Moisture content and its influencing factors of wood structures at Shuiguan Site in Jinzhongdu Watergate Site of Beijing
-
摘要:目的 金中都水关遗址现存的木结构面临腐朽的威胁,含水率是决定木材是否发生腐朽的关键因素,研究水关遗址木结构自身的含水率情况以及影响因素,旨在为金中都水关遗址木结构以及同类型地下木结构的保护和修缮提供依据和参考。方法 于2021年9月26日检测木结构不同位置的木材含水率,监测2021年9月—2022年9月全年木结构不同位置木材、土壤含水率及环境温湿度变化,探测地下水,进行木材在土壤中平衡含水率实验等。汇总所得数据,分析影响木结构含水率的因素及其影响作用。结果 遗址木结构露出地面的部分,含水率处于14.6% ~ 23.6%;遗址木结构埋在土壤中的部分,含水率处于30.0% ~ 183.3%;空气温度、湿度全年变化范围分别为13 ~ 24 ℃、27.0% ~ 80.0%,受四季影响明显;遗址土壤含水率在1.5% ~ 18.0%之间,深度越大,土壤含水率越高;地下水水位低于遗址过水道地面10.0 m以上;遗址木材在土壤中的平衡含水率与土壤含水率线性正相关,决定系数达到0.939 9。结论 遗址木结构露出地面的部分,含水率处于木材腐朽发展停止的范围,含水率变化主要受空气的四季温湿度变化影响;遗址木结构埋在土壤中的绝大部分,含水率处于木材腐朽发展的范围,影响其含水率的因素主要为土壤含水率;地下水对遗址木结构含水率几乎无影响。Abstract:Objective The surviving wooden structures at the Jinzhongdu Watergate Site are suffering from decay, and the moisture content of the wood is a key factor in determining decay, therefore, the study of the moisture content of the wooden structure of the watergate site and the factors affecting it aims to provide a basis and reference for the conservation and repair of the wooden structures of the Jinzhongdu Watergate Site as well as the underground wooden structures of the same type.Method The researchers detected the moisture content of wood at different locations of wooden structures on September 26, 2021, and had monitored the changes in wood and soil moisture content and environmental temperature and humidity at different locations of wood structures for the whole year from September 2021 to September 2022. Groundwater was detected, and experiments on the equilibrium water content of wood in soil were conducted to summarize the obtained data , and analyze the factors affecting the moisture content of wood structures and their influencing effects.Result The moisture content of the exposed part of the wooden structures of the site ranged from 14.6% to 23.6%. The part of the wooden structures of the site was buried in the soil, with moisture content in the range of 30.0%−183.3%. The air temperature and humidity at the site ranged in 13−24 ℃ and 27.0%−80.0% throughout the year, respectively, and were significantly affected by the seasons. The soil moisture content of the site ranged from 1.5% to 18.0%, and the greater the depth was, the higher the soil moisture content was. The groundwater level was more than 10.0 m below the streamway surface of the site. The equilibrium moisture content of site wood in soil was linearly and positively correlated with soil moisture content, with a coefficient of determination of 0.939 9.Conclusion The moisture content of the exposed part of the wooden structures of the site is in a state that the development of wood decay has stopped, and the moisture content is mainly affected by the seasonal changes in air temperature and humidity. The majority of the wooden structures in the site is buried in the soil, and their moisture content is within the range of wood decay and development. The main factor affecting their moisture content is the soil moisture content. Groundwater has almost no effect on the water content of the wooden structures of the site.
-
-
表 1 木结构含水率取样点位和测试结果
Table 1 Sampling points and measurement results of moisture content of wooden structures
试件名称
Name of measurement specimen取样或测点位置
Sampling or measurement point position含水率
Moisture content/%41号擗石桩-1 Stone fixed timber pile No. 41-1 地表下1.5 m 1.5 m below the surface 100.0 41号擗石桩-2 Stone fixed timber pile No. 41-2 地表下1.0 m 1.0 m below the surface 69.2 41号擗石桩-3 Stone fixed timber pile No. 41-3 地表下0.5 m 0.5 m below the surface 48.5 41号擗石桩-4 Stone fixed timber pile No. 41-4 地表上 On the surface 17.7 基础桩C2B1-3-1 Foundation timber pile C2B1-3-1 地表下0.5 m 0.5 m below the surface 63.6 基础桩C2B1-4-1 Foundation timber pile C2B1-4-1 地表下0.5 m 0.5 m below the surface 183.3 基础桩C2B3-2-2-1 Foundation timber pile C2B3-2-2-1 地表下1.0 m 1.0 m below the surface 21.8 基础桩C2B3-2-2-2 Foundation timber pile C2B3-2-2-2 地表下0.5 m 0.5 m below the surface 17.9 基础桩C2B3-15-8 Foundation timber pile C2B3-15-8 地表下1.5 m 1.5 m below the surface 41.3 衬石枋C2B3-2 Stone lined square C2B3-2 地表上 On the surface 14.6 衬石枋C2B3-12 Stone lined square C2B3-12 地表下0.5 m 0.5 m below the surface 55.7 衬石枋C2B3-14 Stone lined square C2B3-14 地表下0.5 m 0.5 m below the surface 35.0 衬石枋C2B3-15 Stone lined square C2B3-15 地表下0.5 m 0.5 m below the surface 72.2 衬石枋C2B3-16 Stone lined square C2B3-16 地表下0.5 m 0.5 m below the surface 30.0 79号擗石桩 Stone fixed timber pile No. 79 地表上 On the surface 20.4 122号擗石桩 Stone fixed timber pile No. 122 地表上 On the surface 23.6 衬石枋C2B1-6-1 Stone lined square C2B1-6-1 地表上 On the surface 17.2 衬石枋C2B3-5 Stone lined square C2B3-5 地表上 On the surface 22.9 衬石枋C3B4-6-1 Stone lined square C2B1-6-1 地表上 On the surface 17.7 7号擗石桩 Stone fixed timber pile No. 7 地表上 On the surface 22.3 表 2 木材平衡含水率与土壤含水率对照表
Table 2 Comparison of equilibrium moisture content of wood and soil moisture content
数据来源
Data source土壤含水率
Moisture content of soil/%木材平衡含水率
Equilibrium moisture content of wood/%41号擗石桩地表下1.5 m
1.5 m below the surface of the stone fixed timber pile No. 4117.1 87.1 41号擗石桩地表下1.0 m
1.0 m below the surface of the stone fixed timber pile No. 4115.6 71.1 41号擗石桩地表下0.5 m
0.5 m below the surface of the stone fixed timber pile No. 4112.9 86.6 基础桩C2B3-2-2地表下1.0 m
1.0 m below the surface of the foundation timber pile C2B3-2-22.1 21.5 基础桩C2B3-2-2地表下0.5 m
0.5 m below the surface of the foundation timber pile C2B3-2-21.7 18.9 实验用饱水木构件 Waterlogged wooden component for experiment 1.0 14.0 实验用气干木构件 Air-dried wooden component for experiment 6.5 48.6 -
[1] 籍和平. 850年沧桑金中都水关遗址—北京辽金城垣博物馆[J]. 建筑知识, 2004(1): 15−18. Ji H P. 850 years of Jin Zhongdu Watergate Site; Beijing Liao and Jin City Wall Museum[J]. Architectural Practice, 2004(1): 15−18.
[2] 杨维周. 浅谈金中都及其对紫禁城营建的影响[C]//中国紫禁城学会. 中国紫禁城学会论文集(第二辑). 北京: 紫禁城出版社, 1997: 32−39. Yang W Z. Discussion of Jin Zhongdu and its influence on the construction of the Forbidden City[C]//China Forbidden City Society. Collection of thesis of China Forbidden City Society (Second Series). Beijing: The Forbidden City Press, 1997: 32−39.
[3] 王晓颖. 北京已发现的金元两代水关遗址之比较分析[J]. 北京文博文丛, 2020(2): 40−46. Wang X Y. A comparative analysis of water gate sites of Jin and Yuan Dynasties discovered in Beijing[J]. Beijing Wenbo Series, 2020(2): 40−46.
[4] 李玉栋, 曹金珍, 田振昆. 防腐木材应用指南[M]. 北京: 中国建筑工业出版社, 2006. Li Y D, Cao J Z, Tian Z K. A guide to the uses of treated wood[M]. Beijing: China Architecture & Building Press, 2006.
[5] Cartwright K, Findlay W. Decay of timber and its prevention[M]. London: HNSO, 1958.
[6] Schmidt O. Wood and tree fungi: biology, damage, protection, and use[J]. Wood & Tree Fungi Biology Damage Protection & Use, 2006, 44(4): 135−159.
[7] 徐有明. 木材学[M]. 北京: 中国林业出版社, 2006. Xu Y M. Wood science[M]. Beijing: China Forestry Publishing House, 2006.
[8] Zdenka H, Pavel K. The effect of temperature/moisture conditions in cladding of wood-based buildings on their reliability and service life can be significant[J]. Wood Research, 2011, 56: 337−348.
[9] Philipp D, Andreas G, Michael M, et al. Monitoring building climate and timber moisture gradient in large-span timber structures[J]. Journal of Civil Structural Health Monitoring, 2015, 5: 153−165. doi: 10.1007/s13349-014-0083-6
[10] Koch J, Simon A, Arndt R W. Monitoring of moisture content of protected timber bridges[C]//World Conference on Timber Engineering: WCTE 2016: Proceedings of the World Conference on Timber Engineering. Vienna: TU Verlag Wien, 2016: 2−10.
[11] 王方. 故宫古建筑内温湿度问题初探[J]. 文物保护与考古科学, 2014, 26(3): 85−93. doi: 10.3969/j.issn.1005-1538.2014.03.011 Wang F. A preliminary survey of the interior temperature and humidity of historic buildings in the Palace Museum[J]. Sciences of Conservation and Archaeology, 2014, 26(3): 85−93. doi: 10.3969/j.issn.1005-1538.2014.03.011
[12] 吴铭昊. 考虑长期环境和地震作用的古建木结构监测与损伤演化研究[D]. 福州: 福州大学, 2017. Wu M H. Study on monitoring technique and damage evolution method of ancient timber structureconsidering the long-term environment effect andseismic effect[D]. Fuzhou: Fuzhou University, 2017.
[13] 林松煜. 环境温湿度变化对泉州古建筑保护的影响及其对策[J]. 城建档案, 2005(2): 42−45. Lin S Y. The influence of environmental temperature and humidity changes on the conservation of ancient buildings in Quanzhou and its countermeasures[J]. The Urban Construction Archives Magazine, 2005(2): 42−45.
[14] 费利华, 吴耿烽. 泉州湾宋代海船适宜保存温湿度环境条件研究[J]. 文物保护与考古科学, 2021, 33(2): 61−67. doi: 10.16334/j.cnki.cn31-1652/k.20190501465 Fei L H, Wu G F. Study of suitable preservation conditions for the Quanzhou Bay Song Dynasty shipwreck[J]. Sciences of Conservation and Archaeology, 2021, 33(2): 61−67. doi: 10.16334/j.cnki.cn31-1652/k.20190501465
[15] 张典, 于永柱, 管成, 等. 故宫养心殿墙体木柱缺陷状况无损检测研究[J]. 北京林业大学学报, 2021, 43(5): 127−139. doi: 10.12171/j.1000-1522.20210028 Zhang D, Yu Y Z, Guan C, et al. Nondestructive testing of defect condition of wall wood columns in Yangxin Hall of the Palace Museum, Beijing[J]. Journal of Beijing Forestry University, 2021, 43(5): 127−139. doi: 10.12171/j.1000-1522.20210028
[16] 梁思成. 梁思成全集[M]. 北京: 中国建筑工业出版社, 2001. Liang S C. The complete works of Liang Sicheng[M]. Beijing: China Architecture & Building Press, 2001.
[17] 脱脱. 金史[M]. 北京: 中华书局, 2020. Tuo T. The history of the Jin Dynasty[M]. Beijing: Zhonghua Book Company, 2020.
[18] 彭林, 周浩宇, 张厚江, 等. 金中都水关遗址木结构无损检测与评估[J]. 北京林业大学学报, 2022, 44(11): 140−151. doi: 10.12171/j.1000-1522.20220251 Peng L, Zhou H Y, Zhang H J, et al. Nondestructive testing and condition assessment of the wooden structures of Jinzhongdu Watergate Site[J]. Journal of Beijing Forestry University, 2022, 44(11): 140−151. doi: 10.12171/j.1000-1522.20220251
[19] 国家市场监督管理总局. GB/T 1927.4—2021无疵小试样木材物理力学性质试验方法 第4部分: 含水率测定[S]. 北京: 中国标准出版社, 2021. State Administration for Market Regulation. GB/T 1927.4−2021 Test methods for physical and mechanical properties of small clear woodspecimens Part 4: determination of moisture content[S]. Beijing: Standards Press of China, 2021.
[20] 中华人民共和国建设部. GB50021—2001岩土工程勘察规范[M]. 北京: 中国建筑工业出版社, 2002. Ministry of Development of the People’s Republic of China. GB50021−2001 code for investigation of geotechnical engineering[M]. Beijing: China Architecture & Building Press, 2002.
[21] 北京市水务局. 2021年内地下水埋深变化过程曲线对比图[EB/OL]. (2021−12−30)[2022−10−15]. http://swj.beijing.gov.cn/bmxx/dxsdt/202112/t20211230_2577528.html. Beijing Water Authority. Comparison of groundwater burial depth change process curves during 2021[EB/OL]. (2021−12−30)[2022−10−15]. http://swj.beijing.gov.cn/bmxx/dxsdt/202112/t20211230_2577528.html.
-
期刊类型引用(4)
1. 平立娟,柴宇博,刘君良,孙柏玲. 硅溶胶与GU/GMU树脂复合改性橡胶木的性能. 林业科学. 2021(10): 111-119 . 百度学术
2. 石媛,刘君良,吕文华,汪嘉君,倪林. 酸、碱硅溶胶改性木材的制备与性能研究. 木材工业. 2019(01): 21-24+33 . 百度学术
3. 李利芬,吴志刚,余丽萍. 溶胶-凝胶法功能性改良木材研究进展. 世界林业研究. 2019(02): 45-50 . 百度学术
4. 曹金珍. 木材保护剂分散体系及其液体渗透性研究概述. 林业工程学报. 2019(03): 1-9 . 百度学术
其他类型引用(8)