegyi model[J]. Acta Ecologica Sinica, 2016, 36(4): 1058−1065.
    [15] Li Y, Hui G, Wang H, et al. Selection priority for harvested trees according to stand structural indices[J]. Iforest - Biogeosciences and Forestry, 2017, 10(3): 561−566. doi: 10.3832/ifor2115-010
    [16] 赖国桢, 汪雁楠, 黄宝祥, 等. 林分空间结构优化栅格间伐模型[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 199−205.

    Lai G Z, Wang Y N, Huang B X, et al. A grid thinning model based on forest spatial structure optimization[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(3): 199−205.
    [17] Ye S, Zheng Z, Diao Z, et al. Effects of thinning on the spatial structure of Larix principis-rupprechtii plantation[J/OL]. Sustainability, 2018, 10(4): 1250[2021−12−06]. https://doi.org/10.3390/su10041250.
    [18] Dong L, Wei H, Liu Z. Optimizing forest spatial structure with neighborhood-based indices: four case studies from Northeast China[J]. Forests, 2020, 11(4): 413. doi: 10.3390/f11040413
    [19] 罗宁, 贺墨琳, 高华, 等. 基于改进的AHP-CRITIC组合赋权与可拓评估模型的配电网综合评价方法[J]. 电力系统保护与控制, 2021, 49(16): 86−96.

    Luo N, He M L, Gao H, et al. Comprehensive evaluation method for a distribution network based on improved AHP-CRITIC combination weighting and an extension evaluation model[J]. Power System Protection and Control, 2021, 49(16): 86−96.
    [20] 惠刚盈, 胡艳波. 混交林树种空间隔离程度表达方式的研究[J]. 林业科学研究, 2001, 14(1): 23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004

    Hui G Y, Hu Y B. Measuring species spatial isolation in mixed forests[J]. Forest Research, 2001, 14(1): 23−27. doi: 10.3321/j.issn:1001-1498.2001.01.004
    [21] 惠刚盈. 角尺度−一个描述林木个体分布格局的结构参数[J]. 林业科学, 1999, 35(1): 37−42.

    Hui G Y. The neighbourhood pattern: a new structure parameter for describing distribution of forest tree position[J]. Scientia Silvae Sinicae, 1999, 35(1): 37−42.
    [22] 惠刚盈. 一个新的林分空间结构参数−大小比数[J]. 林业科学研究, 1999, 12(1): 1−6. doi: 10.3321/j.issn:1001-1498.1999.01.001

    Hui G Y. A new parameter for stand spatial structure: neighbourhood comparison[J]. Forest Research, 1999, 12(1): 1−6. doi: 10.3321/j.issn:1001-1498.1999.01.001
    [23] Hegyi F. A simulation model for managing Jack-pine stands simulationn[J]. Stockholm:Sweden Royal College of Forest, 1974, 30: 74−90.
    [24] 吴晓永. 云冷杉针阔混交林结构特征分析及优化调整[D]. 北京: 北京林业大学, 2020.

    Wu X Y. Structural characteristics analysis and optimal adjustment of spruce-fir conifer and broadleaf mixed forest stands[D]. Beijing: Beijing Forestry University, 2013.
    [25] 吴晓永, 杨华, 吕延杰, 等. 云杉−白桦混交林结构特征分析[J]. 北京林业大学学报, 2019, 41(1): 64−72.

    Wu X Y, Yang H, Lü Y J, et al. Analysis of structure characteristics in Picea asperata-Betula platyphylla mixed forests[J]. Journal of Beijing Forestry University, 2019, 41(1): 64−72.
    [26] 李建, 李晓宇, 曹静, 等. 长白山次生针阔混交林群落结构特征及群落动态[J]. 生态学报, 2020, 40(4): 1195−1206.

    Li J, Li X Y, Cao J, et al. Community structure and dynamics of secondary coniferous and broad-leaved mixed forest in Changbai Mountains[J]. Acta Ecologica Sinica, 2020, 40(4): 1195−1206.
    [27] 林富成, 王维芳, 门秀莉, 等. 兴安落叶松人工林空间结构优化[J]. 北京林业大学学报, 2021, 43(4): 68−76.

    Lin F C, Wang W F, Men X L, et al. Spatial structure optimal of Larix gmelinii plantation[J]. Journal of Beijing Forestry University, 2021, 43(4): 68−76.
    [28] 赵晨昊, 王建军, 周光, 等. 基于空间结构优化的金盆山天然混交林采伐模拟[J]. 西南林业大学学报(自然科学), 2022, 42(5): 126−133.

    Zhao C H, Wang J J, Zhou G, et al. Logging simulation of natural mixed forest in Jinpen Mountain based on optimization of spatial structure[J]. Journal of Southwest Forestry University (Natural Science), 2022, 42(5): 126−133.
    [29] 惠刚盈, 胡艳波, 赵中华. 结构化森林经营研究进展[J]. 林业科学研究, 2018, 31(1): 85−93.

    Hui G Y, Hu Y B, Zhao Z H. Research progress of structure-based forest management[J]. Forest Research, 2018, 31(1): 85−93.
    [30] 李存庆, 董灵波, 刘兆刚. 抚育采伐强度对天然落叶松林林分结构和蓄积的影响[J]. 东北林业大学学报, 2021, 49(5): 1−5.

    Li C Q, Dong L B, Liu Z G. Effect of tending cutting intensity on the stand structure and accumulation of natural larch forest[J]. Journal of Northeast Forestry University, 2021, 49(5): 1−5.
    [31] 向博文, 曾思齐, 甘世书, 等. 湖南次生栎林空间结构优化[J]. 中南林业科技大学学报, 2019, 39(8): 33−40.

    Xiang B W, Zeng S Q, Gan S S, et al. Spatial structure optimization of Quercus in Hunan[J]. Journal of Central South University of Forestry & Technology, 2019, 39(8): 33−40.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  20
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-28
  • 修回日期:  2023-02-05
  • 网络出版日期:  2023-08-10
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回