Evaluation of heat transfer performance of engineered wood flooring with built-in electric heating semi-conductive layer
-
摘要:目的 以物理力学性能达标为前提,研究不同材料与结构组成的半导体制热多层实木复合地板的电热性能,为电热地板的优化设计提供理论依据。方法 从电热地板的构效关系角度出发,以地板断面密度为核心,采用材种优选、正交组坯和结构对称等方式设计出4种不同的电热地板结构方案。通过分析不同结构地板断面密度对传热效果的影响,比较评价其电热性能和使用能耗。结果 为保证传热效率,半导体电热层应置于基材和面板之间,功率密度应设置在200 ~ 300 W/m2的范围内,更为科学合理。经综合评价电热地板的传热效率、保温性能和能耗等指标,基材为混合树种的C结构,即表层为2层桦木,芯层为3层桉木的对称结构为设计方案中的最优结构。C结构电热地板在功率密度为300 W/m2时表面平衡温度达到47.3 ℃,电—热辐射转换效率为76.7%,平均自然降温幅度为29.3%。达到目标温度45.4 ℃所消耗的电量为1 877.4 × 10−3 kW·h。结论 不同材种与结构的地板断面密度差异较大,对导热系数、传热过程与电热性能有显著影响。在制备电热地板基材时,采用密度高、导热系数高、强度大的材种作外层,密度低、导热系数低、强度小的材种作芯层,形成“夹芯”结构可在保证电热地板尺寸稳定性等物理力学性能的基础上有效改善电热性能与能耗。Abstract:Objective This study aimed to provide a theoretical basis for the optimal design of the electrothermal flooring. On the basis of ensuring physical and mechanical properties, the influence of material composition and floor structure on the electric heating performance of the semiconductor heating multi-layer engineered wood flooring was explored.Method Four distinct structural schemes of the electrothermal floor were constructed using wood species optimization, orthogonal compounding, and structural symmetry with the cross-sectional density of the floor as the central focus of the structure-function connection. The electrothermal performance and energy consumption were compared and assessed by examining the impact of floor section density on the effect of heat transmission.Result In order to ensure the heat transfer efficiency, the semiconductor electric heating layer should be placed between the substrate and the surface layer, and the power density was suggested to be set within the range of 200–300 W/m2. After comprehensive evaluation of the heat transfer efficiency, thermal insulation performance and energy consumption of the electrothermal floor, C-structure with mixed tree species was the optimal structure, in which the symmetrical structure of two layers of birch was chosen as the surface layer and three layers of eucalyptus in the core layer. When the power density of C-structure electrothermal floor was set to300 W/m2, the maximum surface temperature reached 47.3 ℃, the electric-thermal radiation conversion efficiency was 76.7%, and the average temperature amplitude of natural cooling-down was 29.3%. The electricity consumed to reach the target temperature of 45.4 ℃ was 1 877.4 × 10−3 kW·h.Conclusion The density of floor cross section varies with different wood types and structures, which has a significant effect on thermal conductivity, heat transfer process and electrothermal performance. In the preparation of electrothermal floor substrate, the wood with high density, high thermal conductivity and high strength is suggested to use as the outer layer, and the wood with low density, low thermal conductivity, and low strength to use as the core layer. On the basis of assuring physical and mechanical features including dimensional stability, the “sandwich” structure formed by the electrothermal fool may significantly increase electrothermal performance and energy consumption.
-
-
表 1 不同结构电热地板的升温耗电量
Table 1 Heating power consumption of electric heating floor with different structures
地板结构 Floor structure 结构A Structure A 结构B Structure B 结构C Structure C 结构D Structure D 室内温度 Indoor temperature/℃ 22.4 22.4 22.4 22.4 升温耗时 Heating time consumption/s 1 980 1 515 1 440 1 200 耗电量 Power consumption/(kW·h) 2 727.3 × 10−3 2 058.5 × 10−3 1 877.4 × 10−3 1 515.3 × 10−3 -
[1] 梁善庆, 陶鑫, 李善明, 等. 碳系木质电热复合材料制备及耐老化研究进展[J]. 复合材料学报, 2022, 39(4): 1469−1485. doi: 10.13801/j.cnki.fhclxb.20211123.001 Liang S Q, Tao X, Li S M, et al. Research progress on preparation and aging resistance of carbon-based wood electrothermal composites[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1469−1485. doi: 10.13801/j.cnki.fhclxb.20211123.001
[2] 袁全平, 梁善庆, 曾宇, 等. 内置电热层电采暖木竹地板技术现状[J]. 林产工业, 2015, 42(8): 6−9. doi: 10.3969/j.issn.1001-5299.2015.08.002 Yuan Q P, Liang S Q, Zeng Y, et al. Discussion on technology status of electric heating wood and bamboo floor with built-in electrothermal layer[J]. China Forest Products Industry, 2015, 42(8): 6−9. doi: 10.3969/j.issn.1001-5299.2015.08.002
[3] 梁善庆, 李思程, 王慧翀, 等. 石墨导热膜对电热实木复合地板基材传热性能的影响[J]. 东北林业大学学报, 2019, 47(8): 76−81. doi: 10.3969/j.issn.1000-5382.2019.08.015 Liang S Q, Li S C, Wang H C, et al. Effect of thermal conductive graphite film on heat transfer performance of electrothermal parquet flooring[J]. Journal of Northeast Forestry University, 2019, 47(8): 76−81. doi: 10.3969/j.issn.1000-5382.2019.08.015
[4] 周兆兵, 张峰, 李想, 等. 内置电热实木复合地板基材冷压制备工艺研究[J]. 木材工业, 2018, 32(3): 9−12. doi: 10.19455/j.mcgy.20180303 Zhou Z B, Zhang F, Li X, et al. Cold-pressing technology for making parquet substrates with built-in electric heating elements[J]. China Wood Industry, 2018, 32(3): 9−12. doi: 10.19455/j.mcgy.20180303
[5] Li Q, Zhang Y, Guo T, et al. Development of a new method to estimate thermal performance of multilayer radiant floor[J]. Journal of Building Engineering, 2021, 33(1): 562−564.
[6] 包永洁, 黄成建, 陈玉和, 等. 碳纤维纸木质电热复合材料面层电热效果的纵向尺寸效应[J]. 复合材料学报, 2020, 37(12): 3214−3219. doi: 10.13801/j.cnki.fhclxb.20200402.001 Bao Y J, Huang C J, Chen Y H, et al. Longitudinal scale effect of electro-thermal effectiveness of front panel of the integrated wooden electric heating composite based on carbon fiber paper[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3214−3219. doi: 10.13801/j.cnki.fhclxb.20200402.001
[7] 阙泽利, 赵晓旭, 李哲瑞, 等. 小径级杉木制备内置碳纤维电热线地热地板[J]. 木材工业, 2015, 29(4): 9−13. doi: 10.19455/j.mcgy.2015.04.002 Que Z L, Zhao X X, Li Z R, et al. Electrically heated flooring made with hexagon glulam from small-diameter Chinese fir[J]. China Wood Industry, 2015, 29(4): 9−13. doi: 10.19455/j.mcgy.2015.04.002
[8] 张泽前, 吴再兴, 陈玉和, 等. 电热竹木复合地板的制备工艺[J]. 木材工业, 2016, 30(1): 14−17, 30. doi: 10.19455/j.mcgy.2016.01.003 Zhang Z Q, Wu Z X, Chen Y H, et al. Manufacturing technology for electrically heating engineered flooring made from bamboo and wood[J]. China Wood Industry, 2016, 30(1): 14−17, 30. doi: 10.19455/j.mcgy.2016.01.003
[9] 黄成建, 包永洁, 李能, 等. 不同胶黏剂竹木复合电热地板的基本特性[J]. 浙江农林大学学报, 2017, 34(2): 369−373. doi: 10.11833/j.issn.2095-0756.2017.02.023 Huang C J, Bao Y J, Li N, et al. Adhesives used to make bamboo/wood composite electro-thermal plywood[J]. Journal of Zhejiang A & F University, 2017, 34(2): 369−373. doi: 10.11833/j.issn.2095-0756.2017.02.023
[10] Shukla S, Daneshazarian R, Mwesigye A, et al. A novel radiant floor system: detailed characterization and comparison with traditional radiant systems[J]. International Journal of Green Energy, 2020, 17(2): 137−148. doi: 10.1080/15435075.2019.1708366
[11] 袁全平, 梁善庆, 傅峰. 碳纤维电热功能复合纤维板的制备工艺[J]. 木材工业, 2017, 31(4): 14−18. doi: 10.19455/j.mcgy.20170403 Yuan Q P, Liang S Q, Fu F. Electric heating composites made from carbon fiber paper and fiberboard[J]. China Wood Industry, 2017, 31(4): 14−18. doi: 10.19455/j.mcgy.20170403
[12] 王俊, 陈庆庆, 李金玉, 等. 面板及地板结构对实木复合地板翘曲与开裂的影响[J]. 林业科技开发, 2015, 29(4): 82−86. doi: 10.13360/j.issn.1000-8101.2015.04.020 Wang J, Chen Q Q, Li J Y, et al. Effects of decorative veneer and floor structure on warping and surface checking of engineered wood flooring[J]. China Forestry Science and Technology, 2015, 29(4): 82−86. doi: 10.13360/j.issn.1000-8101.2015.04.020
[13] 袁全平. 木质电热复合材料的电热响应机理及性能研究[D]. 北京: 中国林业科学研究院, 2015. Yuan Q P. Performance and electric heating response mechanism of wooden electric heating composites[D]. Beijing: Chinese Academy of Forestry, 2015.
[14] 梁善庆, 李思程, 柴媛, 等. 内置电热层实木复合地板表面温度变化规律及模拟[J]. 北京林业大学学报, 2018, 40(11): 112−122. doi: 10.13332/j.1000-1522.20180253 Liang S Q, Li S C, Chai Y, et al. Change law and simulation of surface temperature for electric heating engineered wood flooring with built-in electrothermal layer[J]. Journal of Beijing Forestry University, 2018, 40(11): 112−122. doi: 10.13332/j.1000-1522.20180253
-
期刊类型引用(16)
1. 钟思琪,宁金魁,黄锦程,陈鼎泸,欧阳勋志,臧颢. 基于混合效应的杉木人工林冠幅模型. 森林与环境学报. 2024(02): 127-135 . 百度学术
2. 段平,王云川,晋秋梅,李佳. 基于无人机可见光影像的单木胸径估算方法. 测绘与空间地理信息. 2023(01): 14-17 . 百度学术
3. 魏智海,魏姿芃. 基于单木分割及点云特征提取的单木胸径估测. 陕西林业科技. 2023(02): 18-23 . 百度学术
4. 王杰芬,夏磊,林露花,胡璐璐,徐怀兴,王聚中,徐小军. 结合放射线法和无人机影像提取冠幅估算杉木碳储量研究. 浙江林业科技. 2023(05): 42-50 . 百度学术
5. 夏洪涛,郭晓斌,张珍,田相林,郭福涛,孙帅超. 基于不同立地质量评价指标的杉木大径材林分树高-胸径模型. 中南林业科技大学学报. 2023(10): 80-88 . 百度学术
6. 肖德卿,罗芊芊,范辉华,邱群,周志春. 栽植模式对木荷幼林生长和形质性状家系变异影响. 林业科学. 2022(05): 85-92 . 百度学术
7. 王志波,季蒙,李永乐,李银祥,马世明,张海东. 华北落叶松人工林差分地位指数模型构建. 林业资源管理. 2021(01): 156-163 . 百度学术
8. 杨洋,尤龙辉,叶功富,聂森,程分生,余锦林. 沙质海岸基干林木麻黄幼林模拟抚育预测. 福建农林大学学报(自然科学版). 2021(02): 206-215 . 百度学术
9. 田红灯,申文辉,谭一波,郑威,何琴飞,朱慧,甘国娟. 不同林龄杉木人工林冠幅与生长因子的关系. 中南林业科技大学学报. 2021(05): 93-101 . 百度学术
10. 朱晋梅,朱光玉,易烜,杨琬珑,牟村,王琢玙. 湖南省栎类次生林冠幅—胸径模型模拟研究. 湖南林业科技. 2021(03): 46-51 . 百度学术
11. 赵保国,朱江,艾训儒,姚兰,郭秋菊,洪建峰. 水杉原生种群胸径树高与树冠的通径分析. 东北林业大学学报. 2021(10): 16-20 . 百度学术
12. 于晓池,李凤,欧阳,张鹏,郭小龙,肖遥,赵秋玲,杨桂娟,王军辉,麻文俊. 基于表型的灰楸核心种质构建. 林业科学研究. 2021(06): 38-45 . 百度学术
13. 贾鹏刚,夏凯,董晨,冯海林,杨垠晖. 基于无人机影像的银杏单木胸径预估方法. 浙江农林大学学报. 2019(04): 757-763 . 百度学术
14. 张冬燕,王冬至,范冬冬,张健东,李大勇. 不同立地类型华北落叶松人工林冠幅与胸径关系研究. 林业资源管理. 2019(04): 69-73 . 百度学术
15. 伍小敏,徐春,杨汉波,陈炙,郭洪英,黄振,王泽亮. 四川桤木天然林和人工林的单木生长模型研究. 四川林业科技. 2018(04): 8-11+44 . 百度学术
16. 周凤艳. 沙地樟子松不同林龄树高、胸径等生长指标的关系研究. 吉林林业科技. 2017(01): 12-15 . 百度学术
其他类型引用(13)