Phenotypic variation and diversity of natural Rosa persica populations in Xinjiang of northwestern China
-
摘要:目的
单叶蔷薇为蔷薇属唯一的单叶物种,是月季育种中的重要材料,在我国主要分布于新疆北部地区,但由于人为的破坏和环境的改变导致其面临濒危灭绝的风险。本研究通过分析单叶蔷薇表型多样性,探究其表型变异规律,旨在为更好地保护和利用单叶蔷薇种质资源提供理论指导。
方法本研究以9个单叶蔷薇天然居群中270个单株为研究材料,对其19个表型性状数据进行收集,利用巢式方差分析、皮尔逊相关性分析、主成分分析和聚类分析方法,探究其表型变异规律与多样性水平。
结果(1)9个单叶蔷薇天然居群表型多样性水平较高,19个表型性状的变异系数和香农多样性指数均值分别为15.90%和2.031;9个居群的表型变异系数在10.32%(P4) ~ 13.19%(P8),表现出中等程度的变异,香农多样性指数在1.274(P5) ~ 1.825(P8)之间,其中P8居群呈现出较高的多样性水平。(2)19个表型性状在居群间和居群内均存在极显著性差异(P < 0.01),居群间的平均表型分化系数为41.23%,表型变异主要来源于居群内。(3)皮尔逊相关性分析发现,单叶蔷薇花径与叶面积、花瓣面积与花斑百分比等部分性状间存在显著相关性。(4)主成分分析共提炼出5个主成分,累计贡献率为80.463%,贡献率最大的2个主成分主要解释花与叶的性状。(5)聚类分析可将单叶蔷薇9个居群分为2类,第1类为大花类,包括P6、P7、P8;第2类为小花类,包括P1、P2、P3、P4、P5、P9。
结论新疆单叶蔷薇具有较高的表型多样性和变异水平,且变异的来源主要集中在居群内。
Abstract:ObjectiveRosa persica, the only single-leaf species of Rosa, is an important material for rose breeding. It is mainly distributed in northern Xinjiang of northwestern China, but it is at risk of extinction due to human damage and environmental changes. This study analyzed the phenotypic diversity of Rosa persica and explored the rule of its phenotypic variation, aiming to provide theoretical guidance for better protection and utilization of Rosa persica germplasm resources.
MethodIn this study, 270 individual plants from 9 natural populations of Rosa persica were used as research materials, and the data of 19 phenotypic traits were collected. Nested analysis of variance, Pearson correlation analysis, principal component analysis and cluster analysis were used to explore the phenotypic variation and diversity level of the plants.
Result(1) The phenotypic diversity of 9 natural populations was higher, and the mean coefficient of variation and Shannon diversity index of 19 phenotypic traits was 15.90% and 2.031, respectively. The phenotypic coefficient of variation of 9 populations ranged from 10.32% (P4) to 13.19% (P8), showing moderate variation. The Shannon diversity index ranged from 1.274 (P5) to 1.825 (P8), and the P8 population showed a high diversity level. (2) The 19 phenotypic traits had significant differences between populations and within populations (P < 0.01). The average phenotypic differentiation coefficient between populations was 41.23%, and the phenotypic variation was mainly from within populations. (3) Pearson correlation analysis showed that there were significant correlations between flower diameter and leaf area, petal area and flower spot percentage. (4) A total of 5 principal components were extracted from the principal component analysis, with a cumulative contribution rate of 80.463%, and the two principal components with the largest contribution rate mainly explained the characteristics of flowers and leaves. (5) The 9 populations of Rosa persica could be divided into 2 groups by cluster analysis. The first group was large flower group, including P6, P7 and P8, and the second group was small flower group, including P1, P2, P3, P4, P5 and P9.
ConclusionThe phenotypic diversity and variation level of Rosa persica in Xinjiang are high, and the sources of variation are mainly concentrated in the population.
-
Keywords:
- Rosa persica /
- population /
- phenotypic variation /
- phenotypic diversity
-
白桦(Betula platyphylla)作为我国重要的阔叶用材树种,广泛分布于东北、华北、西北及西南高山林区等14个省区[1],其木质坚硬,质地细白,在家具、建材、造纸等方面具有广泛用途。由于白桦为异花授粉树种,自交不育,基因型高度杂合,因此群体内个体间遗传差异十分明显,主要表现在个体间的干型、生长、适应性等性状各不相同。开展白桦家系多点造林试验,对不同地点间的参试家系进行选择,可最大限度地利用家系间及家系内个体间变异,加速白桦遗传改良进程。
研究团队于1997—2000年间,依据表型性状从帽儿山、草河口、辉南、露水河、汪清、小北湖和东方红等多个种源内筛选出若干株白桦优良单株,将这些优树个体分年度定植于棚式种子园内,建立了白桦初级实生种子园。前期,对园中母树自由授粉的半同胞子代在单一地点的试验结果进行过初步分析[2],但是这仅为单一试验点的结果且林龄尚小。然而,通过多点试验研究,不仅能够分析各家系在单一地点的生长性状,同时也能够对参试家系进行基因型与环境交互作用的分析,是筛选对不同类型环境具有特殊适应性基因型的必要手段,也是进行优良家系选择及遗传改良的重要方法之一[3-4]。在以往的白桦多点试验研究中,本团队曾就白桦杂交子代2~5年生幼龄林测定数据进行过早期选择与评价[5-7],但也仅限于幼龄林时期,尚未对成年林分进行跟踪调查。为此,本试验开展12年生自由授粉的半同胞家系多点子代测定研究,在进行优良家系选择的同时对建园母树进行评价,为白桦种子园的改建提供参考。
1. 材料与方法
1.1 试验材料及设计
试验材料为东北林业大学白桦初级实生种子园内53株白桦母树自由授粉的半同胞子代家系。2001年采种,2002年育苗,2003年分别在黑龙江省伊春市朗乡林业局小白林场、吉林省吉林市林业科学研究院实验林场、黑龙江省尚志市帽儿山实验林场营建白桦半同胞家系测定林,3个试验点地理与气候条件见表 1。试验林按照完全随机区组设计,在帽儿山试验点为20株双行排列,在吉林与朗乡2试验点为10株单行排列,株行距2m×2m,3次重复。2015年春分别对3个地点的12年生白桦半同胞子代试验林进行全林树高、胸径调查。
表 1 3个试验点的地理气候条件Table 1. Geographical and climatic conditions of the three test sites序号
No.试验点
Test site纬度
Latitude经度
Longitude年降水量
Annual precipitation/mm年平均温度
Annual average temperature/℃无霜期
Frost-freeseason/d土壤类型
Soil type1 朗乡
Langxiang46°48′N 128°50′E 676.0 1.0 100 永冻暗棕壤
Permafrost dark brown2 帽儿山
Maoershan45°16′N 127°31′E 666.1 2.4 120 暗棕壤
Dark brown3 吉林
Jilin43°40′N 126°40′E 700.0 4.1 135 暗棕壤
Dark brown1.2 数据调查处理
1.2.1 生长性状测量
采用超声波测高仪及塔尺测量树高,采用围尺测量胸径。家系保存率按各试验点内各家系实际保存株数计算。根据白桦的二元材积表公式计算单株材积:V=0.0000051935163D1.8586884H1.0038941[8]。
1.2.2 遗传参数估计
表型变异系数(PCV)采用公式:PCV=σˉX×100%,式中:σ为性状标准差,X为性状平均值[9]。
遗传增益(G):G=h2SˉX×100%, 式中:h2为性状遗传力,S为入选各优良家系性状平均值与参试家系相应性状平均值的差值, X为参试家系性状平均值。
1.2.3 数据处理
方差分析及多重比较(Duncan)利用SPSS16.0和Microsoft Excel等统计分析软件进行计算。
各试验地点间及试验点内均采用双因素方差分析线性模型进行分析,其模型表达式及各参数含义详见参考文献[6]。
采用南京林业大学林木多地点半同胞子代测定遗传分析R语言程序包以及R软件进行多地点半同胞子代材积育种值BLUP估计。模型建立过程根据童春发[10-11]的方法进行,详见文献[11]。
BLUP的线性混合模型公式为[11]:
yy=XXβ+ZZu+e 式中: y为材积观测值向量,X和Z分别为β和u的相关矩阵,β为固定效应,u为随机遗传效应,e为随机误差效应。
2. 结果与分析
2.1 家系生长性状的多地点联合方差分析及主要遗传参数计算
3个地点联合方差分析(表 2)表明:单株材积、树高性状在地点间和家系间以及地点与家系的交互作用均表现出极显著(P<0.01)的差异,胸径性状在地点间和家系间也表现出极显著(P<0.01)的差异;说明不同家系在同一地点内生长差异明显,同一个家系在不同立地条件下的生长表现也各不一致,各地点与家系间存在较为明显的互作效应。
表 2 参试家系生长性状多地点联合方差分析Table 2. Joint variance analysis of growth traits for birch families at different sites生长性状
Growth trait变异来源
Source of variationdf SS MS F P 树高
Height(H)/m地点Site 2 1755.112 877.556 490.323** <0.01 地点内区组Site (Block) 6 315.480 52.580 29.378** <0.01 家系Family 52 351.766 6.765 3.780** <0.01 家系×地点Family×site(G×E) 104 474.421 4.562 2.549** <0.01 试验误差Experiment error 4065 7275.337 1.790 总变异Total variance 4230 423725.196 胸径
Diameter at breast height (DBH)/cm地点Site 2 3674.704 1837.352 435.896** <0.01 地点内区组Site (Block) 6 283.320 47.220 11.203** <0.01 家系Family 52 389.907 7.498 1.779** <0.01 家系×地点G×E 104 542.376 5.215 1.237 0.053 试验误差Experiment error 4065 17134.428 4.215 总变异Total variance 4230 366062.640 单株材积Volume(V)/m3 地点Site 2 0.189 0.094 509.010** <0.01 地点内区组Site (Block) 6 0.017 0.003 15.243** <0.01 家系Family 52 0.025 <0.001 2.621** <0.01 家系×地点G×E 104 0.029 <0.001 1.499** <0.01 试验误差Experiment error 4065 0.753 <0.001 总变异Total variance 4230 6.436 注: *差异显著,P<0.05; **差异极显著,P<0.01。下同。Notes: * means significant difference at P<0.05 level; ** means extremely significant difference at P<0.01 level. The same below. 单个地点的方差分析(表 3)表明:树高、胸径以及单株材积在家系间均达到差异显著(P<0.05)或极显著(P<0.01)水平,说明不同家系间生长存在明显差别。在3个试验点中,帽儿山试验点的白桦家系树高、胸径和单株材积生长表现最好,均值分别为10.3928m、9.6489cm和0.0408m3,且变异系数较小,分别为11.79%、22.64%和34.80%,说明参试家系在帽儿山试验点不仅生长量最大,而且生长整齐度也较好。吉林试验点的参试家系各性状均值均处于中间,生长变异水平也处于中等。朗乡试验点各性状均值最小,为8.6575m、7.1091cm和0.0226m3,这与当地年均温较低,无霜期较短等气候条件有关。
表 3 不同试验点间参试家系生长性状的遗传参数Table 3. Genetic parameters for growth traits of birch families at different sites试验地点
Test site性状
Growth trait均值
Mean标准差
Standarddeviation变幅
Amplitude ofvariation变异系数
Coefficient of variation/%F P 朗乡
Langxiang树高H/m 8.6575 1.6515 9.19~9.89 19.08 2.349 ** <0.01 胸径DBH/cm 7.1091 2.0069 5.90~8.34 28.23 1.446* 0.02 单株材积V/m3 0.0226 0.0119 0.0156~0.0311 52.65 1.650** <0.01 帽儿山
Maoershan树高H/m 10.3928 1.2252 9.39~11.30 11.79 7.984** <0.01 胸径DBH/cm 9.6489 2.1848 8.67~10.77 22.64 1.868** <0.01 单株材积V/m3 0.0408 0.0142 0.0331~0.0499 34.80 3.653** <0.01 吉林
Jilin树高H/m 9.7268 1.5534 8.15~11.00 15.97 3.408** <0.01 胸径DBH/cm 9.1610 1.9483 7.73~10.21 21.27 2.293** <0.01 单株材积V/m3 0.0351 0.0152 0.0231~0.0453 43.30 2.892** <0.01 2.2 各试验点参试家系生长性状多重比较及保存率比较
由于家系间各性状均达到显著差异水平(P<0.05),进而进行多重比较(表 4),初步筛选优良家系。将树高、胸径和单株材积分别在各试验点按均值高低排序后发现,由于3个试验点地理环境各有不同,基因型与环境的交互作用明显,所以53个家系在不同试验点生长表现各有差异,因此首先考虑在各试验点内进行单点优良家系初选,然后再进行3试验点间的联合选择。
表 4 各试验地点参试家系生长性状多重比较Table 4. Multiple comparisons of birch H, DBH and V for the tested lines at different sites家系
Family朗乡Langxiang 帽儿山Maoershan 吉林Jilin 树高H/m 胸径DBH/cm 单株材积V/m3 树高H/m 胸径DBH/cm 单株材积V/m3 树高H/m 胸径DBH/cm 单株材积V/m3 B1 9.65 abcd 7.43 abcde 0.0291 ab 10.23 fghijklm 9.40 bcdef 0.0384 defghijkl 9.58 bcdefghijkl 9.28 abcdef 0.0335 bcdefghij B2 7.90 hijk 6.93 abcde 0.0193 bcdefgh 10.28 efghijkl 9.64 abcdef 0.0394 cdefghijkl 8.72 lm 7.73 g 0.0265 jk B3 8.30 defghijk 6.77 abcde 0.0209 abcdefgh 10.41 bcdefghijkl 9.47 bcdef 0.0406 cdefghijk 10.07 abcdefghij 9.50 abcdef 0.0395 abcdef B4 8.86 abcdefghij 7.05 abcde 0.0251 abcdefgh 9.67 nop 8.67 f 0.0331 l 9.56 bcdefghijkl 8.39 cdefg 0.0311 cdefghijk B5 9.53 abcde 7.79 abcd 0.0280 abcd 10.13 hijklmno 9.70 abcdef 0.0382 defghijkl 10.30 abcdef 9.44 abcdef 0.0394 abcdef B6 8.27 efghijk 6.81 abcde 0.0205 bcdefgh 10.34 cdefghijkl 9.27 cdef 0.0383 defghijkl 8.69 lm 9.15 abcdef 0.0278 ijk B7 9.11 abcdefghij 6.68 abcde 0.0230 abcdefgh 9.92 lmno 8.95 ef 0.0354 ijkl 9.24 hijkl 8.25 defg 0.0295 efghijk B8 8.14 fghijk 6.27 cde 0.0172 efgh 10.44 bcdefghijkl 9.15 cdef 0.0390 cdefghijkl 8.15 m 8.43 cdefg 0.0231 k B9 8.28 defghijk 6.05 de 0.0177 defgh 9.91 lmno 9.70 abcdef 0.0366 hijkl 9.83 bcdefghijk 8.58 cdefg 0.0326 cdefghijk B10 8.81 abcdefghij 8.34 a 0.0251 abcdefgh 10.56 bcdefghij 9.60 abcdef 0.0411 cdefghijk 9.77 bcdefghijk 8.82 abcdefg 0.0343 bcdefghij B11 8.29 defghijk 6.75 abcde 0.0221 abcdefgh 10.89 abc 9.50 bcdef 0.0425 bcdefghi 9.57 bcdefghijkl 9.57 abcdef 0.0348 bcdefghij B12 9.09 abcdefghij 6.91 abcde 0.0230 abcdefgh 10.47 bcdefghijkl 9.45 bcdef 0.0404 cdefghijk 9.71 bcdefghijk 8.35 cdefg 0.0321 cdefghijk B13 8.84 abcdefghij 7.09 abcde 0.0221 abcdefgh 10.35 cdefghijkl 9.89 abcde 0.0408 cdefghijk 9.92 bcdefghijk 9.14 abcdef 0.0356 abcdefghij B14 9.15 abcdefghi 7.65 abcde 0.0275 abcdef 10.45 bcdefghijkl 9.88 abcde 0.0415 bcdefghij 9.97 bcdefghijk 9.25 abcdef 0.0366 abcdefghij B15 9.52 abcde 7.50 abcde 0.0277 abcde 10.45 bcdefghijkl 10.47 ab 0.0437 abcdefgh 11.00 a 9.78 abc 0.0453 a B16 8.96 abcdefghij 7.29 abcde 0.0237 abcdefgh 10.94 ab 9.98 abcde 0.0460 abc 10.38 abcde 9.45 abcdef 0.0410 abcd B17 8.77 abcdefghij 8.18 ab 0.0247 abcdefgh 10.21 fghijklm 9.55 bcdef 0.0387 cdefghijkl 9.74 bcdefghijk 10.13 ab 0.0376 abcdefghi B18 9.72 ab 7.55 abcde 0.0284 abc 10.32 defghijkl 9.17 cdef 0.0382 defghijkl 9.74 bcdefghijk 9.36 abcdef 0.0351 abcdefghij B19 9.27 abcdefgh 7.54 abcde 0.0254 abcdefgh 10.42 bcdefghijkl 9.57 bcdef 0.0405 cdefghijk 10.26 abcdefg 9.72 abc 0.0400 abcde B20 8.53 abcdefghij 7.02 abcde 0.0215 abcdefgh 10.10 ijklmno 9.23 cdef 0.0371 fghijkl 9.04 kl 8.47 cdefg 0.0283 hijk B21 8.06 fghijk 7.06 abcde 0.0200 bcdefgh 10.58 bcdefghij 9.51 bcdef 0.0414 bcdefghij 9.05 kl 8.69 bcdefg 0.0292 fghijk B22 9.02 abcdefghij 7.91 abc 0.0262 abcdefg 10.01 jklmno 9.32 bcdef 0.0381 efghijkl 9.32 fghijkl 8.77 abcdefg 0.0302 efghijk B23 8.71 abcdefghij 6.44 bcde 0.0200 bcdefgh 10.23 fghijklm 9.33 bcdef 0.0398 cdefghijkl 9.37 fghijkl 8.63 cdefg 0.0336 bcdefghij B24 8.75 abcdefghij 6.97 abcde 0.0229 abcdefgh 10.09 ijklmno 9.49 bcdef 0.0385 cdefghijkl 9.15 jkl 9.01 abcdefg 0.0300 efghijk B25 7.98 ghijk 6.24 cde 0.0172 fgh 10.25 fghijklm 10.01 abcde 0.0418 bcdefghi 10.09 abcdefghij 9.57 abcdef 0.0385 abcdefgh B26 9.08 abcdefghij 7.77 abcd 0.0251 abcdefgh 9.72 mnop 9.05 def 0.0369 ghijkl 9.13 jkl 9.28 abcdef 0.0350 abcdefghij B27 8.41 bcdefghijk 7.23 abcde 0.0226 abcdefgh 10.32 defghijkl 9.81 abcdef 0.0410 cdefghijk 9.52 cdefghijkl 9.17 abcdef 0.0329 cdefghijk B28 8.77 abcdefghij 6.22 cde 0.0251 abcdefgh 10.07 jklmno 10.10 abcde 0.0407 cdefghijk 10.52 ab 10.10 ab 0.0453 a B29 7.19 k 6.12 cde 0.0161 gh 10.91 abc 9.87 abcde 0.0444 abcdef 9.95 bcdefghijk 9.50 abcdef 0.0374 abcdefghi B30 9.68 abc 6.47 bcde 0.0254 abcdefgh 10.65 bcdefghi 9.58 bcdef 0.0418 bcdefghi 9.73 bcdefghijk 9.28 abcdef 0.0346 bcdefghij B31 8.91 abcdefghij 6.80 abcde 0.0228 abcdefgh 10.40 bcdefghijkl 9.66 abcdef 0.0414 cdefghij 10.39 abcde 9.71 abc 0.0416 abc B32 8.48 bcdefghijk 7.62 abcde 0.0221 abcdefgh 10.38 bcdefghijkl 9.53 bcdef 0.0399 cdefghijkl 9.29 ghijkl 8.70 bcdefg 0.0303 efghijk B33 8.94 abcdefghij 7.66 abcde 0.0258 abcdefgh 10.29 efghijkl 9.19 cdef 0.0387 cdefghijkl 10.00 bcdefghijk 9.70 abcd 0.0390 abcdefg B34 9.89 a 7.88 abcd 0.0311 a 10.87 abcd 10.16 abcd 0.0458 abc 10.50 abc 9.78 abc 0.0414 abc B35 8.30 defghijk 6.93 abcde 0.0206 bcdefgh 10.83 abcde 10.77 a 0.0486 ab 9.70 bcdefghijk 8.75 bcdefg 0.0342 bcdefghij B36 8.08 fghijk 7.04 abcde 0.0189 bcdefgh 10.70 bcdefgh 10.09 abcde 0.0444 abcdef 10.00 bcdefghijk 9.44 abcdef 0.0368 abcdefghij B37 8.25 efghijk 7.49 abcde 0.0214 abcdefgh 10.58 bcdefghij 10.00 abcde 0.0435 abcdefgh 9.87 bcdefghijk 9.28 abcdef 0.0355 abcdefghij B38 8.31 cdefghijk 7.44 abcde 0.0239 abcdefgh 9.61 op 8.96 ef 0.0339 kl 9.27 ghijkl 8.87 abcdefg 0.0313 cdefghijk B39 8.56 abcdefghij 7.58 abcde 0.0226 abcdefgh 10.17 ghijklmn 9.82 abcdef 0.0404 cdefghijk 9.61 bcdefghijkl 8.84 abcdefg 0.0334 bcdefghij B40 7.81 ijk 6.57 abcde 0.0169 gh 11.30 a 10.31 abc 0.0499 a 9.96 bcdefghijk 9.37 abcdef 0.0382 abcdefghi B41 8.12 fghijk 6.91 abcde 0.0199 bcdefgh 10.66 bcdefghi 9.37 bcdef 0.0404 cdefghijk 10.17 abcdefghi 9.34 abcdef 0.0382 abcdefghi B42 8.79 abcdefghij 7.33 abcde 0.0229 abcdefgh 10.91 abc 10.11 abcde 0.0456 abcd 9.96 bcdefghijk 9.75 abc 0.0382 abcdefghi B43 8.73 abcdefghij 7.76 abcd 0.0250 abcdefgh 10.69 bcdefgh 9.50 bcdef 0.0427 bcdefghi 9.83 bcdefghijk 9.36 abcdef 0.0356 abcdefghij B44 7.74 jk 7.11 abcde 0.0185 cdefgh 10.69 bcdefgh 10.04 abcde 0.0442 abcdefg 10.21 abcdefgh 9.61 abcdef 0.0389 abcdefgh B45 9.45 abcdef 7.41 abcde 0.0285 abc 10.69 bcdefgh 10.27 abc 0.0452 abcde 9.50 defghijkl 9.51 abcdef 0.0344 bcdefghij B46 8.93 abcdefghij 7.85 abcd 0.0245 abcdefgh 10.50 bcdefghijk 9.86 abcde 0.0418 bcdefghi 9.48 efghijkl 8.20 efg 0.0300 efghijk B47 8.66 abcdefghij 6.29 cde 0.0196 bcdefgh 9.39 p 9.37 bcdef 0.0342 jkl 9.19 ijkl 8.19 fg 0.0308 defghijk B48 9.33 abcdefg 6.54 abcde 0.0222 abcdefgh 10.73 bcdefg 10.33 abc 0.0452 abcde 9.96 bcdefghijk 9.46 abcdef 0.0364 abcdefghij B49 7.84 ijk 5.90 e 0.0156 h 10.41 bcdefghijkl 9.04 def 0.0384 defghijkl 10.11 abcdefghij 9.39 abcdef 0.0380 abcdefghi B50 8.15 efghijk 6.42 bcde 0.0183 cdefgh 10.55 bcdefghij 10.23 abcd 0.0436 abcdefgh 10.06 bcdefghij 9.66 abcde 0.0389 abcdefgh B51 8.96 abcdefghij 7.94 abc 0.0248 abcdefgh 10.45 bcdefghijkl 9.61 abcdef 0.0413 cdefghij 10.48 abcd 10.21 a 0.0439 ab B52 8.18 efghijk 7.14 abcde 0.0195 bcdefgh 9.97 klmno 9.20 cdef 0.0354 ijkl 9.06 kl 8.52 cdefg 0.0284 ghijk B53 7.83 ijk 7.13 abcde 0.0184 cdefgh 10.75 bcdef 9.67 abcdef 0.0427 bcdefghi 9.86 bcdefghijk 9.13 abcdefg 0.0352 abcdefghij 注:表中不同字母表示在P < 0.05水平上差异显著。Note: different letters mean significant difference at P < 0.05 level. 在朗乡试验点,若以各性状均值加上0.2倍标准差为选择条件,则3个性状均高于选择标准的有:B5、B14、B15、B18、B19、B22、B26和B34家系,这8个家系为生长性状最优家系,其树高、胸径和单株材积均值分别为:9.40m、7.70cm和0.0274m3, 分别高于参试家系均值的8.54%、8.30%和21.49%,仅有2个生长性状高于选择标准的有:B1、B10、B33、B43和B45家系,为生长良好家系,其树高、胸径和单株材积均值分别为:9.12m、7.72cm和0.0267m3。根据多重比较结果,朗乡试验点初步选择这13个家系为优良家系,入选率为24.53%。依据上述选择标准,在帽儿山试验点生长最优家系为B34、B35、B36、B40、B42、B45和B48,这7个家系的树高、胸径和单株材积均值为:10.86m、10.29cm、0.0464m3,分别高于参试家系均值的4.51%、6.66%和13.76%,较好家系为B15、B16、B29和B44,其树高、胸径和单株材积均值为:10.75m、10.09cm和0.0446m3,因此,这11个家系入选为帽儿山试验点的优良家系,入选率为20.75%。同样选择标准,在吉林试验点选择B15、B19、B25、B28、B31、B34、B44、B50、B51、B3、B5、B16、B33、B41和B42等15个家系为优良家系,入选率为28.30%。
进而对3个试验地点的选优结果进行比较发现:B34、B15家系在3个地点均入选为优良家系,说明这2个家系在各试验地不仅生长表现较为优异,而且生长稳定性也良好,是参试家系中的最优家系。另外,入选的优良家系中有些家系仅在2个地点表现良好,如在朗乡与吉林2试验点生长良好的是B5、B19和B33家系;在帽儿山与吉林2试验点均表现较好的是B16、B42和B44家系;在朗乡与帽儿山2试验点表现较好的是B45家系,说明这些家系虽然生长表现优良,但适应能力略低于B34、B15这2个最优家系。其余优良家系仅在其所入选地点内表现优良,说明这些家系由于基因型与环境交互作用的差异而导致的适应范围各有不同,所以仅在适宜其生长的地点表现良好。
参试的53个白桦家系在各试验点平均保存率不尽相同(表 5)。3个地点中吉林试验点的各家系保存率最好,53个家系保存率均值为69.75%,有12个家系的保存率大于80.00%,其中B9家系保存率高达96.67%,B8家系保存率最低,仅为43.33%;帽儿山试验点53个家系保存率均值为60.40%,其中保存率最高的是B14家系,为94.29%, 保存率最低的是B3家系,仅为38.57%;朗乡试验点参试家系保存率均值为54.34%,B35和B25家系的保存率最高,为90.00%,B4、B50等2个家系次之,其他49个家系的保存率均在80.00%以下,B53、B51家系保存率最低,仅为23.33%。
表 5 各试验地点参试家系保存率Table 5. Preservation rate for the tested families at different sites参试家系
Tested family保存率Preservation rate/% 3个地点保存率均值
Average preservation rate at three sites/%朗乡
Langxiang帽儿山
Maoershan吉林
JilinB1 40.00 55.71 63.33 53.01 B2 30.00 61.43 60.00 50.48 B3 66.67 38.57 46.67 50.64 B4 83.33 51.43 83.33 72.70 B5 73.33 45.71 76.67 65.24 B6 56.67 58.57 53.33 56.19 B7 33.33 62.86 70.00 55.40 B8 63.33 62.86 43.33 56.51 B9 40.00 50.00 96.67 62.22 B10 60.00 65.71 73.33 66.35 B11 26.67 62.86 76.67 55.40 B12 70.00 68.57 80.00 72.86 B13 66.67 68.57 83.33 72.86 B14 43.33 94.29 53.33 63.65 B15 30.00 50.00 53.33 44.44 B16 50.00 65.71 70.00 61.90 B17 40.00 65.71 76.67 60.79 B18 70.00 60.00 76.67 68.89 B19 76.67 51.43 63.33 63.81 B20 76.67 65.71 76.67 73.02 B21 73.33 61.43 66.67 67.14 B22 56.67 64.29 73.33 64.76 B23 33.33 54.29 90.00 59.21 B24 50.00 57.14 66.67 57.94 B25 90.00 55.71 76.67 74.13 B26 50.00 57.14 50.00 52.38 B27 50.00 60.00 70.00 60.00 B28 30.00 57.14 70.00 52.38 B29 36.67 70.00 70.00 58.89 B30 53.33 71.43 86.67 70.48 B31 36.67 65.71 60.00 54.13 B32 56.67 67.14 80.00 67.94 B33 63.33 54.29 76.67 64.76 B34 56.67 60.00 73.33 63.33 B35 90.00 67.14 66.67 74.60 B36 53.33 61.43 83.33 66.03 B37 53.33 68.57 76.67 66.19 B38 46.67 44.29 50.00 46.99 B39 63.33 50.00 60.00 57.78 B40 66.67 75.71 83.33 75.24 B41 70.00 70.00 80.00 73.33 B42 40.00 71.43 86.67 66.03 B43 70.00 70.00 76.67 72.22 B44 36.67 61.43 80.00 59.37 B45 60.00 58.57 46.67 55.08 B46 66.67 64.29 76.67 69.21 B47 53.33 44.29 70.00 55.87 B48 63.33 62.86 73.33 66.51 B49 46.67 40.00 60.00 48.89 B50 86.67 55.71 60.00 67.46 B51 23.33 60.00 76.67 53.33 B52 33.33 57.14 56.67 49.05 B53 23.33 57.14 46.67 42.38 2.3 参试家系材积性状育种值估算及优良家系选择
上述针对各试验点各家系间的树高、胸径和单株材积等3个性状单独进行了方差分析、多重比较及各试验点的优良家系初步筛选。但优良家系的评定往往应考虑多个地点的综合表现,考虑到材积是公认的反映立地质量的林木生长主要性状,并且是能够综合体现树高性状与胸径性状的高低最直接的指标。因此,在本研究中选择BLUP模型利用各家系在3个试验点的单株材积数据进行育种值估算,进而进行家系的评价和选择(表 6)。
表 6 参试家系材积性状育种值Table 6. Breeding value for volume of birch families综合排名
Comprehensive ranking家系
Family育种值
Breeding value标准误
Standard error1 B34 0.009487 0.408866 2 B15 0.008838 0.400508 3 B28 0.007473 0.404450 4 B16 0.006786 0.408455 5 B51 0.005843 0.403728 6 B40 0.005191 0.411808 7 B42 0.005067 0.408921 8 B45 0.004931 0.406538 9 B48 0.003846 0.409883 10 B35 0.003845 0.411074 11 B19 0.002876 0.408067 12 B31 0.002838 0.405394 13 B5 0.002812 0.409427 14 B43 0.002792 0.411366 15 B14 0.002778 0.410816 16 B44 0.002584 0.407243 17 B36 0.002060 0.409832 18 B29 0.001729 0.407011 19 B33 0.001726 0.409499 20 B11 0.001424 0.404868 21 B37 0.001349 0.409699 22 B17 0.001340 0.407742 23 B30 0.001311 0.410246 24 B18 0.001297 0.410728 25 B10 0.001276 0.409895 26 B50 0.001214 0.409561 27 B41 0.000381 0.411618 28 B3 0.000183 0.403408 29 B26 0.000130 0.405231 30 B13 -0.000096 0.410798 31 B53 -0.000154 0.399256 32 B1 -0.000505 0.405265 33 B46 -0.001507 0.410566 34 B25 -0.001666 0.411684 35 B39 -0.001780 0.407691 36 B12 -0.002024 0.411479 37 B22 -0.002113 0.409472 38 B23 -0.002169 0.405577 39 B27 -0.002352 0.407904 40 B32 -0.003134 0.410325 41 B24 -0.003471 0.407761 42 B49 -0.003577 0.402874 43 B21 -0.004966 0.409794 44 B20 -0.005170 0.411443 45 B7 -0.005506 0.405812 46 B38 -0.005755 0.403724 47 B6 -0.005835 0.406911 48 B9 -0.005966 0.407067 49 B4 -0.005967 0.410607 50 B2 -0.006776 0.403709 51 B47 -0.007239 0.407103 52 B52 -0.007793 0.403611 53 B8 -0.007885 0.406856 由育种值的结果可以看出,与前文多重比较选择的结果基本一致,综合排名在第1位的是B34家系,第2位的是B15家系,B28、B16、B51、B40、B42、B45、B48、B35、B19等家系次之。若以20.00%入选率为选择标准,则以上排名前11位的家系入选为优良家系,入选的优良家系材积均值分别较朗乡、帽儿山和吉林等3个地点的参试家系均值高8.29%、9.80%和13.60%,材积性状在3个地点的遗传增益分别为3.23%、7.16%和8.84%。
3. 结论与讨论
研究基因型与环境交互作用效应对林木遗传改良具有重要意义[12-13]。对3个参试地点的白桦家系生长性状遗传变异分析显示,位于小兴安岭朗乡试验点参试的白桦家系生长量明显低于另外2个试验点,但各性状的变异系数却普遍偏高。这与该试验点所处的地理位置以及特殊的气候环境密切相关,朗乡试验点位于纬度较高的小兴安岭地区,无霜期短,年均温与≥10℃年积温均较低,而参试的大部分家系原产地均处于纬度较低的张广才岭与长白山地区,原产地与造林地环境差异较大,导致参试白桦家系间产生较大分化,有部分家系生长较好,而大多数家系则长势较弱。从而导致了在朗乡试验点定植的家系各性状生长量较低,并且变异系数较高。但这也为抗逆性家系的选择提供了可能,在较恶劣环境条件下依然能保持稳定的生产力以及较高保存率的家系必然是首选,如B5、B19等家系在朗乡试验点生长性状均排在前列并且保存率均高于70.00%。另外2个试验点环境条件虽较朗乡试验点优越但家系生长依然各有差异,因此,分别依据参试家系在各试验点的生长表现,利用多重比较的结果在各试验点内进行了优良家系的初选。
早期选择可靠性及选择年龄的确定等问题一直以来都备受国内外同行关注。但是,越来越多的试验分析表明林木早期选择具有较高的可信度。如油松(Pinus tabulaeformis)、马尾松(P. massoniana)等树种的育种实践证明对生长期达1/4~1/2轮伐期的林分即可进行早期选择,并且早期选择的效率更高[14]。白桦人工林的主伐年龄为31~41年生[15],本项研究所选取的对象为12年生白桦半同胞家系子代测定林,其林龄已达1/3轮伐期,因此,对其进行早期选择应该具有较高准确性。
对于多点造林试验,由于待测群体数量庞大,加之各造林点间的地理气候环境不尽相同,试验林的保存率也各不相同,导致观测数据复杂多样,给遗传评价和选择带来相当难度[16-17]。而育种值的估算恰恰能克服这一问题,它能体现表型值中遗传效应的加性效应部分,对群体规模大、结构复杂的不平衡数据进行统计分析时,能有效地剔除各种非遗传因素的影响,因而具有较高的选择准确性,已被广泛应用于马尾松、火炬松(Pinus taeda)、尾叶桉(Eucalyptus urophylla)等多个树种的选择中,是一种较理想的综合评价方法[18-20]。本研究采用BLUP最佳线性无偏预测模型参试家系进行多地点材积育种值估算,依据育种值高低对参试家系进行综合评价,以20.00%入选率为标准选择育种值排名前11位的家系为优良家系。同时,基于各地点白桦半同胞子代测定林生长表现分析结果,建议种子园改建时B34和B15这2个家系的采种母树为首选保留母树,B28、B16、B51、B40、B42、B45、B48、B35、B19这9个家系的采种母树为备选母树。
-
表 1 新疆单叶蔷薇9个居群的采样点信息
Table 1 Sampling point information of 9 populations of Rosa persica in Xinjiang
居群
Population采集点
Collection point样本数
Sample number生境
Habitat海拔
Altitude/mP1 昌吉二六工镇上东工
Shangdonggong Village, Erliugong Town, Changji City30 道路、农田、大沟渠边
Road, farmland, side of the big ditch584.23 P2 昌吉二六工镇东六工
Dongliugong Village, Erliugong Town, Changji City30 道路、农田、小沟渠边
Road, farmland, side of the small ditch583.05 P3 昌吉呼图壁县五工台
Wugongtai Village, Hutubi County, Changji City30 道路、农田、干涸的沟渠边
Road, farmland, side of the dry ditch520.27 P4 昌吉呼图壁县润和路
Runhe Road, Hutubi County, Changji City20 道路、工厂、干涸的沟渠边
Road, factory, side of the dry ditch522.36 P5 石河子市
Shihezi City20 道路、铁路边
Road, railway lines453.73 P6 塔城额敏县老风口
Laofengkou Village, Emin County, Tacheng City50 道路、农舍边
Road, farmhouse552.06 P7 塔城裕民县江格斯
Janges Village, Yumin County, Tacheng City20 河流、草地边
River, meadow edge641.05 P8 博乐市火车站
Railway station, Bole City40 道路、铁路边、林地、干涸沟渠
Road, railway lines, woodlands, dry ditches507.32 P9 双河市86团
86th Regiment, Shuanghe City30 道路、农田、沟渠边
Road, farmland, ditch side503.17 表 2 单叶蔷薇表型变异
Table 2 Variation in phenotypic traits of Rosa persica
性状
Trait平均值
Mean标准差
SD最小值
Min. value最大值
Max. value极差
Range变异系数
Coefficient of variation/%香农多样性指数
Shannon’s diversity index花径 Flower diameter (FD)/mm 28.813 3.015 22.185 40.329 18.144 10.47 2.071 5 花斑直径 Speckle diameter (SD)/mm 12.556 1.295 8.748 17.617 8.869 10.31 2.039 6 花梗长 Pedicel length (PDL)/mm 14.089 3.366 5.586 26.366 20.780 23.89 2.033 3 叶间距 Blade spacing (BS)/mm 10.973 1.957 4.574 18.428 13.854 17.83 2.036 6 花瓣面积 Petal area (PA)/mm2 170.033 38.019 87.481 335.481 248.000 22.36 1.993 4 花瓣周长 Petal circumference (PC)/mm 53.311 6.378 37.270 80.520 43.250 11.96 2.032 8 花瓣长 Petal length (PL)/mm 15.853 1.813 10.981 23.158 12.177 11.43 2.035 9 花瓣宽 Petal width (PW)/mm 13.498 1.650 9.204 19.485 10.281 12.23 2.063 0 花瓣长宽比 PL/PW 1.178 0.070 1.011 1.436 0.425 5.94 2.031 8 花斑长 Speckle length (SL)/mm 4.764 0.551 2.814 6.446 3.632 11.56 2.009 5 花斑宽 Speckle width (SW)/mm 3.330 0.635 1.033 4.958 3.925 19.06 2.040 7 花斑百分比 Speckle percentage (SP)/% 7.629 1.940 1.664 14.406 12.742 25.43 2.024 3 叶面积 Leaf area (LA)/mm2 83.117 24.730 30.232 225.038 194.806 29.75 1.984 5 叶周长 Leaf circumference (LC)/mm 42.614 6.497 17.360 68.126 50.766 15.25 2.051 9 叶长 Leaf length (LL)/mm 14.032 1.974 8.505 22.450 13.945 14.07 1.967 8 叶宽 Leaf width (LW)/mm 7.355 1.517 3.150 15.130 11.980 20.62 2.027 1 叶长宽比 LL/LW 1.964 0.375 1.310 4.520 3.210 19.10 2.007 8 萼片长 Sepal length (SPL)/mm 8.945 1.025 6.115 12.222 6.107 11.46 2.070 8 萼片宽 Sepal width (SPW)/mm 2.890 0.273 2.133 3.849 1.716 9.44 2.065 0 均值 Average 15.90 2.030 9 表 3 单叶蔷薇居群间及居群内各表型性状的方差分析
Table 3 Variance analysis of phenotypic traits of Rosa persica population
性状
Trait均方 Mean square F 居群间
Among populations居群内
Within population误差
Error居群间
Among populations居群内
Within populationFD 688.667 24.547 0.323 28.055** 75.055** SD 93.033 5.537 0.067 16.801** 82.131** PDL 606.638 36.990 0.717 16.400** 51.600** BS 176.277 13.374 0.244 13.180** 54.802** PA 124 758.390 3 468.759 43.041 35.966** 80.591** PC 3 168.959 105.846 1.754 29.939** 60.362** PL 285.553 7.807 0.102 35.574** 76.564** PW 234.541 6.536 0.084 35.884** 77.381** PL/PW 0.250 0.017 0.000 15.011** 66.925** SL 22.120 0.834 0.014 26.507** 61.677** SW 21.413 1.372 0.013 15.604** 105.646** SP 256.868 11.099 0.115 23.143** 96.418** LA 30 170.140 2 036.793 48.222 14.813** 42.238** LC 2 062.111 141.556 3.235 14.567** 43.754** LL 293.049 10.163 0.243 28.836** 41.828** LW 141.322 6.925 0.153 20.407** 45.166** LL/LW 14.476 0.256 0.007 56.562** 38.385** SPL 75.519 2.934 0.045 25.736** 65.373** SPW 2.608 0.286 0.004 9.110** 64.896** 注:**表示在0.01水平上显著相关。Note: ** means significant correlation at 0.01 level. 表 4 9个单叶蔷薇天然居群19个性状的多重比较分析
Table 4 Multiple comparison of 19 characters in 9 natural populations of Rosa persica
性状 Trait P1 P2 P3 P4 P5 P6 P7 P8 P9 FD/mm 27.784 ± 1.880e 25.295 ± 2.307f 29.447 ± 2.455c 27.451 ± 1.987e 26.056 ± 1.322f 30.044 ± 2.783b 29.331 ± 1.617c 32.040 ± 2.390a 28.769 ± 2.090d SD/mm 12.283 ± 0.876c 11.195 ± 0.947e 12.377 ± 0.978c 11.735 ± 1.102d 12.338 ± 0.507c 13.126 ± 1.205b 11.928 ± 1.079d 13.526 ± 1.309a 13.237 ± 1.049b PDL/mm 13.121 ± 2.471e 14.900 ± 2.457c 14.602 ± 3.049cd 14.465 ± 3.595cd 11.849 ± 1.215f 13.900 ± 1.916d 17.658 ± 4.098a 15.982 ± 3.572b 10.384 ± 2.156g BS/mm 8.740 ± 1.743f 11.697 ± 1.534b 10.873 ± 2.328d 12.951 ± 2.173a 10.741 ± 1.590d 11.356 ± 1.293bc 10.987 ± 1.233cd 11.445 ± 1.750bc 10.140 ± 1.292e PA/mm2 139.333 ± 26.585e 143.181 ± 22.441de 182.602 ± 23.061b 169.753 ± 22.245c 148.307 ± 10.604d 209.542 ± 36.133a 187.889 ± 25.492b 184.691 ± 30.569b 132.393 ± 19.516f PC/mm 49.171 ± 5.763e 49.549 ± 4.796e 54.380 ± 3.503c 51.838 ± 3.831d 49.638 ± 1.950e 60.146 ± 5.777a 57.058 ± 4.167b 55.025 ± 5.302c 47.395 ± 3.536f PL/mm 14.286 ± 1.524e 14.389 ± 1.132e 16.060 ± 1.079c 15.871 ± 1.156c 14.794 ± 0.602d 17.869 ± 1.560a 16.677 ± 1.201b 16.589 ± 1.289b 14.478 ± 1.127e PW/mm 12.295 ± 1.120e 12.474 ± 1.043e 14.393 ± 0.962b 13.387 ± 0.723d 12.552 ± 0.453e 14.885 ± 1.396a 14.916 ± 1.447a 14.026 ± 1.465c 11.577 ± 0.891f PL/PW 1.162 ± 0.064d 1.155 ± 0.040d 1.117 ± 0.046e 1.185 ± 0.050c 1.179 ± 0.043c 1.203 ± 0.070b 1.122 ± 0.059e 1.188 ± 0.066c 1.252 ± 0.062a SL/mm 4.512 ± 0.375e 4.375 ± 0.509f 4.742 ± 0.461d 4.145 ± 0.307g 4.991 ± 0.316c 5.333 ± 0.486a 5.151 ± 0.336b 4.657 ± 0.454d 4.626 ± 0.270d SW/mm 3.450 ± 0.539b 2.860 ± 0.460d 2.728 ± 0.724e 2.903 ± 0.490d 3.162 ± 0.256c 3.603 ± 0.658a 3.712 ± 0.267a 3.642 ± 0.484a 3.559 ± 0.432ab SP/% 8.907 ± 1.160b 7.076 ± 1.624d 5.721 ± 1.784e 5.678 ± 0.776e 8.361 ± 0.569c 7.449 ± 2.172d 8.116 ± 0.910c 7.434 ± 1.450d 9.857 ± 1.122a LA/mm2 70.374 ± 15.212ef 86.148 ± 23.194c 95.951 ± 19.050b 106.542 ± 11.769a 88.213 ± 34.979c 65.898 ± 13.156f 78.376 ± 19.800d 97.739 ± 26.926b 73.347 ± 19.026e LC/mm 39.236 ± 5.074e 41.051 ± 5.114d 44.370 ± 5.260c 47.221 ± 5.977b 39.955 ± 7.216e 39.261 ± 4.115e 42.434 ± 5.542d 49.011 ± 6.348a 41.681 ± 5.566d LL/mm 13.072 ± 1.123d 13.476 ± 1.356cd 13.792 ± 1.400c 15.413 ± 1.229b 13.227 ± 1.951de 13.677 ± 1.175c 13.190 ± 0.834de 16.836 ± 2.114a 12.817 ± 1.495e LW/mm 6.736 ± 1.007d 7.935 ± 1.434b 8.843 ± 1.309a 8.678 ± 0.729a 8.136 ± 1.803b 6.051 ± 0.862e 7.359 ± 1.405c 7.071 ± 1.257cd 7.052 ± 1.133cd LL/LW 1.966 ± 0.202c 1.736 ± 0.264e 1.577 ± 0.154g 1.780 ± 0.121de 1.652 ± 0.155f 2.290 ± 0.261b 1.837 ± 0.251d 2.422 ± 0.338a 1.837 ± 0.170d SPL/mm 8.478 ± 0.792d 8.342 ± 0.644d 9.132 ± 0.919b 9.868 ± 0.811a 8.858 ± 0.758c 9.071 ± 0.779bc 9.043 ± 0.675bc 9.916 ± 0.854a 7.700 ± 0.687e SPW/mm 3.041 ± 0.293a 2.978 ± 0.251b 2.829 ± 0.268d 2.823 ± 0.209d 2.901 ± 0.220c 2.840 ± 0.201d 3.062 ± 0.252a 2.960 ± 0.295b 2.623 ± 0.159e 注:表中数据为平均值 ± 标准差,不同字母表示同一性状在不同居群间在0.05水平上存在显著差异。Notes: data in the table are mean ± standard deviation, and different letters indicate significant differences at 0.05 level between different populations for the same trait. 表 5 9个单叶蔷薇居群的19个性状的表型变异系数
Table 5 Phenotypic variation coefficients of 19 characters in 9 populations of Rosa persica
% 性状 Trait P1 P2 P3 P4 P5 P6 P7 P8 P9 FD 6.76 9.12 8.34 7.24 5.07 9.26 5.51 7.46 7.27 SD 7.14 8.46 7.90 9.39 4.11 9.18 9.04 9.68 7.93 PDL 18.84 16.49 20.88 24.85 10.25 13.78 23.21 22.35 20.76 BS 19.95 13.12 21.41 16.78 14.80 11.39 11.22 15.29 12.74 PA 19.08 15.67 12.63 13.10 7.15 17.24 13.57 16.55 14.74 PC 11.72 9.68 6.44 7.35 3.93 9.61 7.30 9.63 7.46 PL 10.67 7.87 6.72 7.28 4.07 8.73 7.20 7.77 7.78 PW 9.11 8.36 6.68 5.40 3.61 9.38 9.70 10.45 7.69 PL/PW 5.50 3.50 4.13 4.25 3.64 5.85 5.30 5.53 4.93 SL 8.32 11.64 9.73 7.42 6.33 9.11 6.53 9.75 5.84 SW 15.62 16.07 26.52 16.89 8.11 18.26 7.20 13.28 12.14 SP 13.02 22.95 31.18 13.67 6.80 29.15 11.21 19.50 11.38 LA 21.62 26.92 19.85 11.05 39.65 19.96 25.26 27.55 25.94 LC 12.93 12.46 11.86 12.66 18.06 10.48 13.06 12.95 13.35 LL 8.59 10.07 10.15 7.97 14.75 8.59 6.32 12.55 11.66 LW 14.95 18.07 12.79 8.40 22.16 14.25 19.09 17.77 16.07 LL/LW 10.26 15.19 9.76 6.82 9.36 11.40 13.67 13.94 9.26 SPL 9.35 7.72 10.06 8.21 8.56 8.58 7.47 8.61 8.92 SPW 9.62 8.44 9.47 7.41 7.58 7.09 8.24 9.96 6.05 均值 Average 12.27 12.73 12.97 10.32 10.42 12.17 11.06 13.19 11.15 表 6 9个单叶蔷薇居群表型性状的香农多样性指数
Table 6 Shannon-Wiener indexes of phenotypic traits of 9 Rosa persica populations
性状 Trait P1 P2 P3 P4 P5 P6 P7 P8 P9 FD 1.526 1.655 1.836 1.566 1.063 1.880 1.304 1.686 1.711 SD 1.691 1.613 1.702 1.930 1.030 1.869 1.678 1.919 1.714 PDL 1.676 1.727 1.850 1.818 0.999 1.482 1.775 1.952 1.523 BS 1.804 1.768 2.035 1.891 1.639 1.655 1.489 1.883 1.409 PA 1.640 1.565 1.527 1.400 1.010 1.541 1.373 1.788 1.388 PC 1.890 1.801 1.438 1.431 0.949 1.649 1.238 1.809 1.459 PL 1.812 1.570 1.523 1.626 1.167 1.615 1.432 1.702 1.639 PW 1.619 1.607 1.457 1.161 0.746 1.700 1.608 1.804 1.466 PL/PW 1.729 1.536 1.571 1.624 1.333 1.962 1.775 1.915 1.841 SL 1.528 1.600 1.593 1.194 1.441 1.819 1.470 1.818 1.331 SW 1.794 1.696 1.821 1.584 1.094 2.001 1.206 1.780 1.597 SP 1.362 1.850 1.843 1.063 0.949 1.858 1.327 1.726 1.186 LA 1.460 1.890 1.727 1.345 1.583 1.420 1.639 2.012 1.738 LC 1.766 1.607 1.680 1.373 1.426 1.627 1.808 1.894 1.897 LL 1.514 1.543 1.458 1.331 1.330 1.626 0.975 1.761 1.571 LW 1.626 1.841 1.837 1.375 1.739 1.471 1.825 1.766 1.662 LL/LW 1.254 1.453 1.186 1.013 1.356 1.698 1.574 1.620 1.363 SPL 1.742 1.603 1.729 1.639 1.622 1.741 1.670 1.769 1.542 SPW 1.916 1.783 1.957 1.751 1.735 1.812 1.634 2.074 1.415 均值 Average 1.650 1.669 1.672 1.480 1.274 1.707 1.516 1.825 1.550 表 7 单叶蔷薇表型性状的居群间与居群内表型分化系数
Table 7 Differentiation coefficients of phenotypic traits among and within Rosa persica populations
性状 Trait 方差分量
Variance component方差分量百分比
Percentage of variance component/%表型分化系数
Differentiation coefficient
of phenotypic trait/%居群间
Among populations居群内
Within population误差
Error居群间
Among populations居群内
Within populationFD 4.159 4.844 0.323 44.60 51.94 46.20 SD 0.548 1.094 0.067 32.07 64.01 33.37 PDL 4.309 7.256 0.717 35.08 59.08 37.26 BS 1.207 2.626 0.244 29.61 64.41 31.49 PA 693.506 685.026 43.041 48.78 48.19 50.31 PC 17.369 20.814 1.754 43.49 52.12 45.49 PL 1.542 1.541 0.102 48.41 48.38 50.02 PW 1.457 1.290 0.084 51.47 45.57 53.04 PL/PW 0.002 0.003 0.000 40.00 60.00 40.00 SL 0.136 0.164 0.014 43.31 52.23 45.33 SW 0.136 0.272 0.013 32.30 64.61 33.33 SP 1.810 2.197 0.115 43.91 53.30 45.17 LA 175.987 397.668 48.222 28.30 63.95 30.68 LC 11.455 27.657 3.235 27.05 65.31 29.29 LL 1.687 1.984 0.243 43.10 50.69 45.95 LW 0.817 1.354 0.153 35.15 58.26 37.63 LL/LW 0.079 0.050 0.007 58.09 36.76 61.24 SPL 0.479 0.578 0.045 43.47 52.45 45.32 SPW 0.016 0.056 0.004 21.05 73.68 22.22 均值 Average 39.43 56.05 41.23 表 8 单叶蔷薇表型性状的主成分分析
Table 8 Principal component analysis of phenotypic traits of Rosa persica
项目 Item PC1 PC2 PC3 PC4 PC5 特征值 Eigenvalue 6.550 3.827 2.303 1.557 1.052 贡献率 Contribution rate/% 34.471 20.142 12.122 8.192 5.535 累计贡献率 Cumulative contribution rate/% 34.471 54.613 66.735 74.928 80.463 FD 0.722 0.292 0.179 0.137 −0.142 SD 0.534 0.423 0.535 −0.041 −0.142 PDL 0.552 −0.198 0.006 −0.107 0.390 BS 0.439 −0.370 0.068 0.069 −0.128 PA 0.896 0.259 −0.298 −0.048 −0.145 PC 0.846 0.283 −0.314 −0.082 −0.126 PL 0.869 0.307 −0.214 0.091 −0.213 PW 0.865 0.194 −0.360 −0.201 −0.077 PL/PW −0.111 0.200 0.343 0.595 0.278 SL 0.491 0.520 0.213 −0.413 −0.012 SW 0.399 0.494 0.650 −0.175 0.044 SP −0.290 0.398 0.795 −0.248 0.136 LA 0.458 −0.785 0.315 0.000 −0.124 LC 0.543 −0.650 0.366 0.185 0.023 LL 0.643 −0.464 0.317 0.408 0.139 LW 0.249 −0.839 0.206 −0.305 −0.270 LL/LW 0.211 0.565 −0.011 0.633 0.379 SPL 0.720 −0.285 −0.152 0.204 0.282 SPW 0.429 −0.190 0.003 −0.329 0.571 -
[1] 张晓龙, 邓童, 罗乐, 等. 单叶蔷薇潜在适宜区预测及其渐危机制研究[J]. 西北植物学报, 2021, 41(9): 1570−1582. Zhang X L, Deng T, Luo L, et al. Prediction of potential suitable area of Rosa persica and study on its vulnerable mechanism[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(9): 1570−1582.
[2] 中国科学院中国植物志委员会. 中国植物志[M]. 37卷. 北京: 科学出版社, 1985: 370−371. The Flora of China Committee in Chinese Academy of Sciences. Flora of China[M]. Vol. 37. Beijing: Science Press, 1985: 370−371.
[3] 国家林业和草原局. 国家重点保护野生动物名录[M]. 北京:林业出版社,2021. National Forestry and Grassland Administration. List of wildlife under state key protection[M]. Beijing: China Forestry Publishing House, 2021.
[4] Harkness J. Breeding with Hulthemia persica ( Rosa persica)[J]. The Australian Rose Annual, 1977, 62: 123−130.
[5] 刘鑫颖, 冯策婷, 杨晨,等. 带花斑现代月季育种研究进展[J]. 江苏农业学报, 2022, 38(5): 1432−1440. Liu X Y, Feng C T, Yang C, et al. Research progress on breeding of modern rose cultivars with floral blotches[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(5): 1432−1440.
[6] Basaki T, Mardil M, Kermani M J, et al. Assessing Rosa persica genetic diversity using amplified fragment length polymorphisms analysis[J]. Scientia Horticulturae, 2009, 120(4): 538−543. doi: 10.1016/j.scienta.2008.12.001
[7] Samiei L, Naderi R, Khalighi A, et al. Genetic diversity and genetic similarities between Iranian rose species[J]. Journal of Horticultural Science & Biotechnology, 2010, 85(3): 231−237.
[8] Amini M, Rineh M K, Yazdani M. Study of the chemical compositions of Iranian rose flower essence oil ( Rosa persica)[J]. Bulgarian Chemical Communications, 2016, 48: 27−29.
[9] Sadraei H, Asghari G, Jalali F. Assessment of hydroalcoholic and hexane extracts of Rosa persica Mich. flower on rat ileum spasm[J]. Research in Pharmaceutical Sciences, 2016, 11(2): 160−167.
[10] Moradkhani S, Rezaei-Dehghanzadeh T, Nili-Ahmadabadi A. Rosa persica hydroalcoholic extract improves cadmium-hepatotoxicity by modulating oxidative damage and tumor necrosis factor-alpha status[J]. Environmental Science and Pollution Research, 2020, 27(25): 31259−31268. doi: 10.1007/s11356-020-09450-4
[11] 贺海洋. 单叶蔷薇花形态建成与繁殖生物学研究[D]. 北京: 中国农业大学, 2005. He H Y. Reproductive biology and flora morphogenesis of Rosa persica[D]. Beijing: China Agricultural University, 2005.
[12] 贺海洋, 朱金启, 高琪洁, 等. 单叶蔷薇的花芽形态分化[J]. 园艺学报, 2005, 32(2): 331−334. He H Y, Zhu J Q, Gao Q J, et al. Morphological differentiation of the flower bud of Rosa persica[J]. Acta Horticulturae Sinica, 2005, 32(2): 331−334.
[13] 朱金启. 单叶蔷薇生殖生物学及其繁殖方法研究[D]. 乌鲁木齐: 新疆农业大学, 2003. Zhu J Q. Studies on reproductive biology and the propagating methods of Rosa persica[D]. Urumqi: Xinjiang Agricultural University, 2003.
[14] 惠俊爱, 张霞, 王绍明. 新疆野生单叶蔷薇的显微结构特征[J]. 江苏农业科学, 2014, 42(3): 126−127. Hui J A, Zhang X, Wang S M. Microstructure of wild Rosa persica in Xinjiang[J]. Jiangsu Agricultural Sciences, 2014, 42(3): 126−127.
[15] 惠俊爱, 张霞, 王绍明. 新疆野生单叶蔷薇的染色体核型分析[J]. 山东林业科技, 2013, 43(4): 58−60. Hui J A, Zhang X, Wang S M. Karyotype analysis of Xinjiang wild Rosa persica[J]. Journal of Shandong Forestry Science and Technology, 2013, 43(4): 58−60.
[16] 罗乐, 张启翔, 于超, 等. 29个蔷薇属植物的孢粉学研究[J]. 西北植物学报, 2017, 37(5): 885−894. Luo L, Zhang Q X, Yu C, et al. Pollen morphology analysis of 29 Rosa germplasm[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(5): 885−894.
[17] 张晓龙, 邓童, 刘学森, 等 . 单叶蔷薇幼苗根系对不同潜水埋深的适应机制[J]. 生态学报, 2022, 42(15): 6137−6149. Zhang X L, Deng T, Liu X S, et al. Adaptability mechanism of Rosa persica seedlings root in different groundwater levels[J]. Acta Ecologica Sinica, 2022, 42(15): 6137−6149.
[18] 欧哲, 杨宇, 冯策婷, 等. 单叶蔷薇远缘杂交中花粉管生长的荧光显微观察[J]. 东北农业大学学报, 2022, 53(10): 18−26. Ou Z, Yang Y, Feng C T, et al. Fluorescent microscope observation on growth of pollen tube on distant hybridization in Rosa persica[J]. Journal of Northeast Agricultural University, 2022, 53(10): 18−26.
[19] 李世超, 杨树华, 刘海星, 等. 新疆天山地区弯刺蔷薇居群表型多样性的研究[J]. 园艺学报, 2014, 41(8): 1723−1730. Li S C, Yang S H, Liu H X, et al. Phenotypic diversity of Rosa beggeriana populations in Tianshan Mountains of Xinjiang[J]. Acta Horticulturae Sinica, 2014, 41(8): 1723−1730.
[20] 向贵生, 王其刚, 蹇洪英, 等. 云南川滇蔷薇天然居群表型多样性分析[J]. 云南大学学报(自然科学版), 2018, 40(4): 786−794. Xiang G S, Wang Q G, Jian H Y, et al. Phenotypic diversity of natural populations of Rosa soulieana in Yunnan[J]. Journal of Yunnan University (Natural Sciences Edition), 2018, 40(4): 786−794.
[21] 付荷玲, 王琛瑶, 张晓龙, 等. 梁王山大花香水月季居群表型多样性分析[J]. 西北植物学报, 2021, 41(5): 854−862. doi: 10.7606/j.issn.1000-4025.2021.05.0854 Fu H L, Wang C Y, Zhang X L, et al. Phenotypic diversity of Rosa odorata var. gigantea populations in Liangwang Mountains[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(5): 854−862. doi: 10.7606/j.issn.1000-4025.2021.05.0854
[22] 国家林业局. 植物新品种特异性、一致性、稳定性测试指南 蔷薇属: LY/T 1868—2010[S]. 北京: 中国标准出版社, 2010. State Forestry Administration. Guidelines for testing specificity, consistency and stability of new plant varieties. Rosa: LY/T 1868−2010 [S]. Beijing: Standards Press of China, 2010.
[23] 李斌, 顾万春, 卢宝明. 白皮松天然群体种实性状表型多样性研究[J]. 生物多样性, 2002, 10(2): 181−188. Li B, Gu W C, Lu B M. A study on phenotypic diversity of seeds and cones characteristics in Pinus bungeana[J]. Biodiversity Science, 2002, 10(2): 181−188.
[24] Zhao X, Li Y, Mi Z, et al. Comparative analysis of growth and photosynthetic characteristics of ( Populus simonii × P. nigra) × ( P. nigra × P. simonii) hybrid clones of different ploidides[J]. PLoS One, 2015, 10(4): e0119259. doi: 10.1371/journal.pone.0119259
[25] 秦之旷, 刘娜, 周霞, 等. 中亚热带赤皮青冈天然种群表型多样性分析[J]. 广西植物, 2023, 43(9): 1622−1635. Qin Z K, Liu N, Zhou X, et al. Phenotypic diversity of Quercus gilva natural populations in middle subtropical China[J]. Guihaia, 2023, 43(9): 1622−1635.
[26] 钱迎倩, 马克平. 生物多样性研究的原理与方法[M]. 北京: 中国科学技术出版社, 1994: 123−140. Qian Y Q, Ma K P. Principles and methods of biodiversity research[M]. Beijing: China Science and Technology Press, 1994: 123−140.
[27] 周宁宁, 唐开学, 邱显钦,等. 云南峨眉蔷薇天然群体的表型多样性[J]. 西南农业学报, 2009, 22(6): 1732−1736. Zhou N N, Tang K X, Qiu X Q, et al. Phenotypic diversity of natural populations in Rosa omeiensis Rolfe in Yunnan Province[J]. Southwest China Journal of Agricultural Sciences, 2009, 22(6): 1732−1736.
[28] 杨树华, 郭宁, 葛维亚,等. 新疆东天山地区宽刺蔷薇居群表型多样性分析[J]. 植物遗传资源学报, 2013, 14(3): 455−461. Yang S H, Guo N, Ge W Y, et al. Phenotypic diversity of Rosa platyacantha populations in eastern Tianshan Mountains of Xinjiang[J]. Journal of Plant Genetic Resources, 2013, 14(3): 455−461.
[29] 郭宁, 杨树华, 葛维亚,等. 新疆天山山脉地区疏花蔷薇天然居群表型多样性分析[J]. 园艺学报, 2011, 38(3): 495−502. Guo N, Yang S H, Ge W Y, et al. Phenotypic diversity of natural polulations of Rosa laxa in Tianshan Mountains of Xinjiang[J]. Acta Horticulturae Sinica, 2011, 38(3): 495−502.
[30] 李树发, 李纯佳, 蹇洪英,等. 云南香格里拉特有易危植物中甸刺玫的表型多样性[J]. 园艺学报, 2013, 40(5): 924−932. Li S F, Li C J, Jian H Y, et al. Studies on phenotypic diversity of vulnerable Rosa praelucens endemic to Shangrila, Yunnan[J]. Acta Horticulturae Sinica, 2013, 40(5): 924−932.
[31] 童冉. 野生玫瑰表型多样性研究[D]. 泰安: 山东农业大学, 2017. Tong R. The study on phenotypic diversity in Rosa rugosa[D]. Tai’an: Shandong Agricultural University, 2017.
[32] 徐豪, 刘明国, 董胜君,等. 东北杏种质资源多样性及其地理变化[J]. 植物生态学报, 2019, 43(7): 585−600. doi: 10.17521/cjpe.2019.0060 Xu H, Liu M G, Dong S J, et al. Diversity and geographical variations of germplasm resources of Armeniaca mandshurica[J]. Chinese Journal of Plant Ecology, 2019, 43(7): 585−600. doi: 10.17521/cjpe.2019.0060
[33] 邓童, 张晓龙, 刘学森,等. 单叶蔷薇居群叶功能性状变异特征分析[J/OL]. 分子植物育种, 1−26[2023−12−19]. http://kns.cnki.net/kcms/detail/46.1068.S.20220304.1000.002.html. Deng T, Zhang X L, Liu X S, et al. Variation characteristics of leaf functional trait in Rosa persica populations[J/OL]. Molecular Plant Breeding, 1−26[2023−12−19]. http://kns.cnki.net/kcms/detail/46.1068.S.20220304.1000.002.html.
[34] 杨维泽, 金航, 李晚谊,等. 濒危植物云南黄连不同居群表型多样性研究[J]. 云南大学学报(自然科学版), 2013, 35(5): 719−726. Yang W Z, Jin H, Li W Y, et al. Phenotypic diversity of different populations of the endangered plant Coptis teeta[J]. Journal of Yunnan University, 2013, 35(5): 719−726.
[35] 李洪果, 陈达镇, 许靖诗,等. 濒危植物格木天然种群的表型多样性及变异[J]. 林业科学, 2019, 55(4): 69−83. Li H G, Chen D Z, Xu J S, et al. Phenotypic diversity and variation in natural populations of Erythrophleum fordii, an endangered plant species[J]. Scientia Silvae Sinicae, 2019, 55(4): 69−83.
-
期刊类型引用(3)
1. 管奥,毋玉婷,陈宇,孙扬,祁鹏志,郭宝英. 曼氏无针乌贼转录组微卫星特征分析. 渔业科学进展. 2018(03): 144-151 . 百度学术
2. 杜改改,孙鹏,索玉静,韩卫娟,刁松锋,傅建敏,李芳东. 基于柿雌雄花芽转录组测序的SSR和SNP多态性分析. 中国农业大学学报. 2017(10): 45-55 . 百度学术
3. 梅利那,范付华,崔博文,文晓鹏. 基于马尾松转录组的SSR分子标记开发及种质鉴定. 农业生物技术学报. 2017(06): 991-1002 . 百度学术
其他类型引用(5)