Effects of seasonal nitrogen addition on soil net nitrogen mineralization in typical temperate grasslands of Inner Mongolia, northern China
-
摘要:目的
探究季节性氮添加对温带典型草原土壤无机氮库及氮矿化速率的影响,揭示氮矿化月动态、年际变化及环境驱动机制,为理解土壤氮循环与氮沉降的关系提供理论支持。
方法以内蒙古温带典型草原为研究对象,设置不同季节(秋季、冬季和生长季)氮添加试验,采用顶盖埋管法测定无机氮库和氮矿化速率,探究不同季节施氮对净氮矿化潜力的影响。
结果与对照相比,氮添加显著增加了土壤无机氮库;但随着试验时间的推移,无机氮库呈下降趋势。与秋、冬季氮添加相比,生长季氮添加显著增加了无机氮库,增加量为226.5%。铵态氮、硝态氮和无机氮对不同季节氮添加的响应表现出明显的季节变化规律。同时,不同季节氮添加也显著提高了氮矿化速率。在生长季末期,净铵化速率在生长季氮添加处理中呈现先下降后上升的趋势。生长季氮添加显著提高了生长季末期的净硝化速率和净氮矿化速率。氮矿化速率对不同季节氮添加表现出显著的月动态和年际变化。矿化速率对不同季节氮添加响应差异主要受到环境因素的影响。本研究发现温度对净硝化速率和净氮矿化速率具有负效应,而降水则表现出正效应。不同季节氮添加是导致氮矿化速率差异性规律的主要因素。
结论不同季节氮添加显著改变了内蒙古典型草原的无机氮库和氮矿化速率,并呈现一定的季节和年际变化规律。研究为深入理解土壤氮转化过程对大气氮沉降的响应规律和机制提供理论支撑,并有助于全面评估大气氮沉降的季节效应与土壤氮循环的关系。
Abstract:ObjectiveThis study aimed to explore the effects of seasonal nitrogen (N) addition on soil inorganic N pool and N mineralization rates in temperate steppe grasslands. It focused on revealing monthly dynamics, interannual variations, and environmental driving mechanisms to support understanding soil N cycling and its relationship with atmospheric N deposition.
MethodA field experiment was established with N addition applied in different seasons: autumn, winter, and the growing season. Inorganic N content and N mineralization rates were measured by top-cover PVC cylinders method to explore the effects of seasonal N addition on net N mineralization potential.
ResultCompared with control, N addition significantly increased inorganic N pools but declined over time. Compared with N addition in autumn and winter, N addition in growing season significantly increased inorganic N by 226.5%. The response of ammonium N, nitrate N and inorganic N to N addition in different seasons showed obvious seasonal pattern. Meanwhile, N addition in different seasons significantly increased the rate of N mineralization. At the end of growing season, net ammonification rate showed a trend of decreasing first and then increasing after N addition in growing season. N addition in growing season significantly increased net nitrification rate and net N mineralization rate at the end of growing season. N mineralization rate showed significantly monthly and interannual changes to N addition in different seasons. The response of mineralization rate to N addition in different seasons was mainly influenced by environmental factors. It was found that temperature had a negative effect on nitrification rate and net N mineralization rate, while precipitation had a positive effect. N addition in different seasons was main factor causing the difference of N mineralization rate.
ConclusionSeasonal N addition significantly alter soil inorganic N pools and mineralization rates in temperate grasslands, showing notable seasonal and interannual patterns with experimental time. In conclusion, study of the effects of different seasonal N addition on soil N mineralization provides theoretical support for in-depth understanding of response rule and mechanism of soil N conversion process to atmospheric N deposition. It also helps to comprehensively evaluate the relationship between seasonal effects of atmospheric N deposition and soil N cycle.
-
氮是地球上生物体的基本元素,也是陆地生态系统限制植物生长的必要元素[1]。随着气候变化,植物可利用的氮正在减少,因此氮对控制陆地生态系统初级生产力起着关键作用[2]。土壤氮循环过程主要包括土壤氮的矿化和固定,硝化和反硝化作用等。其中,土壤氮矿化指的是土壤氮库中的有机氮在微生物作用下转化为植物和微生物可直接吸收的无机氮[3]。土壤氮矿化速率及其潜力直接影响土壤氮的有效性和供氮能力,对维持草地生态系统组成、结构与功能十分重要[4−5]。草地土壤微生物介导的氮转化过程不仅受到土壤物理和化学等非生物因子的影响,同时还受到生物因子的共同调控。土壤氮含量、形态及不同形态比例是影响土壤氮转化过程的主要限制因子,其中总氮矿化速率与土壤全氮含量呈正相关,而与土壤碳氮比呈负相关 [6−8]。土壤温度和湿度是影响氮矿化的两个重要因素,氮矿化量随着温度和湿度的增加而呈上升趋势[9]。土壤微生物对土壤氮矿化和固持均发挥了重要作用,进而影响土壤氮的可利用性和植物生长。研究表明,土壤氮矿化和固定与土壤微生物生物量显著相关,同时,微生物对氮矿化和固定受到土壤pH、土壤质地、有机质含量和质量等因素的调控[10−11]。因此,微生物是影响土壤氮转化的重要生物因素。
自20世纪中叶以来,人类活动和气候变化导致过量大气氮沉降显著改变了陆地生态系统生物地球化学循环[12−13]。大气氮沉降通过影响土壤氮矿化来改变土壤氮的有效性。通常,氮沉降一方面通过增加植物叶片和凋落物氮含量,促进凋落物分解[14];另一方面,氮沉降可能降低微生物活性[15],抑制蛋白质的解聚合作用[16],进而减弱氮矿化作用。以往大量研究主要从氮沉降对土壤酸碱性[17]、土壤微生物生物量[18]、土壤氮降解酶[19]以及与土壤氮转化功能基因[20]的关系角度,探究其对土壤氮有效性及其转化过程背后复杂的生态学机制。然而,大部分研究集中在生长季节进行氮添加处理,这并不能完全模拟真实大气氮沉降过程。少数不同季节施氮处理试验表明,冬季和春季施氮能够促进植物能吸收更多氮[21],且春季相比秋季施氮能减少土壤氮损失[22]。但不同季节氮添加对土壤氮矿化的影响仍不明确,亟需更多实证研究探究土壤氮矿化对季节性施氮的响应及其调控机制。
草原是最重要的陆地生态系统之一,全球草原总面积达5.25 × 109 hm2,占陆地总面积的40.5%[23]。温带草原是我国北方重要的生态安全屏障,其中内蒙古温带典型草原是我国面积最大的温带草原[24]。然而,多年来由于盲目开垦、过度放牧等不合理利用,内蒙古草原生态系统面临植物生产力、生物多样性下降和土壤养分元素亏缺等严重生态问题。尽管农业中氮肥和粪肥的使用量逐年增加,以提高食物和饲料供应,但也造成了氮污染问题[25]。相比之下,草原施肥仍处于起步阶段,大规模天然草原施肥尚未普及。由于生态系统类型、施氮方式和试验条件的差异,氮沉降对草地生态系统土壤氮矿化的影响可能有所不同。为解决这些问题,本研究选择内蒙古温带典型草原为研究对象,在不同季节(秋、冬、生长季)设置氮添加野外控制试验,通过测定净氮矿化速率、温度、水分等土壤常规理化指标,拟解决以下科学问题:(1) 不同季节氮添加如何影响土壤无机氮累计矿化量、净氮矿化潜力和净硝化潜力?(2) 土壤氮矿化对季节性氮添加响应的影响因素和驱动机制是什么?
1. 研究区概况与研究方法
1.1 研究区概况
研究样地位于内蒙古锡林浩特草原生态系统定位研究站(43°13′12″ N,116°13′48″ E),海拔1 255 ~ 1 260 m,年均气温1.1 ℃,年均降水量343.5 mm,土壤为简育钙积土和旱成土,植物群落以大针茅(Stipa grandis)、羊草(Leymus chinensis)、西伯利亚羽茅(Achnatherum sibiricum)和冰草(Agropyron cristatum)为主要优势种。实验地在正式试验开始前未施化肥,且当地大气氮沉降量背景值低于1.0 g/(m2·a)(以N计,下同)[26]。
1.2 试验设计与采样
2014年7月,在锡林流域中部选择植被分布均匀的草地,采用随机区组设计设置不同季节氮添加试验。设计3个不同季节氮添加处理分别为秋季(10月下旬)、冬季(1月中旬)和生长季节(5月下旬),以及对照处理。每个处理8个重复,共计32个小区,每个小区面积为4 m × 4 m,小区之间设置1 m宽缓冲带。每种处理每年添加1次固体硝酸铵作为氮肥,添加的纯氮量为10 g/(m2·a),添加方式是将硝酸铵和细沙混合均匀撒施。采用顶盖埋管法[27]测定土壤净氮矿化速率。试验于2020年7月第一次取样,2021年开始(5—10月),每月取样测定一次。在每个小区内埋入3个长15 cm、内径为5 cm的PVC管,深度为土壤表层10 cm。为防止降水造成的淋溶损失,管顶部用透气不透水的滤膜封住。原位培养30 d后取出管内的土壤进行铵态氮和硝态氮的测定。埋管前,在距PVC管20 cm处用直径5 cm的土钻取0 ~ 10 cm的土壤,用于测定初始无机氮含量。根据培养前后无机氮含量差值除以培养时间,计算净氮矿化速率。计算公式如下
Δt=t1−t0 ΔCa=Cat1−Cat0 ΔCb=Cbt1−Cbt0 Rmin=ΔCa+ΔCbΔt Rnit=ΔCbΔt Ramm=ΔCaΔt 式中:t0为野外培养开始时间,t1为野外培养结束时间,Δt 为培养前后时间间隔,ΔCa为培养后净铵态氮增加量,ΔCb为培养后净硝态氮增加量,Ca为铵态氮 (mg/kg),Cb为硝态氮(mg/kg),Rmin、Rnit、Ramm分别表示净氮矿化速率 (mg/(kg·d))、净硝化速率 (mg/(kg·d))、净铵化速率 (mg/(kg·d))。
1.3 土壤和植物指标测定
土壤铵态氮和硝态氮用0.5 mol/L氯化钾浸提后,浸提液采用全自动微量流动注射仪(FLASTAR5000,FOSS,Sweden)测定。土壤温度用数字显示温度计测定,土壤水分采用称重法测定。
1.4 数据统计
采用重复测量方差分析(ANCOVA)方法,分析不同季节氮添加对土壤无机氮含量和净氮矿化速率的影响。并采用多元回归模型评价了环境因子和土壤基本理化指标对土壤净氮矿化潜力的影响。所有的统计分析都在R语言软件完成(R Development Core Team,2016)。
2. 结果与分析
2.1 不同季节氮添加对土壤铵态氮、硝态氮和无机氮含量的影响
土壤铵态氮、硝态氮和无机氮含量随不同季节氮添加发生了显著变化(图1)。与对照相比,秋季、冬季和生长季氮添加显著增加了硝态氮和无机氮含量,冬季和生长季氮添加显著提高了铵态氮含量(P < 0.05)。其中,生长季氮添加使铵态氮、硝态氮和无机氮含量增加最多(P < 0.01),分别增加了226.5%、131.8%和172.5%。土壤铵态氮、硝态氮和无机氮对不同季节施氮的响应都表现出明显的月动态变化特征(图1)。2020年7月,生长季氮添加导致铵态氮、硝态氮和无机氮达到最大。次年,不同施氮处理下,铵态氮、硝态氮和无机氮在5、6月份最高,之后呈下降趋势。
图 1 不同季节氮添加土壤铵态氮、硝态氮和无机氮季节变化的影响不同小写字母表示不同处理间差异显著(P < 0.05),不同大写字母表示不同时间差异显著(P < 0.05)。下同。Different lowercase letters indicate significant difference at P < 0.05 level among varied treatments. Different uppercase letters indicate significant difference at P < 0.05 level among varied times. The same below.Figure 1. Effects of seasonal nitrogen (N) addition on seasonal variations of soil NH+4-N, NO−3-N, and inorganic N concentrations2.2 不同季节氮添加处理下土壤净氮矿化速率变化特征
通过重复测量方差分析,发现不同季节氮添加处理对净氮矿化速率、净硝化速率、净铵化速率的影响不显著(P > 0.05)。然而,采样时间对氮矿化速率、净硝化速率、净铵化速率的影响显著,同时采样时间和不同季节氮添加处理的交互作用对净氮矿化速率、净硝化速率、净铵化速率也具有显著影响(图2)。
不同季节氮添加处理下净铵化速率的月动态变化基本一致,呈现先增加(5—7月)后减少(7—9月)再增加(9—10月)的波浪形趋势(图2a)。其中,净铵化速率在7月份最高,5月和10月份差异显著,而其他月份差异则不显著。净硝化速率在5—6月、7—8月和8—9月最大,这3个月之间差异并不显著,而与6—7月和9—10月具有显著差异(图2b)。2021年净氮矿化速率显著高于2020年,表现出显著的年际差异。净氮矿化速率对不同季节施氮的响应并没有表现出显著的月动态差异。2021年净矿化速率均高于2020年(图2c)。
2.3 土壤氮矿化速率对不同季节氮添加响应的影响因素
土壤氮矿化速率通常会受到环境因素的影响,多元统计分析结果表明(图3),土壤水分和净铵化速率显著负相关(P < 0.05)。温度和降水与净硝化速率分别呈显著负相关和正相关(P < 0.001),且前者与净硝化速率的相关性更大。与净硝化速率相关性基本一致,温度和降水对净氮矿化速率分别表现出显著的负效应(P < 0.01)和正效应(P
< 0.05)。 图 3 多元回归模型中的预测变量对净铵化速率(a)、净硝化速率(b)和净氮矿化速率(c)的影响效应量为平均值 ± 标准误。*表示在P < 0.05水平上显著相关;**在P < 0.01水平上显著相关;***在P < 0.001水平上显著相关。Effect sizes are represented as mean ± SE. * means significant correlation at the P < 0.05 level; ** means significant correlation at P < 0.01 level; *** means significant correlation at P < 0.001 level.Figure 3. Effects of predictor variables on net ammonification rate (a), net nitrification rate (b) and net N mineralization rate (c) from multiple regression models3. 讨 论
3.1 不同季节氮添加对土壤无机氮的影响
土壤无机氮含量是地上植物生产力和土壤微生物生物量及其活性的限制因子[5,28]。本研究发现,相比于对照,不同季节性施氮显著促进了土壤无机氮的积累,但无机氮库大小随着试验时间的推移呈下降趋势,这与以往研究结果部分一致[29−31]。其主要原因可能是,无机氮的输入提高了土壤有效氮水平,同时也促进了土壤净硝化作用和净矿化作用[32−33]。大量不同氮水平添加试验结果表明,无机氮含量随施氮浓度的增加而增加[29,34−35],但也有部分研究发现,氮添加对土壤无机氮含量的调控存在饱和阈值[8],这可能与施氮剂量、土壤理化特性和微生物活性等有关。
不同季节施氮条件下,铵态氮和硝态氮含量在5—6月份较高(图1),但从整个生长季来看,铵态氮和硝态氮都呈下降趋势(图1)。这可能是由于实验地的优势物种为羊草,其偏好吸收铵态氮,同时氨挥发和硝化作用等多重过程的影响也导致铵态氮库减少[36]。这与在黄土高原典型草原的研究结果一致[30],可能是因为这两个地方气候环境相似,都是降水较少,植物和微生物一定程度上偏好利用铵态氮[30]。尽管本研究添加的无机氮为硝酸铵,植物氮偏好和微生物固定和硝化过程都需将硝态氮转化成铵盐或铵根来吸收和利用,再加上淋溶等影响从而导致硝态氮库呈下降趋势。从不同季节氮添加影响来看,与秋季和冬季施氮相比,生长季施氮对铵态氮、硝态氮和无机氮库的影响更显著(图1)。这表明,生长季氮添加可能会放大土壤无机氮库对氮沉降的响应。
3.2 不同季节氮添加对土壤氮矿化的影响及其影响因素
氮添加通过改变土壤无机氮库组成、大小和可利用性,进而对土壤矿化作用产生显著促进作用[37−39]。本研究中土壤净铵化速率在2021年5—7月有上升的趋势,这可能是由于气温回升微生物活性增强导致有机氮矿化增加[40]。而在7—10月净铵化速率又呈下降趋势,直接的影响表现为铵态氮含量减少,这可能与植物生长逐渐达到高峰并逐渐减缓,以及在这期间氮固定作用加强有关。土壤净硝化速率在2021年5—7月显著降低,可能是由于这一时期植物处于生长旺盛期,对无机氮尤其是铵态氮需求较高,促使硝态氮部分转化为铵态氮,从而减弱了硝化作用[41−42]。而在8—10月,净硝化速率随氮添加而增加,由于该地区属于半干旱草原气候,而在此时间段降水较多缓解了水分限制,导致硝化作用加强,也反映出该地区在夏秋季氮矿化作用是以硝化作用为主。此前在盐渍化草地和沙质草地的研究结果也分别反映出土壤净氮矿化速率的月和年际动态变化,并且氮矿化速率对氮添加水平的敏感性不同[31,35,41]。
需要注意的是从生长季末期开始(9月)净铵化速率大幅降低,且生长季氮添加的净铵化速率显著低于秋季和冬季施氮,说明无机氮向有机氮转化,生长季施氮促进了该转化过程,这可能与氮添加诱导的生物固持与矿化作用的强弱有关系[43−44]。生长季结束后(10月),净铵化速率逐渐增加,意味着铵固定作用减弱,且生长季施氮相比秋、冬季施氮对净铵化速率的促进作用更大,可能是由于生长季相比秋、冬季氮添加距离生长季末期时间较近,经历完整生长季后存留的微生物依旧会通过矿化有机氮来获取氮(可能主要是铵态氮),这从该时期土壤铵态氮和硝化速率较低也能得以印证。土壤净氮矿化速率和净硝化速率在生长季末期都为正值,意味着该时期已有大量微生物死亡并转化为土壤有机氮;另外尽管同时期铵化速率为负值,一种可能性表明土壤微生物依旧能够矿化利用土壤中微生物残体及其细胞溶解物来获取自身能量和养分物质需求,并促进硝化作用主导的氮矿化过程[45]。生长季氮添加相比于秋、冬季氮添加显著提高了生长季末期净硝化速率和净氮矿化速率,猜测可能是因为生长季施氮使得大量微生物繁殖和生长并矿化有机氮,而生长季末期无法满足土壤存留微生物的生长,迫使异氧微生物对无机氮的矿化和积累[6]。邹亚丽等[30]、徐小惠等[31]、杨仕明等[34]和Corre等[44]在不同生态系统都发现氮添加显著改变了无机氮库、土壤净硝化速率和净矿化速率,并且表现出季节性变化规律,但这些研究施氮时间都在生长季(5—7月),缺乏不同季节氮添加对土壤氮矿化过程和机理的研究,因此今后需加强不同季节施氮对氮矿化影响的研究,以期更好地反映大气氮沉降的真实生态效应。
土壤氮矿化是由生物和非生物因素共同驱动,将土壤有机氮转换为无机氮的生物化学过程。总体而言,温度、水分、氮含量和形态是影响氮沉降和施肥对草原土壤氮转化影响的关键因素[46−48]。其中,温度和降水的季节变化可以直接促进和抑制土壤氮转化[42,49]。在一定范围内,矿化速率随温度上升而增加[9,48],但也有研究发现在温度3 ~ 15 ℃范围内,氮矿化速率并没有受到温度的影响甚至是下降[50−51]。本研究中,温度升高对净硝化速率和净矿化速率表现出负效应,降水增加则表现出正效应(图3)。这可能是由于温度和降水差异导致不同月份之间氮转化对不同季节氮添加的响应有所不同。
4. 结 论
本研究分析了不同季节氮添加对内蒙古温带典型草原土壤净氮矿化速率的影响,得出以下主要结论:不同季节氮添加对土壤铵态氮、硝态氮和无机氮产生了显著影响。其中,与秋季和冬季氮添加相比,生长季氮添加显著增加了无机氮库。土壤无机氮库对不同季节氮添加的响应呈现明显的月动态变化。与无机氮类似,土壤氮矿化速率对不同季节氮添加也表现出明显的月动态特征。净铵化速率、净硝化速率和净氮矿化速率对生长季氮添加的响应最明显。土壤无机氮库和氮矿化对不同季节氮添加的响应差异主要受到温度和降水的影响,而氮添加形式和时间也会影响土壤氮转化过程。因此,未来应重点解析不同季节氮添加对土壤氮转化过程方向、程度、过程及内在机制,这有助于全面了解人为大气氮沉降对陆地生态系统土壤氮循环的影响。
致谢 感谢中国科学院内蒙古草原生态系统定位研究站给予本研究野外工作的支持,感谢陈旭、芦海宁、任正汝、张雨秋、刘若萱、刘丽娟、王晓燕、宋长春和卢炜煜在野外实验数据收集和整理上的帮助。
-
图 1 不同季节氮添加土壤铵态氮、硝态氮和无机氮季节变化的影响
不同小写字母表示不同处理间差异显著(P < 0.05),不同大写字母表示不同时间差异显著(P < 0.05)。下同。Different lowercase letters indicate significant difference at P < 0.05 level among varied treatments. Different uppercase letters indicate significant difference at P < 0.05 level among varied times. The same below.
Figure 1. Effects of seasonal nitrogen (N) addition on seasonal variations of soil NH+4-N, NO−3-N, and inorganic N concentrations
图 3 多元回归模型中的预测变量对净铵化速率(a)、净硝化速率(b)和净氮矿化速率(c)的影响
效应量为平均值 ± 标准误。*表示在P < 0.05水平上显著相关;**在P < 0.01水平上显著相关;***在P < 0.001水平上显著相关。Effect sizes are represented as mean ± SE. * means significant correlation at the P < 0.05 level; ** means significant correlation at P < 0.01 level; *** means significant correlation at P < 0.001 level.
Figure 3. Effects of predictor variables on net ammonification rate (a), net nitrification rate (b) and net N mineralization rate (c) from multiple regression models
-
[1] Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153−226. doi: 10.1007/s10533-004-0370-0
[2] Elser J, Bracken M, Cleland E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2008, 10: 1135−1142.
[3] Kuypers M M M, Marchant H K, Kartal B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263−276. doi: 10.1038/nrmicro.2018.9
[4] Mason R E, Craine J M, Lany N K, et al. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems[J]. Science, 2022, 376: eabh3767. doi: 10.1126/science.abh3767
[5] LeBauer D S, Treseder K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2): 371−379. doi: 10.1890/06-2057.1
[6] 罗亲普, 龚吉蕊, 徐沙, 等. 氮磷添加对内蒙古温带典型草原净氮矿化的影响[J]. 植物生态学报, 2016, 40(40): 480−492. doi: 10.17521/cjpe.2015.0374 Luo Q P, Gong J R, Xu S, et al. Effects of N and P additions on net nitrogen mineralization in temperate typical grasslands in Nei Mongol, China[J]. Chinese Journal of Plant Ecology, 2016, 40(40): 480−492. doi: 10.17521/cjpe.2015.0374
[7] Cheng Y, Wang J, Chang S X, et al. Nitrogen deposition affects both net and gross soil nitrogen transformations in forest ecosystems: a review[J]. Environmental Pollution, 2019, 244: 608−616. doi: 10.1016/j.envpol.2018.10.054
[8] 张璐, 黄建辉, 白永飞, 等. 氮素添加对内蒙古羊草草原净氮矿化的影响[J]. 植物生态学报, 2009, 33(3): 563−569. doi: 10.3773/j.issn.1005-264x.2009.03.015 Zhang L, Huang J H, Bai Y F, et al. Effects of nitrogen addition on net nitrogen mineralization in Leymus chinensis grassland, Inner Mongolia, China[J]. Chinese Journal of Plant Ecology, 2009, 33(3): 563−569. doi: 10.3773/j.issn.1005-264x.2009.03.015
[9] 王常慧, 邢雪荣, 韩兴国. 温度和湿度对我国内蒙古羊草草原土壤净氮矿化的影响[J]. 生态学报, 2004, 24(11): 2472−2476. doi: 10.3321/j.issn:1000-0933.2004.11.018 Wang C H, Xing X R, Han X G. The effects of temperature and moisture on the soil net nitrogen mineralization in an Aneulolepidium chinensis grassland, Inner Mongolia, China[J]. Acta Ecological Sinica, 2004, 24(11): 2472−2476. doi: 10.3321/j.issn:1000-0933.2004.11.018
[10] Li Z, Tian D, Wang B, et al. Microbes drive global soil nitrogen mineralization and availability[J]. Global Change Biology, 2019, 25(3): 1078−1088. doi: 10.1111/gcb.14557
[11] Li Z, Zeng Z, Song Z, et al. Vital roles of soil microbes in driving terrestrial nitrogen immobilization[J]. Global Change Biology, 2021, 27(9): 1848−1858. doi: 10.1111/gcb.15552
[12] Reay D S, Dentener F, Smith P, et al. Global nitrogen deposition and carbon sinks[J]. Nature Geoscience, 2008, 1(7): 430−437. doi: 10.1038/ngeo230
[13] Riggs C E, Hobbie S E. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils[J]. Soil Biology and Biochemistry, 2016, 99: 54−65. doi: 10.1016/j.soilbio.2016.04.023
[14] Lu M, Yang Y, Luo Y, et al. Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis[J]. New Phytologist, 2011, 189(4): 1040−1050. doi: 10.1111/j.1469-8137.2010.03563.x
[15] Allison S D. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments[J]. Ecology Letters, 2005, 8(6): 626−635. doi: 10.1111/j.1461-0248.2005.00756.x
[16] Chen H, Li D, Zhao J, et al. Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes: a meta-analysis[J]. Agriculture, Ecosystems and Environment, 2018, 252: 126−131. doi: 10.1016/j.agee.2017.09.032
[17] Bowman W D, Cleveland C C, Halada Ĺ, et al. Negative impact of nitrogen deposition on soil buffering capacity[J]. Nature Geoscience, 2008, 1(11): 767−770. doi: 10.1038/ngeo339
[18] Treseder K K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies[J]. Ecology Letters, 2008, 11(10): 1111−1120. doi: 10.1111/j.1461-0248.2008.01230.x
[19] Jian S, Li J, Chen J, et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis[J]. Soil Biology and Biochemistry, 2016, 101: 32−43. doi: 10.1016/j.soilbio.2016.07.003
[20] Carey C J, Dove N C, Beman J M, et al. Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea[J]. Soil Biology and Biochemistry, 2016, 99: 158−166. doi: 10.1016/j.soilbio.2016.05.014
[21] Cookson W R, Rowarth J S, Cameron K C. The fate of autumn-, late winter- and spring-applied nitrogen fertilizer in a perennial ryegrass (Lolium perenne L.) seed crop on a silt loam soil in Canterbury, New Zealand[J]. Agricultural, Ecosystems and Environment, 2001, 84(1): 67−77. doi: 10.1016/S0167-8809(00)00196-1
[22] Boman R K, Westerman R L, Raun W R, et al. Spring-applied nitrogen fertilizer influence on winter wheat and residual soil nitrate[J]. Journal of Production Agriculture, 1995, 8(4): 584−589. doi: 10.2134/jpa1995.0584
[23] White R P, Murray S, Rohweder M. Pilot analysis of global ecosystems: grassland ecosystems [M]. Washington: World Resources Institute, 2000: 11–12.
[24] 陈佐忠, 汪诗平. 中国典型草原生态系统 [M]. 北京: 科学出版社, 2000: 25–26. Chen Z Z, Wang S P. Typical grassland ecosystems in China [M]. Beijing: Science Press, 2000: 25–26.
[25] Gu B, Zhang X, Lam S K, et al. Cost-effective mitigation of nitrogen pollution from global croplands[J]. Nature, 2023, 613: 77−84. doi: 10.1038/s41586-022-05481-8
[26] Yu G, Jia Y, He N, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoscience, 2019, 12(6): 424−429. doi: 10.1038/s41561-019-0352-4
[27] Raison R J, Connell M J, Khanna P K. Methodology for studying fluxes of soil mineral-N in situ[J]. Soil Biology and Biochemistry, 1987, 19(5): 521−530. doi: 10.1016/0038-0717(87)90094-0
[28] Zhang T, Chen H Y H, Ruan H. Global negative effects of nitrogen deposition on soil microbes[J]. The ISME Journal, 2018, 12(7): 1817−1825. doi: 10.1038/s41396-018-0096-y
[29] 刘碧荣, 王常慧, 张丽华, 等. 氮素添加和刈割对内蒙古弃耕草地土壤氮矿化的影响[J]. 生态学报, 2015, 35(19): 6335−6343. Liu B R, Wang C H, Zhang L H, et al. Effect of nitrogen addition and mowing on soil nitrogen mineralization in abandoned grasslands in Inner Mongolia[J]. Acta Ecologica Sinica, 2015, 35(19): 6335−6343.
[30] 邹亚丽, 牛得草, 杨益, 等. 氮素添加对黄土高原典型草原土壤氮矿化的影响[J]. 草地学报, 2014, 22(3): 461−468. Zou Y L, Niu D C, Yang Y, et al. The effects of nitrogen addition on soil nitrogen mineralization in the semi-arid typical grassland of Loess Plateau[J]. Acta Agrestia Sinica, 2014, 22(3): 461−468.
[31] 徐小惠, 刁华杰, 覃楚仪, 等. 华北盐渍化草地土壤净氮矿化速率对不同水平氮添加的响应[J]. 植物生态学报, 2021, 45(1): 85−95. doi: 10.17521/cjpe.2020.0153 Xu X H, Diao H J, Qin C Y, et al. Response of soil net nitrogen mineralization to different levels of nitrogen addition in a saline-alkaline grassland of northern China[J]. Chinese Journal of Plant Ecology, 2021, 45(1): 85−95. doi: 10.17521/cjpe.2020.0153
[32] Hao T, Zhang Y, Zhang J, et al. Chronic nitrogen addition differentially affects gross nitrogen transformations in alpine and temperate grassland soils[J]. Soil Biology and Biochemistry, 2020, 149: 107962. doi: 10.1016/j.soilbio.2020.107962
[33] Wang C, Butterbach-Bahl K, Han Y, et al. The effects of biomass removal and N additions on microbial N transformations and biomass at different vegetation types in an old-field ecosystem in northern China[J]. Plant and Soil, 2011, 340(1−2): 397−411. doi: 10.1007/s11104-010-0611-z
[34] 杨仕明, 蔡乾坤, 刘文飞, 等. 杉木人工林土壤氮矿化对长期氮添加和季节的响应[J]. 浙江农林大学学报, 2021, 38(5): 945−952. doi: 10.11833/j.issn.2095-0756.20210403 Yang S M, Cai Q K, Liu W F, et al. Response of soil N mineralization to long-term N addition and season in Cunninghamia lanceolata plantation[J]. Journal of Zhejiang A&F University, 2021, 38(5): 945−952. doi: 10.11833/j.issn.2095-0756.20210403
[35] 于占源, 曾德慧, 艾桂艳, 等. 添加氮素对沙质草地土壤氮素有效性的影响[J]. 生态学杂志, 2007, 26(11): 1894−1897. Yu Z Y, Zeng D H, Ai G Y, et al. Effects of nitrogen addition on soil nitrogen availability in sandy grassland[J]. Chinese Journal of Ecology, 2007, 26(11): 1894−1897.
[36] Li S, Jiang F, Han Y, et al. Comparison of nitrogen uptake in the roots and rhizomes of Leymus chinensis[J]. Biologia Plantarum, 2018, 62(1): 149−156. doi: 10.1007/s10535-017-0748-1
[37] Kwak J H, Naeth M A, Chang S X. Microbial activities and gross nitrogen transformation unaffected by ten-year nitrogen and sulfur addition[J]. Soil Biology and Biochemistry, 2018, 82(2): 362−370.
[38] Mao C, Kou D, Peng Y F, et al. Soil nitrogen transformations respond diversely to multiple levels of nitrogen addition in a Tibetan Alpine Steppe[J]. Journal of Geophysical Research-Biogeosciences, 2021, 126: e2020JG006211. doi: 10.1029/2020JG006211
[39] 李阳, 徐小惠, 孙伟, 等. 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响[J]. 植物生态学报, 2019, 43(2): 174−184. doi: 10.17521/cjpe.2018.0245 Li Y, Xu X H, Sun W, et al. Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China[J]. Chinese Journal of Plant Ecology, 2019, 43(2): 174−184. doi: 10.17521/cjpe.2018.0245
[40] Dai Z, Yu M, Chen H, et al. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems[J]. Global Change Biology, 2020, 26(9): 5267−5276. doi: 10.1111/gcb.15211
[41] 王岩, 刁华杰, 董宽虎, 等. 降水变化与氮添加对晋北盐碱化草地土壤净氮矿化的影响[J]. 应用生态学报, 2021, 32(7): 2389−2396. Wang Y, Diao H J, Dong K H, et al. Effects of precipitation change and nitrogen addition on soil net N mineralization in a salinealkaline grassland of northern Shanxi Province, China[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2389−2396.
[42] 杨浩, 胡中民, 郭群, 等. 增雨和氮添加对内蒙古草原土壤氮矿化潜力的影响[J]. 自然资源学报, 2017, 26(11): 2034−2042. doi: 10.11849/zrzyxb.20161084 Yang H, Hu Z M, Guo Q, et al. Influences of precipitation increase and N addition on soil potential N mineralization in Inner Mongolia grassland[J]. Journal of Natural Resources, 2017, 26(11): 2034−2042. doi: 10.11849/zrzyxb.20161084
[43] 孙志高, 刘景双. 三江平原典型小叶章湿地土壤氮素净矿化与硝化作用[J]. 应用生态学报, 2007, 18(8): 1771−1777. Sun Z G, Liu J S. Soil nitrogen net mineralization and nitrification in typical Calamagrostis angustifolia wetlands in Sanjiang Plain[J]. Chinese Journal of Applied Ecology, 2007, 18(8): 1771−1777.
[44] Corre M D, Brumme R, Veldkamp E, et al. Changes in nitrogen cycling and retention processes in soils under spruce forests along a nitrogen enrichment gradient in Germany[J]. Global Change Biology, 2007, 13(7): 1509−1527. doi: 10.1111/j.1365-2486.2007.01371.x
[45] Zhou W, Chen H, Zhou L, et al. Effect of freezing-thawing on nitrogen mineralization in vegetation soils of four landscape zones of Changbai Mountain[J]. Annals of Forest Science, 2011, 68(5): 943−951. doi: 10.1007/s13595-011-0100-4
[46] Bengtsson G, Bengtson P, Mansson K F. Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity[J]. Soil Biology and Biochemistry, 2003, 35(1): 143−154. doi: 10.1016/S0038-0717(02)00248-1
[47] Cheng Y, Wang J, Mary B, et al. Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada[J]. Soil Biology and Biochemistry, 2013, 57: 848−857. doi: 10.1016/j.soilbio.2012.08.021
[48] Zaman M, Chang S X. Substrate type, temperature, and moisture content affect gross and net N mineralization and nitrification rates in agroforestry systems[J]. Biology and Fertility of Soils, 2004, 39(4): 269−279. doi: 10.1007/s00374-003-0716-0
[49] Wang C, Wan S, Xing X, et al. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in northern China[J]. Soil Biology and Biochemistry, 2006, 38(5): 1101−1110. doi: 10.1016/j.soilbio.2005.09.009
[50] Lang M, Cai Z C, Mary B, et al. Land-use type and temperature affect gross nitrogen transformation rates in Chinese and Canadian soils[J]. Plant and Soil, 2010, 334(1−2): 377−389. doi: 10.1007/s11104-010-0389-z
[51] Stottlemyer R, Toczydlowski D. Nitrogen mineralization in a mature boreal forest, Isle Royale, Michigan[J]. Journal of Environmental Quality, 1999, 28(2): 709−720.