Prediction of suitable areas of Eremochloa ophiuroides in China under different climate scenarios based on MaxEnt model
-
摘要:目的
本研究通过生态位模型分析评价假俭草在中国的分布情况及制约其当代分布的主要因子,为草坪建植管理和引种栽培提供理论依据。
方法基于262个假俭草的地理分布记录和19个生物气候因子,利用最大熵(MaxEnt)模型和地理信息系统,对该物种当代和未来的适生分布区和面积进行预测,并通过受试者工作特征曲线对模型精度进行验证。
结果影响假俭草适生区分布的主要因子是最干季度降水量(bio17),次要因子是平均日较差(bio2)、温度季节性变化标准差(bio4)和年降水量(bio12);在当代气候条件下,假俭草总适生区面积约为183.55 × 104 km2,主要集中在我国东南部亚热带地区;在未来气候情景下,假俭草的总适生区面积相较于当代有不同程度的增加,但低、高适生区相较于当代总体而言呈现下降的趋势;通过空间格局变化得出,假俭草适生区保留率为90.14% ~ 94.21%,另外,假俭草质心均位于湖南省湘潭市,推测该地区可能是假俭草的多样性分布中心。
结论本研究得出降水是影响假俭草分布的主要因素,在今后引种栽培以及草坪建植管理时应予以重视。
Abstract:ObjectiveIn this study, the ecological model was used to analyze and evaluate the distribution of Eremochloa ophiuroides in China and the main factors restricting its modern distribution, so as to provide theoretical basis for turf establishment, management, introduction and cultivation.
MethodBased on the geographical distribution records of 262 E. ophiuroides and 19 environmental factors, the maximum entropy (MaxEnt) model and geographic information system were used to predict the current and future suitable distribution area and area of the species, and the accuracy of the model was verified by the receiver operating characteristic curve.
ResultThe main factor affecting the distribution of suitable area of E. ophiuroides was precipitation of the driest quarter (bio17), and the secondary factors were the mean diurnal range (bio2), the standard deviation of seasonal temperature seasonality (bio4) and the annual precipitation (bio12). Under current climatic conditions, the total suitable area of E. ophiuroides was about 1.835 5 million km2, mainly concentrated in the subtropical region of southeast China. Under the future climate scenario, the total suitable area of E. ophiuroides will increase to varying degrees compared with the modern, but the low and high suitable areas will show a downward trend compared with the modern. According to the change of spatial pattern, the retention rate of the suitable area of E. ophiuroides was 90.14%−94.21%. In addition, the centroid of E. ophiuroides was located in Xiangtan City, Hunan Province of central China, suggesting that this area may be the diversity distribution center of E. ophiuroides.
ConclusionIt is concluded that precipitation is the main factor affecting the distribution of E. ophiuroides, which should be paid attention to in the future introduction and cultivation, and turf establishment and management.
-
Keywords:
- Eremochloa ophiuroides /
- MaxEnt model /
- suitable area /
- bioclimatic factor
-
-
图 1 假俭草有效分布点
A代表全球物种多样性信息库、中国植物图像库、中国数字植物标本馆和文献记载分布点,B代表野外实地调查分布点。A represents the distribution points of Global Biodiversity Information Facility, Plant Photo Bank of China, Chinese Virtual Herbarium and literature, and B represents the distribution points of field investigation.
Figure 1. Effective distribution points of Eremochloa ophsuroides
表 1 生物气候因子预模拟贡献率和排列重要性
Table 1 Pre-simulation contribution rate and importance of bioclimatic factors
变量编号
Variable No.生物气候因子变量
Bioclimatic factor variable贡献率
Contribution rate/%排列重要性
Permutation importancebio17 最干季度降水量 Precipitation of the driest quarter 78.9 12.6 bio4 温度季节性变化标准差 Standard deviation of the seasonal temperature change 6.6 0.0 bio8 最湿季度平均温度 Mean temperature of the wettest quarter 4.1 14.6 bio3 等温性 Isothermality 3.0 24.2 bio14 最干月降水量 Precipitation of the driest month 2.5 0.0 bio12 年降水量 Annual precipitation 1.9 18.4 bio2 平均日较差 Mean diurnal range 1.3 4.0 bio10 最暖季度平均温度 Mean temperature of the warmest quarter 0.7 1.9 bio13 最湿月降水量 Precipitation of the wettest month 0.4 11.6 bio6 最冷月最低温度 Min. temperature of the coldest month 0.4 2.0 bio11 最冷季度平均温度 Mean temperature of the coldest quarter 0.2 6.8 bio9 最干季度平均温度 Mean temperature of the driest quarter 0.0 2.1 bio1 年平均气温 Annual mean temperature 0.0 0.9 bio5 最暖月最高温度 Max. temperature of the warmest month 0.0 0.8 bio15 降水量变异系数 Coefficient of variation of precipitation 0.0 0.0 bio16 最湿季度降水量 Precipitation of the wettest quarter 0.0 0.0 bio18 最暖季度降水量 Precipitation of the warmest quarter 0.0 0.0 bio19 最冷季度降水量 Precipitation of the coldest quarter 0.0 0.0 bio7 年均温变化范围 Variation range of annual average temperature 0.0 0.0 表 2 生物气候因子相关性分析
Table 2 Correlation analysis of bioclimatic variables
变量编号
Variable No.bio2 bio3 bio4 bio6 bio8 bio10 bio11 bio12 bio13 bio14 bio17 bio2 1.00 bio3 0.13 1.00 bio4 0.57** –0.72** 1.00 bio6 –0.65** 0.51** –0.87** 1.00 bio8 0.40** 0.14 0.23 –0.08 1.00 bio10 –0.09 –0.11 0.04 0.43** 0.37** 1.00 bio11 –0.55** 0.59** –0.86** 0.99** –0.01 0.47** 1.00 bio12 –0.50** 0.40** –0.69** 0.81** –0.28* 0.39** 0.81** 1.00 bio13 –0.26* 0.60** –0.67** 0.67** –0.13 0.21 0.70** 0.79** 1.00 bio14 –0.45** –0.25* –0.12 0.43** –0.37** 0.56** 0.40** 0.63** 0.23 1.00 bio17 –0.35** –0.33** 0.014 0.32** –0.35** 0.60** 0.30* 0.58** 0.16 0.96** 1.00 注:*表示在0.05水平上差异显著;**在0.01水平上差异显著。Notes: * means significant difference at the 0.05 level; **means significant difference at 0.01 level. 表 3 生物气候因子基于MaxEnt模型对假俭草当代时期预测的贡献率
Table 3 Contribution rates of bioclimatic factor based on MaxEnt model to the current period prediction of E. ophsuroides
变量编号
Variable No.贡献率
Contribution rate/%排列重要性
Permutation importancebio2 1.4 15.9 bio3 2.1 6.7 bio4 4.2 9.6 bio8 1.2 7.3 bio10 1.2 3.6 bio12 4.6 21.7 bio13 1.1 15.0 bio17 84.2 20.2 表 4 不同时期潜在适生分布区预测面积
Table 4 Prediction area of potential suitable distribution area in different periods
104 km2 时期
Period当代
Current2050s 2070s SSPs126 SSPs245 SSPs585 SSPs126 SSPs245 SSPs585 低适生区 Low suitable area 64.85 54.05 42.88 43.66 49.47 49.11 51.44 中适生区 Medium suitable area 92.63 108.89 126.24 122.25 112.14 114.45 110.69 高适生区 High suitable area 26.07 25.81 19.60 23.01 27.74 25.90 25.16 总适生区 Total suitable area 183.55 188.75 188.72 188.92 189.36 189.45 187.29 相比当代增加 Compare with the current increase 5.20 5.17 5.37 5.81 5.90 3.74 表 5 不同时期假俭草适生区空间变化
Table 5 Spatial variation of suitable area of E. ophsuroides in different periods
时期-气候情景
Period-climate scenario面积 Area / 104 km2 变化 Change/% 增加 Increase 保留 Reserve 丧失 Lost 增加率 Increase rate 保留率 Reserved rate 丧失率 Lost rate 2050s-SSPs126 22.98 106.99 8.54 19.36 90.14 7.19 2050s-SSPs245 29.48 111.32 4.07 24.84 93.78 3.43 2050s-SSPs585 28.38 111.83 3.56 23.91 94.21 3.00 2070s-SSPs126 26.62 108.54 6.94 22.43 91.44 5.84 2070s-SSPs245 26.49 108.85 6.55 22.31 91.70 5.52 2070s-SSPs585 21.22 107.51 7.97 17.88 90.58 6.72 -
[1] Williams J W, Jackson S T, Kutzbach J E. Projected distributions of novel and disappearing climates by 2100 AD[J]. Proceedings of the National Academy of Sciences, 2007, 104(14): 5738−5742. doi: 10.1073/pnas.0606292104
[2] Zhou Y C, Zhang Z X, Zhu B, et al. MaxEnt modeling based on CMIP6 models to project potential suitable zones for Cunninghamia lanceolata in China[J]. Forests, 2021, 12(6): 752. doi: 10.3390/f12060752
[3] Kane K, Debinski D M, Anderson C, et al. Using regional climate projections to guide grassland community restoration in the face of climate change[J]. Frontiers in Plant Science, 2017, 8: 730. doi: 10.3389/fpls.2017.00730
[4] Zhang K L, Yao L, Meng J, et al. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change[J]. Science of the Total Environment, 2018, 634: 1326−1334. doi: 10.1016/j.scitotenv.2018.04.112
[5] Baptista-Rosas R C, Hinojosa A, Riquelme M. Ecological niche modeling of Coccidioides spp. in western North American deserts[J]. Annals of the New York Academy of Sciences, 2007, 1111(1): 35−46. doi: 10.1196/annals.1406.003
[6] Stockwell D R B, Peterson A T. Effects of sample size on accuracy of species distribution models[J]. Ecological Modelling, 2002, 148(1): 1−13. doi: 10.1016/S0304-3800(01)00388-X
[7] Merow C, Smith M J, Silander J A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter[J]. Ecography, 2013, 36(10): 1058−1069. doi: 10.1111/j.1600-0587.2013.07872.x
[8] Hirzel A H, Hausser J, Perrin N. Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data[J]. Ecology, 2002, 83(7): 2027−2036. doi: 10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2
[9] Phillips S J, Anderson R P, Schapire R E, et al. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(34): 231−259.
[10] 张路. MAXENT最大熵模型在预测物种潜在分布范围方面的应用[J]. 生物学通报, 2015, 50(11): 9−12. Zhang L. The application of MAXENT maximum entropy model in predicting the potential distribution range of species[J]. Bulletin of Biology, 2015, 50(11): 9−12.
[11] 苟文龙, 白史且, 张新全, 等. 假俭草遗传多样性及应用研究进展[J]. 中国草地, 2002(2): 49−54. Gou W L, Bai S Q, Zhang X Q, et al. Progress of centipedegrass on genetic diversity and application[J]. Chinese Journal of Grassland, 2002(2): 49−54.
[12] Li J J, Guo H L, Zong J Q, et al. Genetic diversity in centipedegrass [ Eremochloa ophiuroides (Munro) Hack.][J]. Horticulture Research, 2020, 7(1): 4. doi: 10.1038/s41438-019-0228-1
[13] Wang J J, Zi H, Wang J, et al. A high-quality chromosome-scale assembly of the centipedegrass [ Eremochloa ophiuroides (Munro) Hack.] genome provides insights into chromosomal structural evolution and prostrate growth habit[J]. Horticulture Research, 2021, 8: 201.
[14] 刘一明, 郇恒福, 丁西朋, 等. 55份不同生态型假俭草的耐盐性评价[J]. 草业科学, 2017, 34(11): 2261−2271. doi: 10.11829/j.issn.1001-0629.2017-0290 Liu Y M, Huan H F, Ding X P, et al. Evaluation of salinity tolerance of 55 centipedegrass ecotypes[J]. Pratacultural Science, 2017, 34(11): 2261−2271. doi: 10.11829/j.issn.1001-0629.2017-0290
[15] 宗俊勤, 牛佳伟, 徐芳, 等. 假俭草花序发育的形态学观察及其与物候期和积温的对应关系[J]. 植物资源与环境学报, 2021, 30(5): 50−57. doi: 10.3969/j.issn.1674-7895.2021.05.06 Zong J Q, Niu J W, Xu F, et al. Morphological observation on inflorescence development of Eremochloa ophiuroides and its corresponding relationships with phenophase and accumulated temperature[J]. Journal of Plant Resources and Environment, 2021, 30(5): 50−57. doi: 10.3969/j.issn.1674-7895.2021.05.06
[16] 赵琼玲, 白昌军, 梁晓玲. 中国假俭草种质资源遗传多样性的ISSR分析[J]. 热带作物学报, 2011, 32(1): 110−115. doi: 10.3969/j.issn.1000-2561.2011.01.023 Zhao Q L, Bai C J, Liang X L. An analysis by ISSR of genetic diversity in Eremochloa ophiuroides in China[J]. Chinese Journal of Tropical Crops, 2011, 32(1): 110−115. doi: 10.3969/j.issn.1000-2561.2011.01.023
[17] 霍尚峰, 白史且, 张新全, 等. 我国野生假俭草坪用价值研究[J]. 中国草地, 2004, 26(2): 50−54. Huo S F, Bai S Q, Zhang X Q, et al. Assessment on turf quality of centipedegrass[J]. Grassland of China, 2004, 26(2): 50−54.
[18] 刘建秀, 朱雪花, 郭爱桂, 等. 中国假俭草结实性的比较分析[J]. 植物资源与环境学报, 2003, 12(4): 21−26. doi: 10.3969/j.issn.1674-7895.2003.04.005 Liu J X, Zhu X H, Guo A G, et al. The analysis on the fruit characters of Eremochloa ophiuroides in China[J]. Journal of Plant Resources and Environment, 2003, 12(4): 21−26. doi: 10.3969/j.issn.1674-7895.2003.04.005
[19] 宗俊勤, 郭爱桂, 刘建秀. 中国假俭草种质资源物候期的变异分析[J]. 中国草地学报, 2006, 28(6): 61−67. doi: 10.3321/j.issn:1673-5021.2006.06.013 Zong J Q, Guo A G, Liu J X. Study on phenological period of germplasm resource of Eremochloa ophiuroides (Munro.) Hack[J]. Chinese Journal of Grassland, 2006, 28(6): 61−67. doi: 10.3321/j.issn:1673-5021.2006.06.013
[20] 白史且, 苟文龙, 张新全, 等. 不同居群假俭草叶片比较解剖学的研究[J]. 北京林业大学学报, 2003, 25(2): 36−40, 98. doi: 10.3321/j.issn:1000-1522.2003.02.008 Bai S Q, Gou W L, Zhang X Q, et al. Comparative anatomy of leaves in different populations of centipedegrass[J]. Journal of Beijing Forestry University, 2003, 25(2): 36−40, 98. doi: 10.3321/j.issn:1000-1522.2003.02.008
[21] 朱颖墨, 窦小东, 王瑞芳, 等. 气候变化对云南省小粒咖啡适生区的影响[J]. 气象学报, 2021, 79(5): 878−887. doi: 10.11676/qxxb2021.049 Zhu Y M, Dou X D, Wang R F, et al. Climate change impact on the region suitable for Coffea arabica growth in Yunnan Province[J]. Acta Meteorologica Sinica, 2021, 79(5): 878−887. doi: 10.11676/qxxb2021.049
[22] 唐燕, 赵儒楠, 任钢, 等. 基于MaxEnt模型的中华枸杞潜在分布预测及其重要影响因子分析[J]. 北京林业大学学报, 2021, 43(6): 23–32. Tang Y, Zhao R N, Ren G, et al. Prediction of potential distribution of Lycium chinense based on MaxEnt model and analysis of its important influencing factors[J]. Journal of Beijing Forestry University, 2021, 43(6): 23–32.
[23] 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5): 445−456. Zhou T J, Zou L W, Chen X L. Commentary on the coupled model intercomparison project phase 6 (CMIP6)[J]. Advances in Climate Change Research, 2019, 15(5): 445−456.
[24] 何馨, 马文旭, 赵天田, 等. 气候变化下濒危树种华榛的潜在适生区预测[J]. 林业科学研究, 2022, 35(1): 104−114. doi: 10.13275/j.cnki.lykxyj.2022.01.012 He X, Ma W X, Zhao T T, et al. Potential suitable area prediction of endangered tree species Corylus chinensis under climate change[J]. Forest Research, 2022, 35(1): 104−114. doi: 10.13275/j.cnki.lykxyj.2022.01.012
[25] Li Y, Shao W, Jiang J. Predicting the potential global distribution of Sapindus mukorossi under climate change based on MaxEnt modelling[J]. Environmental Science and Pollution Research, 2022, 29(15): 21751−21768. doi: 10.1007/s11356-021-17294-9
[26] Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3−4): 231−259. doi: 10.1016/j.ecolmodel.2005.03.026
[27] Zhang L, Zhu L, Li Y, et al. Maxent modelling predicts a shift in suitable habitats of a subtropical evergreen tree ( Cyclobalanopsis glauca (Thunberg) Oersted) under climate change scenarios in China[J]. Forests, 2022, 13(1): 126. doi: 10.3390/f13010126
[28] Kumar A, Kumar A, Adhikari D, et al. Ecological niche modeling for assessing potential distribution of Pterocarpus marsupium Roxb. in Ranchi, eastern India[J]. Ecological Research, 2020, 35(6): 1095−1105.
[29] Li J J, Fan G, He Y. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis[J]. Science of the Total Environment, 2020, 698(1): 134141.
[30] 张殷波, 刘彦岚, 秦浩, 等. 气候变化条件下山西翅果油树适宜分布区的空间迁移预测[J]. 应用生态学报, 2019, 30(2): 496−502. Zhang Y B, Liu Y L, Qin H, et al. Predication on spatial migration of suitable distribution of Elaeagnus mollis under climate change conditions in Shanxi Province, China[J]. Chinese Journal of Applied Ecology, 2019, 30(2): 496−502.
[31] Yue T X, Fan Z M, Chen C F, et al. Surface modelling of global terrestrial ecosystems under three climate change scenarios[J]. Ecological Modelling, 2011, 22: 2342−2361.
[32] 安徽植物志协作组. 安徽植物志[M]. 5卷. 合肥: 安徽科学技术出版社, 1992: 335−336. Anhui Flora Cooperative Group. Anhui flora [M]. Vol. 5. Hefei: Anhui Science and Technology Press, 1992: 335−336.
[33] 刘建秀, 贺善安. 暖季草坪草种质资源的研究与改良[J]. 国外畜牧学(草原与牧草), 1996(3): 12−21. Liu J X, He S A. Research and improvement of warm season turfgrass germplasm resources[J]. Grassland and Turf, 1996(3): 12−21.
[34] Johnson B J, Carrow R N. Frequency of fertilizer applications and centipedegrass performance[J]. Agronomy Journal, 1988, 80(6): 925−929. doi: 10.2134/agronj1988.00021962008000060017x
[35] 刘金平, 毛凯, 游明鸿. 假俭草草坪管理技术研究[J]. 四川草原, 2001(4): 37−40. Liu J P, Mao K, You M H. The study on the management technique of centipedegrass turf[J]. Journal of Sichan Grassland, 2001(4): 37−40.
[36] 詹瑞琪, 陈碧娥, 杨亚新. 假俭草在厦门地区的种植现状及推广前景[C]//中国草学会草坪专业委员会第六届全国会员代表大会及第九次学术研讨会论文汇编. 北京:中国草学会, 2004: 153−154. Zhan R Q, Chen B E, Yang Y X. Planting status and promotion prospect of centipedegrass in Xiamen area[C]// Compilation of papers of the 6th national member congress and 9th Academic Seminar of Turf Professional Committee of Chinese Grassland Society. Beijing: Chinese Grassland Society, 2004: 153−154.
[37] 肖建华, 丁鑫, 蔡超男, 等. 闽楠( Phoebe bournei, Lauraceae)地理分布及随气候变化的分布格局模拟[J]. 生态学报, 2021, 41(14): 5703−5712. Xiao J H, Ding X, Cai C N, et al. Simulation of the potential distribution of Phoebe bournei with climate changes using the maximum-entropy (MaxEnt) model[J]. Acta Ecologica Sinica, 2021, 41(14): 5703−5712.
[38] Khodorova N V, Bitel-Conti M. The role of temperature in the growth and flowering of geophytes[J]. Plants, 2013, 2(4): 699−711. doi: 10.3390/plants2040699
[39] 孙存华, 毛健民, 白宝璋, 等. 昼夜变温促进小麦幼苗生长的酶学研究[J]. 吉林农业大学学报, 2000, 22(1): 30−33. doi: 10.3969/j.issn.1000-5684.2000.01.007 Sun C H, Mao J M, Bai B Z, et al. Studies of enzymology on diurnal change of temperature accelerating the rate of wheat seedling growth[J]. Journal of Jilin Agricultural University, 2000, 22(1): 30−33. doi: 10.3969/j.issn.1000-5684.2000.01.007
[40] 郭岐峰, 李殷洋, 卢丽群. 广西昼夜气温的分析及其在农业上的意义[J]. 广西气象, 1992(4): 17−24. Guo Q F, Li Y Y, Lu L Q. Analysis of day and night temperature in Guangxi and its significance in agriculture[J]. Journal of Guangxi Meteorology, 1992(4): 17−24.
[41] 陈志一. 草坪栽培管理[M]. 北京: 中国农业出版社, 1993: 62−64. Chen Z Y. Turf management[M]. Beijing: China Agricultural Press, 1993: 62−64.
[42] 郭怡博, 莫可, 王桂荣, 等. 未来气候条件下天麻适生区预测及时空变化分析[J]. 中国中医药信息杂志, 2022, 29(7): 1−7. Guo Y B, Mo K, Wang G R, et al. Analysis of prediction and spatial-temporal changes of suitable distribution of Gastrodiae rhizoma under future climate conditions[J]. Chinese Journal of Information on Traditional Chinese, 2022, 29(7): 1−7.
[43] 刘婷, 曹家豪, 齐瑞, 等. 基于GIS和MaxEnt模型分析气候变化背景下紫果云杉的潜在分布区[J]. 西北植物学报, 2022, 42(3): 481−491. doi: 10.7606/j.issn.1000-4025.2022.03.0481 Liu T, Cao J H, Qi R, et al. Research of potential geographical distribution of Picea purpurea based on GIS and MaxEnt under different climate conditions[J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(3): 481−491. doi: 10.7606/j.issn.1000-4025.2022.03.0481
[44] 刘济铭, 贾黎明, 王连春, 等. 基于MaxEnt的中国无患子属适生区区划及生态特征[J]. 林业科学, 2021, 57(5): 1−12. doi: 10.11707/j.1001-7488.20210501 Liu J M, Jia L M, Wang L C, et al. Potential distribution and ecological characteristics of genus Sapindus in China based on MaxEnt model[J]. Scientia Silvae Sinicae, 2021, 57(5): 1−12. doi: 10.11707/j.1001-7488.20210501
[45] 杜海波, 吴正方, 张娜, 等. 近60a丹东极端温度和降水事件变化特征[J]. 地理科学, 2013, 33(4): 473−480. doi: 10.13249/j.cnki.sgs.2013.04.013 Du H B, Wu Z F, Zhang N, et al. Characteristics of extreme temperature and precipitation events over Dandong during the last six decades[J]. Scientia Geographica Sinica, 2013, 33(4): 473−480. doi: 10.13249/j.cnki.sgs.2013.04.013
[46] 刘建秀, 郭爱桂, 郭海林, 等. 中国主要暖季型草坪草种质资源研究进展[C]//中国草学会草坪专业委员会第六届全国会员代表大会及第九次学术研讨会论文汇编. 北京:中国草学会, 2004: 59−64. Liu J X, Guo A G, Guo H L, et al. Research progress on germplasm resources of main warm-season turfgrasses in China[C]// Compilation of papers of the 6th National Congress and the 9th Symposium of the Turf Committee of the Chinese Society of Turf. Beijing: Chinese Grassland Society, 2004: 59−64.
[47] 关心怡, 石慰, 曹坤芳. 未来气候变化对广布种麻栎地理分布的影响和主导气候因子分析[J]. 热带亚热带植物学报, 2018, 26(6): 661−668. doi: 10.11926/jtsb.3898 Guan X Y, Shi W, Cao K F. Effect of climate change in future on geographical distribution of widespread Quercus acutissima and analysis of dominant climatic factors[J]. Journal of Tropical and Subtropical Botany, 2018, 26(6): 661−668. doi: 10.11926/jtsb.3898
[48] 叶学敏, 陈伏生, 孙荣喜, 等. 基于MaxEnt模型的南酸枣潜在适生区预测[J]. 江西农业大学学报, 2019, 41(3): 440−446. doi: 10.13836/j.jjau.2019052 Ye X M, Chen F S, Sun R X, et al. Prediction of potential suitable distribution areas for Choerospondias axillaris besed on MaxEnt model[J]. Acta Agriculturae Universitatis Jiangxiensis, 2019, 41(3): 440−446. doi: 10.13836/j.jjau.2019052
[49] 赵宗慈, 罗勇, 江滢, 等. 全球和中国降水、旱涝变化的检测评估[J]. 科技导报, 2008(6): 28−33. doi: 10.3321/j.issn:1000-7857.2008.06.006 Zhao Z C, Luo Y, Jiang Y, et al. Assessment and prediction of precipitation and droughts/floods changes over the world and in China[J]. Science & Technology Review, 2008(6): 28−33. doi: 10.3321/j.issn:1000-7857.2008.06.006
[50] 熊中人, 张晓晨, 邹旭, 等. 中国天山花楸适生区预测及其对气候变化的响应[J]. 生态科学, 2019, 38(5): 44−51. doi: 10.14108/j.cnki.1008-8873.2019.05.007 Xiong Z R, Zhang X C, Zou X, et al. Prediction of the suitable distribution and responses to climate change of Sorbus tianschanica in China[J]. Ecological Science, 2019, 38(5): 44−51. doi: 10.14108/j.cnki.1008-8873.2019.05.007
[51] 张明珠, 叶兴状, 李佳慧, 等. 气候变化情景下长序榆在中国的潜在适生区预测[J]. 生态学杂志, 2021, 40(12): 3822−3835. doi: 10.13292/j.1000-4890.202112.018 Zhang M Z, Ye X Z, Li J H, et al. Prediction of potential suitable area of Ulmus elongata in China under climate change scenarios[J]. Chinese Journal of Ecology, 2021, 40(12): 3822−3835. doi: 10.13292/j.1000-4890.202112.018
[52] 李建林, 唐旭清. 气候变化对陆地生态系统影响评估模型的研究进展[J]. 草原与草坪, 2014(6): 86−93. doi: 10.3969/j.issn.1009-5500.2014.06.016 Li J L, Tang X Q. The research progress on assessment model of ecosystem under global climate change[J]. Grassland and Turf, 2014(6): 86−93. doi: 10.3969/j.issn.1009-5500.2014.06.016
[53] 黄晓莹, 温之平, 杜尧东, 等. 华南地区未来地面温度和降水变化的情景分析[J]. 热带气象学报, 2008, 24(3): 254−258. doi: 10.3969/j.issn.1004-4965.2008.03.007 Huang X Y, Wen Z P, Du Y D, et al. Scenario analysis om the changes of future surface air temperature and precipitation in south China[J]. Journal of Tropical Meteorology, 2008, 24(3): 254−258. doi: 10.3969/j.issn.1004-4965.2008.03.007
-
期刊类型引用(16)
1. 钟思琪,宁金魁,黄锦程,陈鼎泸,欧阳勋志,臧颢. 基于混合效应的杉木人工林冠幅模型. 森林与环境学报. 2024(02): 127-135 . 百度学术
2. 段平,王云川,晋秋梅,李佳. 基于无人机可见光影像的单木胸径估算方法. 测绘与空间地理信息. 2023(01): 14-17 . 百度学术
3. 魏智海,魏姿芃. 基于单木分割及点云特征提取的单木胸径估测. 陕西林业科技. 2023(02): 18-23 . 百度学术
4. 王杰芬,夏磊,林露花,胡璐璐,徐怀兴,王聚中,徐小军. 结合放射线法和无人机影像提取冠幅估算杉木碳储量研究. 浙江林业科技. 2023(05): 42-50 . 百度学术
5. 夏洪涛,郭晓斌,张珍,田相林,郭福涛,孙帅超. 基于不同立地质量评价指标的杉木大径材林分树高-胸径模型. 中南林业科技大学学报. 2023(10): 80-88 . 百度学术
6. 肖德卿,罗芊芊,范辉华,邱群,周志春. 栽植模式对木荷幼林生长和形质性状家系变异影响. 林业科学. 2022(05): 85-92 . 百度学术
7. 王志波,季蒙,李永乐,李银祥,马世明,张海东. 华北落叶松人工林差分地位指数模型构建. 林业资源管理. 2021(01): 156-163 . 百度学术
8. 杨洋,尤龙辉,叶功富,聂森,程分生,余锦林. 沙质海岸基干林木麻黄幼林模拟抚育预测. 福建农林大学学报(自然科学版). 2021(02): 206-215 . 百度学术
9. 田红灯,申文辉,谭一波,郑威,何琴飞,朱慧,甘国娟. 不同林龄杉木人工林冠幅与生长因子的关系. 中南林业科技大学学报. 2021(05): 93-101 . 百度学术
10. 朱晋梅,朱光玉,易烜,杨琬珑,牟村,王琢玙. 湖南省栎类次生林冠幅—胸径模型模拟研究. 湖南林业科技. 2021(03): 46-51 . 百度学术
11. 赵保国,朱江,艾训儒,姚兰,郭秋菊,洪建峰. 水杉原生种群胸径树高与树冠的通径分析. 东北林业大学学报. 2021(10): 16-20 . 百度学术
12. 于晓池,李凤,欧阳,张鹏,郭小龙,肖遥,赵秋玲,杨桂娟,王军辉,麻文俊. 基于表型的灰楸核心种质构建. 林业科学研究. 2021(06): 38-45 . 百度学术
13. 贾鹏刚,夏凯,董晨,冯海林,杨垠晖. 基于无人机影像的银杏单木胸径预估方法. 浙江农林大学学报. 2019(04): 757-763 . 百度学术
14. 张冬燕,王冬至,范冬冬,张健东,李大勇. 不同立地类型华北落叶松人工林冠幅与胸径关系研究. 林业资源管理. 2019(04): 69-73 . 百度学术
15. 伍小敏,徐春,杨汉波,陈炙,郭洪英,黄振,王泽亮. 四川桤木天然林和人工林的单木生长模型研究. 四川林业科技. 2018(04): 8-11+44 . 百度学术
16. 周凤艳. 沙地樟子松不同林龄树高、胸径等生长指标的关系研究. 吉林林业科技. 2017(01): 12-15 . 百度学术
其他类型引用(13)