高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蚂蚁筑巢对纳帕海面山土壤碳积累及分配的影响

刘攀 陆梅 吕晶花 杨志东 赵定蓉 孙官发 闪昇阳 李聪 赵旭燕 陈志明

刘攀, 陆梅, 吕晶花, 杨志东, 赵定蓉, 孙官发, 闪昇阳, 李聪, 赵旭燕, 陈志明. 蚂蚁筑巢对纳帕海面山土壤碳积累及分配的影响[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220507
引用本文: 刘攀, 陆梅, 吕晶花, 杨志东, 赵定蓉, 孙官发, 闪昇阳, 李聪, 赵旭燕, 陈志明. 蚂蚁筑巢对纳帕海面山土壤碳积累及分配的影响[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20220507
Liu Pan, Lu Mei, Lv Jinghua, Yang Zhidong, Zhao Dingrong, Sun Guanfa, Shan Shengyang, Li Cong, Zhao Xuyan, Chen Zhiming. Effects of ant colonization on carbon accumulation and distribution in the forests of neighbouring mountains in the Napahai wetlands[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220507
Citation: Liu Pan, Lu Mei, Lv Jinghua, Yang Zhidong, Zhao Dingrong, Sun Guanfa, Shan Shengyang, Li Cong, Zhao Xuyan, Chen Zhiming. Effects of ant colonization on carbon accumulation and distribution in the forests of neighbouring mountains in the Napahai wetlands[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20220507

蚂蚁筑巢对纳帕海面山土壤碳积累及分配的影响

doi: 10.12171/j.1000-1522.20220507
基金项目: 国家自然科学基金地区科学基金项目(42067011),云南省应用基础研究面上项目(202001AT070113),云南省中青年学术技术带头人后备人才(202205AC160047),云南省应用基础研究面上项目(2013FB053),西南林业大学博士启动基金(111901)。
详细信息
    作者简介:

    刘攀。主要研究方向:土壤生态学研究。Email:905745005@qq.com 地址:650224 云南省昆明市盘龙区青云街道300号西南林业大学

    责任作者:

    陆梅,教授,博士生导师。主要研究方向:湿地生态、土壤生态学。Email:lumeizx@126.com 地址:同上。

  • 中图分类号: Q968.1

Effects of ant colonization on carbon accumulation and distribution in the forests of neighbouring mountains in the Napahai wetlands

  • 摘要:   目的  通过揭示纳帕海面山森林蚁巢与非蚁巢土壤总有机碳储量及活性有机碳组分的分配特征,为阐明蚂蚁活动对森林土壤有机碳沉积影响的过程及机制提供关键数据支撑。  方法  以纳帕海面山云杉—冷杉森林群落为研究对象,比较蚁巢和非蚁巢地2种处理土壤总有机碳储量、活性碳组分(微生物生物量碳、易氧化有机碳、颗粒有机碳、可溶性有机碳)及其碳分配(微生物生物量碳/总有机碳、易氧化有机碳/总有机碳、颗粒有机碳/总有机碳、可溶性有机碳/总有机碳)的差异,并分析蚂蚁筑巢活动引起土壤理化环境改变对总有机碳储量及活性有机碳组分分配的影响。  结果  蚂蚁筑巢显著影响土壤有机碳积累及活性碳组分分配(P < 0.05)。其中,蚁巢土壤有机碳储量是非蚁巢的5.7倍;蚁巢土壤总有机碳、微生物生物量碳、易氧化有机碳、颗粒有机碳含量分别提高了3.8、2.7、4.0、3.5倍;蚁巢土壤易氧化有机碳/总有机碳均值大小比蚁巢高出0.15%,而非蚁巢土壤微生物生物量碳/总有机碳、颗粒有机碳/总有机碳、可溶性有机碳/总有机碳均值分别比蚁巢高0.43%、3.3%、3.21%;不同处理和土层仅对土壤总有机碳、微生物生物量碳、颗粒有机碳和可溶性有机碳存在明显的交互作用(P < 0.05);回归分析结果表明土壤微生物生物量碳、颗粒有机碳、可溶性有机碳和易氧化有机碳分别解释了96.45%、96.35%、95.13%、94.27%的总有机碳变化;主成分分析表明土壤密度、全氮和速效磷是总有机碳储量的主控因子,而速效氮、速效磷、土壤密度等是活性碳组分积累的主要驱动因子;全钾、含水量分别是颗粒性有机碳与可溶性有机碳分配的主要影响因子。  结论  蚂蚁筑巢主要通过改变土壤紧实度、氮磷养分条件等环境因子,进而调控纳帕海面山森林土壤总有机碳储量与活性有机碳组分的分配,研究结果有助于理解高原湿地面山土壤碳积累过程的土壤动物学调控机制。

     

  • 图  1  蚁巢和非蚁巢土壤采集示意图

    Figure  1.  Soil collection diagram of ant nests and the reference soils

    图  2  蚁巢和非蚁巢土壤有机碳储量垂直变化

    不同字母表示同一样地不同土层间差异显著(P < 0.05)。下同。Different letters mean significant differences between different soil layers in the same site (P < 0.05). The same below.

    Figure  2.  Vertical variations in soil carbon storage of ant nests and the reference soils

    图  3  蚁巢和非蚁巢土壤总有机碳及碳组分含量

    Figure  3.  Concentrations of total organic carbon and carbon components in ant nests and the reference soils

    图  4  蚁巢和非蚁巢土壤活性有机碳组分占总有机碳比例

    Figure  4.  Percentage of different active organic carbon components of TOC in ant nests and the reference soils

    图  5  土壤总有机碳与活性有机碳组分相互关系

    Figure  5.  Relationship between total soil organic carbon and active organic carbon components

    图  6  蚁巢和非蚁巢土壤环境因子与总有机碳储量、活性碳组分之间的主成分分析

    Figure  6.  Principal component analysis of environmental factors and active organic carbon components in ant nests and the reference soils

    表  1  不同处理(蚁巢与非蚁巢)、土层及其交互作用对土壤有机碳组分影响的方差分析

    Table  1.   ANOVA analyses on the effects of treatment (ant nests and the reference), soil layer and their interactions on soil carbon components

    项目 Items df TOC MBC EOC POC DOC
    F P F P F P F P F P
    处理 Treatment 1 29.04 < 0.001 46.76 < 0.001 41.53 < 0.001 39.11 < 0.001 0.086 0.773
    土层 Soil layer 1 10.26 < 0.001 13.38 < 0.001 6.43 0.008 12.78 < 0.001 15.99 < 0.001
    处理 × 土层 Treatment × soil layer 2 8.45 0.003 11.77 0.001 1.60 0.230 5.73 0.012 4.88 0.020
    注:SOCs. 总有机碳储量;TOC. 总有机碳;MBC. 微生物生物量碳;EOC. 易氧化有机碳;POC. 颗粒有机碳 ;DOC. 可溶性有机碳。下同。 Notes: SOCs, total organic carbon storage;TOC, total organic carbon;MBC, microbial biomass carbon;EOC, easily oxidized carbon;POC, particulate organic carbon;DOC, dissolved organic carbon. The same below.
    下载: 导出CSV

    表  2  供试土壤基本理化性质

    Table  2.   Basic physicochemical characteristics of the sampled soils

    土层 Soil horizon
    处理 Treatment
    蚁丘 Anthill 0 ~ 20 cm 20 ~ 40 cm 蚁丘 Anthill
    ~ 40 cm
    0 ~ 20 cm 20 ~ 40 cm 0 ~ 40 cm
    蚁巢 Nest 非蚁巢 Reference
    ST/℃ 22.75 ± 0.42a 19.12 ± 0.96b 13.55 ± 1.61c 18.47 ± 1.01b 18.65 ± 0.33a 11.95 ± 0.25c 15.30 ± 0.29b
    pH 6.95 ± 0.08a 7.03 ± 0.1a 5.74 ± 0.31c 6.57 ± 0.19b 6.25 ± 0.71a 6.14 ± 0.32a 6.20 ± 0.22a
    SWC/(g·kg–1 25.35 ± 3.59a 18.33 ± 1.00b 21.03 ± 1.50a 21.57 ± 2.03a 26.12 ± 1.92a 21.24 ± 1.57b 23.68 ± 1.76b
    SD/(g·cm–1 0.25 ± 0.01d 0.53 ± 0.06c 1.24 ± 0.07a 0.67 ± 0.04b 1.19 ± 0.02b 1.44 ± 0.06a 1.32 ± 0.04a
    TN/(g·kg–1 2.40 ± 0.04a 1.70 ± 0.04b 0.59 ± 0.60c 1.56 ± 0.22b 1.79 ± 0.13a 0.56 ± 0.05c 1.18 ± 0.09b
    TP/(g·kg–1 5.17 ± 1.03b 7.38 ± 1.39a 2.07 ± 0.34c 4.87 ± 0.92b 3.32 ± 1.24a 1.12 ± 0.12b 2.22 ± 0.68a
    TK/(g·kg–1 11.00 ± 3.33b 16.00 ± 1.67a 11.86 ± 0.11c 12.95 ± 1.70b 15.82 ± 1.11a 11.27 ± 1.53c 13.55 ± 1.32b
    AN/(mg·kg–1 558.50 ± 4.11b 657.47 ± 2.15a 145.19 ± 7.65d 453.72 ± 4.64c 155.74 ± 0.67a 63.35 ± 0.30c 109.55 ± 0.49b
    AP/(mg·kg–1 112.31 ± 6.72c 267.92 ± 1.97a 18.03 ± 0.01d 132.75 ± 2.90b 15.79 ± 3.09a 6.83 ± 2.86c 11.31 ± 2.98b
    AK/(mg·kg–1 719.14 ± 9.47b 836.40 ± 7.66a 168.30 ± 0.07d 574.61 ± 5.73c 216.37 ± 2.88a 153.94 ± 3.81c 185.16 ± 3.35b
    注:表中数据为平均值 ± 标准差(n = 5);不同字母表示同一样地不同土层间差异显著(P < 0.05)。ST. 土壤温度; SWC. 土壤含水量; SD. 土壤密度; TN. 全氮; TP. 全磷; TK. 全钾; AN. 速效氮; AP. 速效磷; AK. 速效钾。Notes: Data in the table are average values ± standard deviation (n = 5); Different letters mean significant differences between different soil layers in the same site (P < 0.05). ST: soil temperature; SWC: soil water content; SD: soil density; TN: total nitrogen; TP: total phosphorus; TK: total kalium; AN: available nitrogen; AP: available phosphorus; AK: available kalium.
    下载: 导出CSV

    表  3  土壤有机碳储量及活性碳组分与环境因子之间的相关系数

    Table  3.   Correlation coefficients between the soil active organic carbon components and environment factors of soil

    类型 指标
    Indicators
    SBD pH TN TP TK AN AP AK
    蚁巢  SOCs −0.600 0.532 0.734* 0.669 −0.674 0.151 0.927** 0.554
    TOC −0.924** 0.875** 0.973** 0.893** −0.388 0.583 0.941** 0.907**
    MBC −0.867** 0.813* 0.777* 0.648 0.231 0.753* 0.448 0.861**
    EOC −0.192 0.565 0.173 0.403 0.424 0.824* 0.108 0.435
    POC −0.889** 0.736* 0.938** 0.870** −0.441 0.388 0.907** 0.807*
    DOC −0.833* 0.738* 0.859** 0.686 −0.495 0.436 0.849** 0.784*
    非蚁巢 SOCs −0.731** −0.289 0.757** 0.087 0.683* 0.679* −0.645* 0.549
    TOC −0.651* 0.533 0.651* 0.519 0.145 0.793** −0.530 0.412
    MBC −0.948** 0.458 0.949** 0.520 0.487 0.903** −0.396 0.859**
    EOC −0.726** 0.221 0.721** 0.284 0.228 0.616* −0.293 0.536
    POC −0.712** 0.407 0.709** 0.356 0.419 0.903** −0.637* 0.483
    DOC −0.827** −0.085 0.818** 0.255 0.574 0.584* −0.117 0.849**
    注:*表示在0.05水平上差异显著;**在0.01水平上差异显著。Notes: * means significant difference at the 0.05 level; **means significant difference at 0.01 level.
    下载: 导出CSV
  • [1] Chang E H, Chen T H, Tian G L, et al. The effect of altitudinal gradient on soil microbial community activity and structure in moso bamboo plantations[J]. Applied Soil Ecology, 2016, 98: 213−220. doi: 10.1016/j.apsoil.2015.10.018
    [2] Parton W, Schimel D, Cole C, et al. Analysis of factors controlling soil organic matter levels in great plains grasslands[J]. Soil Science Society of America Journal-SSSAJ, 1987, 51(5): 1173−1179. doi: 10.2136/sssaj1987.03615995005100050015x
    [3] 杨文焕, 王铭浩, 李卫平, 等. 黄河湿地包头段不同地被类型对土壤有机碳的影响[J]. 生态环境学报, 2018, 27(6): 1034−1043.

    Yang W H, Wang M H, Li W P, et al. Effects of land use types on soil organic carbon in the south China sea wetland[J]. Ecology and environmental sciences, 2018, 27(6): 1034−1043.
    [4] Cao L, Song J, Wang Q, et al. Characterization of labile organic carbon in different coastal wetland soils of Laizhou Bay, Bohai sea[J]. Wetlands, 2016, 37(1): 163−175.
    [5] 陈平, 赵博, 杨璐, 等. 接种蚯蚓和添加凋落物对油松人工林土壤养分和微生物量及活性的影响[J]. 北京林业大学学报, 2018, 40(6): 63−71. doi: 10.13332/j.1000-1522.20180101

    Chen P, Zhao B, Yang L, et al. Effects of earthworm and litter application on soil nutrients and soil microbial biomass and activities in Pinus tabuliformis plantation[J]. Journal of Beijing Forestry University, 2018, 40(6): 63−71. doi: 10.13332/j.1000-1522.20180101
    [6] 梁文举, 闻大中. 土壤生物及其对土壤生态学发展的影响[J]. 应用生态学报, 2001, 12(1): 137−140. doi: 10.3321/j.issn:1001-9332.2001.01.032

    Liang W J, Wen D Z. Soil biota and its role in soil ecology[J]. Chinese Journal of Applied Ecology, 2001, 12(1): 137−140. doi: 10.3321/j.issn:1001-9332.2001.01.032
    [7] 刘满强, 陈小云, 郭菊花, 等. 土壤生物对土壤有机碳稳定性的影响[J]. 地球科学进展, 2007, 22(2): 152−158. doi: 10.3321/j.issn:1001-8166.2007.02.005

    Liu M Q, Chen X Y, Guo J H, et al. Soil biota on soil organic carbon stabilization[J]. Advances in Earth Science, 2007, 22(2): 152−158. doi: 10.3321/j.issn:1001-8166.2007.02.005
    [8] Folgarait P J, Perelman S, Gorosito N, et al. Effects of Camponotus punctulatus ants on plant community composition and soil properties across land-use histories[J]. Plant Ecology, 2002, 163(1): 1−13. doi: 10.1023/A:1020323813841
    [9] Kilpeläinen J, Finér L, Niemelä P, et al. Carbon, nitrogen and phosphorus dynamics of ant mounds ( Formica rufa group) in managed boreal forests of different successional stages[J]. Applied Soil Ecology, 2007, 36(2/3): 156−163.
    [10] 刘任涛, 赵哈林, 赵学勇. 科尔沁沙地流动沙丘掘穴蚁蚁丘分布及影响因素[J]. 应用生态学报, 2009, 20(2): 376−380.

    Liu R T, Zhao H L, Zhao X Y. Distribution of Formica cunicularia mound and related affecting factors on mobile dune in Horqin sandy land[J]. Chinese Journal of Applied Ecology, 2009, 20(2): 376−380.
    [11] 马和平, 郭其强, 刘合满, 等. 西藏色季拉山西坡不同海拔梯度表层土壤碳氮变化特性的研究[J]. 林业科学研究, 2013, 26(2): 240−246. doi: 10.3969/j.issn.1001-1498.2013.02.017

    Ma H P, Guo Q Q, Liu H M, et al. Changes of soil organic carbon and total nitrogen at different altitudes in west slope of Sejila Mountain of Tibet[J]. Forest Research, 2013, 26(2): 240−246. doi: 10.3969/j.issn.1001-1498.2013.02.017
    [12] 贺虹, 魏琮, 王云果, 等. 秦岭楼观台油松林地3种土栖性蚂蚁巢内真菌多样性研究[J]. 西北林学院学报, 2011, 26(2): 129−134.

    He H, Wei Z, Wang Y G, et al. The Fungal diversity in nests of three soil-nesting ant species(Hymenoptera: Formicidae) in pine f forests of Louguantai National Forest Park, China[J]. Journal of Northwest Forestry University, 2011, 26(2): 129−134.
    [13] Duval M E, Galantini J A, Martínez J M, et al. Sensitivity of different soil quality indicators to assess sustainable land management: Influence of site features and seasonality[J]. Soil and Tillage Research, 2016, 159: 9−22. doi: 10.1016/j.still.2016.01.004
    [14] 肖德荣, 田昆, 袁华, 等. 滇西北高原典型退化湿地纳帕海植物群落景观多样性[J]. 生态学杂志, 2007, 26(08): 1171−1176.

    Xiao D R, Tian K, Yuan H, et al. Landscape diversity of Napahai wetland plant community in Northwest Yunnan of China[J]. Chinese Journal of Ecology, 2007, 26(8): 1171−1176.
    [15] 徐正会, 杨比伦, 刘霞, 等. 西藏蚂蚁区系及物种多样性研究[J]. 西南林业大学学报, 2021, 41(1): 1−16.

    Xu Z H, Yang B L, Liu X, et al. Ant fauna and species diversity of Tibet[J]. Journal of Southwest Forestry University, 2021, 41(1): 1−16.
    [16] 郭萧, 徐正会, 杨俊伍, 等. 滇西北云岭东坡蚂蚁物种多样性研究[J]. 林业科学研究, 2007, 20(5): 660−667. doi: 10.3321/j.issn:1001-1498.2007.05.012

    Guo X, Xu Z H, Yang J W, et al. Ant species diversity on east slope of Yunling Mountain in Northwestern Yunnan[J]. Forest Research, 2007, 20(5): 660−667. doi: 10.3321/j.issn:1001-1498.2007.05.012
    [17] 徐正会, 吴定敏, 陈志强, 等. 高黎贡山自然保护区东坡水平带蚂蚁群落研究[J]. 林业科学研究, 2001, 14(6): 603−609.

    Xu Z H, Wu D M, Chen Z Q, et al. A study on the ant community of horizontal band on the east slope of the Gaoligong Mountain nature reserve[J]. Forest Research, 2001, 14(6): 603−609.
    [18] 陈超, 熊忠平, 徐正会, 等. 青藏高原东北坡蚂蚁物种的分布格局[J]. 林业科学研究, 2022, 35(3): 131−140.

    Chen C, Xiong Z P, Xu Z H, et al. Distribution pattern of ant species on the northeast slope of Qinghai-Tibet Plateau[J]. Forest Research, 2022, 35(3): 131−140.
    [19] 尚文, 杨永兴. 滇西北高原纳帕海湖滨湿地退化特征、规律与过程[J]. 应用生态学报, 2012, 23(12): 3257−3265. doi: 10.13287/j.1001-9332.2012.0440

    Shang W, Yang Y X. Degradation characteristics, patterns, and processes of lakeside wetland in Napahai of northwest Yunnan Plateau, Southwest China[J]. Chinese Journal of Applied Ecology, 2012, 23(12): 3257−3265. doi: 10.13287/j.1001-9332.2012.0440
    [20] 田昆. 云南纳帕海高原湿地土壤退化过程及驱动机制[D]. 长春: 中国科学院东北地理与农业生态研究所, 2004.

    Tian K. Mechanism and process of soil degradation in Napahai wetland on Yunnan plateau[D]. Changchun: Northeast Institute of Geography of Agroecology, Chinese Academy of Sciences, 2004.
    [21] 陆梅, 田昆, 赖建东, 等. 高原湿地纳帕海周边山地不同植被类型枯落物持水特性[J]. 水土保持通报, 2011, 31(1): 28−34, 52.

    Lu M, Tian K, Lai J D, et al. Water holding characteristics of litters of different species in mountainous area of Napahai Plateau Wetland[J]. Bulletin of Soil and Water Conservation, 2011, 31(1): 28−34, 52.
    [22] 周晨霓, 马和平. 西藏色季拉山典型植被类型土壤活性有机碳分布特征[J]. 土壤学报, 2013, 50(6): 1246−1251.

    Zhou C N, Ma H P. Distribution of labile organic carbon in soil as affected by vegetation typical of Sygera Mountains, Tibet, China[J]. Acta Pedologica Sinica, 2013, 50(6): 1246−1251.
    [23] 徐正会. 西双版纳自然保护区蚁科昆虫生物多样性研究[M]. 云南: 云南科技出版社, 2002

    Xu Z H. Biodiversity of ant insects in Xishuangbanna Nature Reserve, China[M]. Yunnan: Yunnan Science and Technology Press, 2002.
    [24] Ellert B H, Janzen H, Vandenbygaart B, et al. Measuring change in soil organic carbon storage[J]. Soil Sampling and Methods of Analysis, 2008: 25−38.
    [25] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

    Lu R K. The analysis method of soil agricultural chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000.
    [26] 张雪慧, 张仲胜, 武海涛. 蚂蚁扰动对土壤有机碳循环过程的影响研究进展[J]. 应用生态学报, 2020, 31(12): 4301−4311.

    Zhang X H, Zhang Z S, Wu H T. Effects of ant disturbance on soil organic carbon cycle: A review[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4301−4311.
    [27] Cammeraat E L H, Willott J, Compton S, et al. The effects of ants’ nests on the physical, chemical and hydrological properties of a rangeland soil in semi-arid Spain[J]. Geoderma, 2002, 105: 1−20. doi: 10.1016/S0016-7061(01)00085-4
    [28] Frouz J, Holec M, Kalčík J. The effect of Lasius niger (Hymenoptera, Formicidae) ant nest on selected soil chemical properties[J]. Pedobiologia, 2003, 47(3): 205−212. doi: 10.1078/0031-4056-00184
    [29] 张哲, 王邵军, 陈闽昆, 等. 蚂蚁筑巢对不同恢复阶段热带森林土壤易氧化有机碳时空动态的影响[J]. 生物多样性, 2019, 27(6): 658−666. doi: 10.17520/biods.2019011

    Zhang Z, Wang S J, Chen M K, et al. Effect of ant colonization on spatiotemporal dynamics of readily oxidizable soil carbon across different restoration stages of tropical forests[J]. Biodiversity Science, 2019, 27(6): 658−666. doi: 10.17520/biods.2019011
    [30] 陈闽昆, 王邵军, 陈武强, 等. 蚂蚁筑巢对西双版纳热带森林土壤微生物生物量碳及熵的影响[J]. 应用生态学报, 2019, 30(9): 2973−2982.

    Chen M K, Wang S J, Chen W Q, et al. Effects of ant nesting on soil microbial biomass carbon and quotient in tropical forest of Xishuangbanna[J]. Chinese Journal of Applied Ecology, 2019, 30(9): 2973−2982.
    [31] Qi H S, Zhao Y, Wang X, et al. Manganese dioxide driven the carbon and nitrogen transformation by activating the complementary effects of core bacteria in composting[J]. Bioresource Technology, 2021, 330: 124960. doi: 10.1016/j.biortech.2021.124960
    [32] Sarcinelli T S, Schaefer C E G R, Fernandes Filho E I, et al. Soil modification by termites in a sandy-soil vegetation in the Brazilian Atlantic rain forest[J]. Journal of Tropical Ecology, 2013, 29(5): 439−448. doi: 10.1017/S0266467413000497
    [33] 陈建国, 田大伦, 闫文德, 等. 土壤团聚体固碳研究进展[J]. 中南林业科技大学学报, 2011, 31(5): 74−80.

    Chen J G, Tian D L, Yan W D, et al. Progress on study of carbon sequestration in soil aggregates[J]. Journal of Central South University of Forestry & Technology, 2011, 31(5): 74−80.
    [34] 左倩倩, 王邵军, 王平, 等. 蚂蚁筑巢对西双版纳热带森林土壤有机氮矿化的影响[J]. 生态学报, 2021, 41(18): 7339−7347.

    Zuo Q Q, Wang S J, Wang P, et al. Effect of ant colonization on soil organic nitrogen mineralization in the Xishuangbanna tropical forest[J]. Chinese Journal of Applied Ecology, 2021, 41(18): 7339−7347.
    [35] Frouz J, Jilková J. The effect of ants on soil properties and processes (Hymenoptera: Formicidae)[J]. Myrmecological News, 2008, 11(11): 191−199.
    [36] Seifert, B, Schultz, R. A taxonomic revision of the Palaearctic ant subgenus  Coptoformica Müller, 1923 (Hymenoptera, Formicidae)[J]. Contributions to Entomology, 2021, 71(2): 177−220. doi: 10.21248/contrib.entomol.71.2.177-220
    [37] Domisch T, Ohashi M, Finér L, et al. Decomposition of organic matter and nutrient mineralisation in wood ant ( Formica rufa group) mounds in boreal coniferous forests of different age[J]. Biology and Fertility of Soils, 2007, 44(3): 539−545.
    [38] 陈小花, 陈宗铸, 雷金睿, 等. 清澜港红树林湿地典型群落类型沉积物活性有机碳组分分布特征[J]. 生态学报, 2022, 42(11): 4572−4581.

    Chen X H, Chen Z T, Lei J R, et al. Distribution characteristics of active organic carbon components in sediments of typical community types of mangrove wetland in Qinglan Port[J]. Acta Ecologica Sinica, 2022, 42(11): 4572−4581.
    [39] 鱼小军, 蒲小鹏, 黄世杰, 等. 蚂蚁对东祁连山高寒草地生态系统的影响[J]. 草业学报, 2010, 19(2): 140−145.

    Yu X J, Pu X P, Huang S J, et al. Effects of ants ( Tetramorium sp.) on eastern Qilian Mountains alpine grassland ecosystem[J]. Acta Prataculturae Sinica, 2010, 19(2): 140−145.
    [40] 唐国勇, 黄道友, 童成立, 等. 红壤丘陵景观单元土壤有机碳和微生物生物量碳含量特征[J]. 应用生态学报, 2006, 17(3): 429−433.

    Tang G Y, Huang D Y, Tong C L, et al. Characteristics of soil organic carbon and microbial biomass carbon in hilly red soil region[J]. Chinese Journal of Applied Ecology, 2006, 17(3): 429−433.
    [41] 张文敏, 吴明, 王蒙, 等. 杭州湾湿地不同植被类型下土壤有机碳及其组分分布特征[J]. 土壤学报, 2014, 51(06): 1351−1360.

    Zhang W M, Wu M, Wang M, et al. Distribution characteristics of organic carbon and its components in soils under different types of vegetation in wetland of Hangzhou Bay[J]. Acta Pedologica Sinica, 2014, 51(6): 1351−1360.
    [42] 陈小花, 陈宗铸, 雷金睿, 等. 清澜港红树林湿地土壤酶活性与理化性质的关系[J]. 林业科学研究, 2022, 35(2): 171−179.

    Chen X H, Chen Z T, Lei J R, et al. Relationship between soil enzyme activities and physicochemical properties in mangrove wetland of Qinglan Port[J]. Forest Research, 2022, 35(2): 171−179.
    [43] 曹乾斌, 王邵军, 任玉连, 等. 蚂蚁筑巢对西双版纳热带森林土壤碳矿化动态的影响[J]. 应用生态学报, 2019, 30(12): 4231−4239.

    Cao Q B, Wang S J, Ren Y L, et al. Effects of ant colonization on spatiotemporal variation of organic carbon mineralization in Xishuangbanna tropical forest soils[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4231−4239.
    [44] 车昭碧, 徐鹏飞, 郭亚亚, 等. 不同草地类型的北方蚁蚁巢及周围土壤理化性质特征分析[J]. 草地学报, 2021, 29(5): 982−990.

    Che Z B, Xu P F, Guo Y Y, et al. Analysis of soil physical and chemical properties of Formica aquilonia yarrow nest and surrounding in different grassland types[J]. Acta Prataculturae Sinica, 2021, 29(5): 982−990.
    [45] 脱云飞, 沈方圆, 杨翠萍, 等. 滇中高原降雨对不同地类土壤磷素、有机质和pH变化的影响[J]. 生态环境学报, 2020, 29(05): 942−950.

    Tuo Y F, Shen F Y, Yang C P, et al. Effects of rainfall on phosphorus, organic matter and pH in different land use types in middle Yunnan Plateau[J]. Ecology and Environment Science, 2020, 29(5): 942−950.
    [46] 郭志华, 张莉, 郭彦茹, 等. 海南清澜港红树林湿地土壤有机碳分布及其与pH的关系[J]. 林业科学, 2014, 50(10): 8−15.

    Guo Z H, Zhang L, Guo Y R, et al. Soil carbon sequestration and its relationship with soil pH in Qinglangang Mangrove Wetlands in Hainan Island[J]. Forest Research, 2014, 50(10): 8−15.
    [47] Wagner D, Jones J B, Gordon D M. Development of harvester ant colonies alters soil chemistry[J]. Soil Biology and Biochemistry, 2004, 36(5): 797−804. doi: 10.1016/j.soilbio.2004.01.009
    [48] Wagner D, Jones J B. The impact of harvester ants on decomposition, N mineralization, litter quality, and the availability of N to plants in the Mojave Desert[J]. Soil Biology and Biochemistry, 2006, 38(9): 2593−2601. doi: 10.1016/j.soilbio.2006.02.024
    [49] 侯继华, 周道玮, 姜世成. 蚂蚁筑丘活动对松嫩草地植物群落多样性的影响[J]. 植物生态学报, 2002, 26(3): 323−329.

    Hou J H, Zhou D W, Jiang S C. The effect of hill-building activities of ants on the species diversity of plant communities in Songnen grassland[J]. Chinese Journal Plant Ecology, 2002, 26(3): 323−329.
    [50] 陈元瑶, 魏琮, 贺虹, 等. 秦岭地区2种蚂蚁巢内土壤理化性质和微生物量的相关性研究[J]. 西北林学院学报, 2012, 27(2): 121−126. doi: 10.3969/j.issn.1001-7461.2012.02.26

    Chen Y Y, Wei Z, He H, et al. Correlation of physicochemical characteristics and microbial biomass among nest soil of Camponotus japonicus and pachycondyla astute in Qinling mountains[J]. Journal of Northwest Forestry University, 2012, 27(2): 121−126. doi: 10.3969/j.issn.1001-7461.2012.02.26
    [51] Rawlins A J, Bull I D, Ineson P, et al. Stabilisation of soil organic matter in invertebrate faecal pellets through leaf litter grazing[J]. Soil Biology and Biochemistry, 2007, 39(5): 1202−1205. doi: 10.1016/j.soilbio.2006.10.010
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  9
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-14
  • 修回日期:  2023-01-09
  • 录用日期:  2023-08-23
  • 网络出版日期:  2023-08-25

目录

    /

    返回文章
    返回