Characteristics and regeneration potential of soil seed banks in green space of urban parks in Beijing
-
摘要:目的
作为潜在的植物群落,土壤种子库在一定程度上代表地上植被的更新演替潜力,研究城市公园绿地土壤种子库特征及其对地上植被和土壤因子的响应,为近自然城市公园的营造提供理论依据。
方法以北京市六环内公园绿地为对象,将其划分为综合公园、郊野公园、文化遗址公园、社区公园4种类型。在随机选取的75个公园内,采用样方法进行地上植被调查,随机法进行土壤采样,土壤种子库采用萌发试验确定,常规方法获取土壤理化指标。
结果(1)北京城市公园土壤种子库共有77种植物,隶属34科74属,以草本植物为主(97.5%),其中菊科物种数最多(16种)。土壤种子库密度在352 ~ 899粒/m2之间,其中菊科种子储量最高,其次为禾本科和豆科,密度最大的物种为马唐(147.11粒/m2),其次为苜蓿(128.40粒/m2)、狗尾草(122.67粒/m2)等。4类城市公园均以一、二年生草本为主,郊野公园的多年生草本相对丰度要高于其他类型公园,其种子库密度显著大于其他类型公园(P < 0.05)。(2)城市公园土壤种子库的Shannon-Wiener多样性指数范围在1.04 ~ 1.46,Simpson优势度指数范围在0.53 ~ 0.62,Patrick丰富度指数范围在4.79 ~ 8.41,Pielou均匀度指数范围在0.74 ~ 0.84,其中郊野公园种子库物种丰富度显著大于其他类型公园(P < 0.05)。(3)相似系数(Sørensen指数)和非度量多维尺度排序分析表明,不同类型公园间土壤种子库、地上植被相似性系数较高,且群落结构差异不显著。4类城市公园土壤种子库与地上植被相似性偏低,相似系数为0.10 ~ 0.18,且土壤种子库与地上植被间群落构成存在明显差异。(4)土壤种子库密度与草本多样性指数、草本物种丰富度指数、土壤铵态氮和非毛管孔隙度呈显著正相关(P < 0.05),与土壤全氮和硝态氮呈显著负相关;土壤种子库物种丰富度指数与土壤全氮和硝态氮呈显著正相关,与草本多样性指数和土壤铵态氮呈显著负相关。土壤种子库均匀度、优势度和多样性指数与灌木物种丰富度指数呈显著正相关,与草本物种丰富度指数呈显著负相关。其中,草本多样性指数和灌木物种丰富度指数对城市公园土壤种子库的密度和物种多样性影响较大。
结论城市公园土壤种子库密度较小,与其对应地上植被间相似性也较低,且以草本植物种子为主;种子库密度和物种多样性主要受地上草本多样性指数和灌木物种丰富度指数影响较大。因此城市公园绿地土壤种子库更新潜力较低,采取人工促进木本植被更新,是营建近自然城市公园的关键。
Abstract:ObjectiveAs a potential plant community, soil seed bank represents the regeneration and succession potential of aboveground vegetation to some extent. To study the characteristics of soil seed banks and their response to aboveground vegetation and soil factors in urban park green spaces can provide theoretical basis for the construction of urban parks near nature.
MethodTaking the green spaces of parks within the Sixth Ring Road of Beijing as the object, they were divided into four types: comprehensive park, country park, cultural heritage park, and community park. In 75 randomly selected parks, aboveground vegetation surveys were carried out by sampling methods and soil sampling was carried out by randomization methods, the soil seed bank was determined by greenhouse germination method, soil physical and chemical indexes were obtained by conventional method.
Result(1) There were 77 species in the soil seed banks of Beijing City Parks, belonging to 34 families and 74 genera. Most of them were herbs (97.5%), with the highest number of species in the Asteraceae (16 species). Density of soil seed bank ranged from 352 to 899 grain/m2, with Asteraceae having the highest seed reserves, followed by Gramineae and Leguminosae. The species with the highest density was Digitaria sanguinalis (147.11 grain/m2), followed by Medicago sativa (128.40 grain/m2), Setaria viridis (122.67 grain/m2) and others. Annal and biennial herbs were dominant in the four types of urban parks. The relative abundance of perennial herbs in country parks was higher than that in other types of parks, and the density of their seed banks was significantly greater than that in other types of parks (P < 0.05). (2) The Shannon-Wiener diversity index of the soil seed banks in urban parks ranged from 1.04 to 1.46, the Simpson dominance index ranged from 0.53 to 0.62, the Patrick richness index ranged from 4.79 to 8.41, and the Pielou evenness index ranged from 0.74 to 0.84, with the species richness of seed banks of country parks significantly greater than that of other types of parks (P < 0.05). (3) Similarity coefficients (Sørensen index) and non-metric multidimensional scaling analysis indicated that the similarity coefficients of soil seed bank and aboveground vegetation among different types of parks were high, and the differences in community structure were not significant. The similarity between soil seed bank and aboveground vegetation in the four types of urban parks was low, with similarity coefficients ranging from 0.10 to 0.18, and there were significant differences in community composition between them. (4) The density of soil seed banks was significantly positively correlated with herb diversity index, herb species richness index, soil ammonium nitrogen, and non-capillary porosity (P < 0.05), and significantly negatively correlated with soil total nitrogen and nitrate nitrogen. The species richness index of soil seed banks was significantly positively correlated with soil total nitrogen and nitrate nitrogen, and significantly negatively correlated with herb diversity index and soil ammonium nitrogen. The soil seed bank evenness, dominance, and diversity indices were significantly positively correlated with shrub species richness index and negatively correlated with herb species richness index. Among them, the herb diversity index and shrub species richness index had a greater impact on the density and species diversity of soil seed bank in urban parks.
ConclusionThe density of soil seed banks in urban parks and the similarity between the soil seed banks and its corresponding aboveground vegetation is low, and the seeds of herb plants are dominated. The density and species diversity of the seed banks are mainly influenced by the diversity index of aboveground herb plants and the richness index of aboveground shrub species. Therefore, the soil seed bank renewal potential of urban parks is low, and artificial promotion of woody vegetation renewal is the key to build a near-natural urban park.
-
-
表 1 公园分类
Table 1 Classification of parks
公园类型
Type of park位置
Location功能特点
Functional characteristics人为管理
Artificial management综合公园
Comprehensive
park中心区
Central zone综合公园一般规模较大;以人工景观为主;具有休闲游憩、生态景观、文化科普、防灾避灾等功能并全面均衡发展;服务半径大
The scale of comprehensive park is generally large, mainly artificial landscape, and has the functions of recreation, ecological landscape, cultural science, disaster prevention and avoidance, and comprehensive and balanced development; the service radius of such park is large管理机制稳定健全,人为干扰强度较大;资源保护措施完善且效果好;绿地养护水平高
The management mechanism is stable and sound, and the intensity of human interference is large; the resource protection measures are perfect and effective; the level of green space maintenance is high文化遗址公园
Cultural
heritage park中心区
Central zone文化遗址公园规模适中;人文与自然景观相结合;具有突出的文化科普和休闲游憩的功能,对非本地游客有重要影响;服务半径适中
The scale of cultural heritage park is moderate, combining humanistic and natural landscapes, with outstanding functions of popularization of culture and recreation, and have an important impact on non-local visitors; the service radius of such park is moderate管理机制稳定健全,人为干扰强度较大;资源保护措施完善且效果好;绿地养护水平高
The management mechanism is stable and sound, and the intensity of human interference is large; the resource protection measures are perfect and effective; the level of green space maintenance is high社区公园
Community park中心区 (居民区附近)
Central zone (near a residential area)社区公园一般规模较小;以人工景观为主;周围居民为主要服务对象,具有休闲放松、生态景观和防灾避灾等功能;服务半径小
The scale of community parks is generally small, mainly artificial landscape, and the surrounding residents as the main service object, with the functions of leisure and relaxation, ecological landscape and disaster prevention and avoidance; the service radius of such park is small管理机制较稳定,人为干扰强度适中;资源保护措施比较完善且效果比较好;绿地养护水平中等
The management mechanism is relatively sound, and the intensity of human interference is moderate; the resource protection measures are sound and the effect is good; the level of green space maintenance is medium郊野公园
Country park近郊
Suburb郊野公园规模较大;以自然景观为主;生态服务功能突出,兼有休憩娱乐、文化科普和防灾减灾等功能;服务半径较大
The scale of country park is large, mainly natural landscape, with outstanding ecological service functions, and functions of leisure and recreation, culture and science popularization, and disaster prevention and mitigation; the service radius of such park is large管理机制有待提升,人为干扰强度较小;资源保护措施有待完善,效果较好;绿地养护水平一般
The management mechanism needs to be improved, and the intensity of human interference is small; the resource protection measures need to be improved and the effect is good; the level of green space maintenance is average注:引自文献[2, 23−25]。Note: cited from reference [2, 23−25]. 表 2 不同类型城市公园土壤种子库物种组成和密度
Table 2 Species composition and density of soil seed banks in different types of urban parks
科
Family属
Genus种
Species生活型
Life
form物种密度/(粒·m−2) Species density/(grain·m−2) 综合公园
Comprehensive
park郊野公园
Country
park文化遗址
公园
Cultural
heritage park社区公园
Community
park车前科 Plantaginaceae 车前属 Plantago 车前 Plantago asiatica P 14.81 62.96 14.81 22.22 婆婆纳属 Veronica 蚊母草 Veronica peregrina A 14.81 唇形科 Lamiaceae 薄荷属 Mentha 薄荷 Mentha canadensis P 14.81 111.11 活血丹属 Glechoma 活血丹 Glechoma longituba P 14.81 71.96 14.81 37.04 夏至草属 Lagopsis 夏至草 Lagopsis supina P 29.63 22.22 14.81 14.81 大戟科 Euphorbiaceae 大戟属 Euphorbia 地锦草 Euphorbia humifusa A 29.63 29.63 19.75 铁苋菜属 Acalypha 铁苋菜 Acalypha australis A 22.22 29.63 143.21 22.22 豆科 Fabaceae 胡枝子属 Lespedeza 胡枝子 Lespedeza bicolor S 74.07 决明属 Senna 决明 Senna tora A 103.70 米口袋属 Gueldenstaedtia 少花米口袋 Gueldenstaedtia verna P 59.26 苜蓿属 Medicago 苜蓿 Medicago sativa P 88.89 148.15 禾本科 Poaceae 地毯草属 Axonopus 地毯草 Axonopus compressus P 29.63 狗尾草属 Setaria 狗尾草 Setaria viridis A 18.52 216.67 56.30 122.22 黑麦草属 Lolium 黑麦草 Lolium perenne P 14.81 马唐属 Digitaria 马唐 Digitaria sanguinalis A 287.04 119.75 48.68 140.74 穇属 Eleusine 牛筋草 Eleusine indica A 55.56 129.29 154.07 67.72 早熟禾属 Poa 早熟禾 Poa annua A 79.01 77.04 196.83 29.63 虎耳草科 Saxifragaceae 虎耳草属 Saxifraga 虎耳草 Saxifraga stolonifera P 44.44 29.63 夹竹桃科 Apocynaceae 鹅绒藤属 Cynanchum 萝藦 Cynanchum rostellatum V 14.81 堇菜科 Violaceae 堇菜属 Viola 堇菜 Viola arcuata P 19.75 紫花地丁 Viola philippica P 14.81 14.81 88.89 锦葵科 Grewia 扁担杆属 Grewia 扁担杆 Grewia biloba S 14.81 苘麻属 Abutilon 苘麻 Abutilon theophrasti A 14.81 14.81 田麻属 Corchoropsis 田麻 Corchoropsis crenata A 14.81 菊科 Asteraceae 飞蓬属 Erigeron 小蓬草 Erigeron canadensis A 22.22 一年蓬 Erigeron annuus AB 14.81 鬼针草属 Bidens 鬼针草 Bidens pilosa A 14.81 蒿属 Artemisia 青蒿 Artemisia caruifolia A 59.26 29.63 44.44 黄鹌菜属 Youngia 黄鹌菜 Youngia japonica P 74.07 29.63 蓟属 Cirsium 蓟 Cirsium japonicum P 74.07 29.63 103.70 91.85 假还阳参属 Crepidiastrum 假还阳参 Crepidiastrum lanceolatum P 103.70 59.26 金光菊属 Rudbeckia 黑心金光菊 Rudbeckia hirta AB 14.81 菊三七属 Gynura 白子菜 Gynura divaricata P 59.26 苦苣菜属 Sonchus 长裂苣荬菜 Sonchus brachyotus A 14.81 22.22 苦苣菜 Sonchus oleraceus AB 31.75 47.41 14.81 24.69 苦荬菜属 Ixeris 中华苦荬菜 Ixeris chinensis P 113.58 44.44 鳢肠属 Eclipta 鳢肠 Eclipta prostrata A 14.81 牛膝菊属 Galinsoga 牛膝菊 Galinsoga parviflora A 22.22 29.63 14.81 蒲公英属 Taraxacum 蒲公英 Taraxacum mongolicum P 29.63 29.63 旋覆花属 Inula 旋覆花 Inula japonica P 14.81 苦木科 Simaroubaceae 臭椿属 Ailanthus 臭椿 Ailanthus altissima T 14.81 蓼科 Polygonaceae 千叶兰属 Muehlenbeckia 竹节蓼 Muehlenbeckia platyclada P 44.44 列当科 Orobanchaceae 地黄属 Rehmannia 地黄 Rehmannia glutinosa P 14.81 马齿苋科 Portulacaceae 马齿苋属 Portulaca 马齿苋 Portulaca oleracea A 74.07 48.48 276.54 72.22 木樨科 Oleaceae 梣属 Fraxinus 白蜡树 Fraxinus chinensis T 22.22 29.63 茜草科 Rubiaceae 耳草属 Hedyotis 耳草 Hedyotis auricularia P 14.81 29.63 拉拉藤属 Galium 车轴草 Galium odoratum P 14.81 蔷薇科 Rosaceae 委陵菜属 Potentilla 朝天委陵菜 Potentilla supina AB 207.41 51.03 44.44 37.04 茄科 Solanaceae 茄属 Solanum 龙葵 Solanum nigrum A 14.81 忍冬科 Caprifoliaceae 忍冬属 Lonicera 金银忍冬 Lonicera maackii S 14.81 桑科 Moraceae 构属 Broussonetia 构 Broussonetia papyrifera T 14.81 桑属 Morus 桑 Morus alba T 29.63 14.81 14.81 莎草科 Cyperaceae 莎草属 Cyperus 莎草 Cyperus rotundus P 14.81 水蜈蚣属 Kyllinga 短叶水蜈蚣 Kyllinga brevifolia P 29.63 44.44 14.81 薹草属 Carex 薹草 Carex spp. P 29.63 88.89 十字花科 Brassicaceae 独行菜属 Lepidium 独行菜 Lepidium apetalum AB 29.63 88.89 14.81 37.86 荠属 Capsella 荠 Capsella bursa-pastoris AB 14.81 诸葛菜属 Orychophragmus 诸葛菜 Orychophragmus violaceus AB 29.63 64.20 石竹科 Caryophyllaceae 繁缕属 Stellaria 繁缕 Stellaria media AB 14.81 29.63 488.89 漆姑草属 Sagina 漆姑草 Sagina japonica AB 14.81 天门冬科 Asparagaceae 沿阶草属 Ophiopogon 沿阶草 Ophiopogon bodinieri P 138.27 14.81 55.56 通泉草科 Mazaceae 通泉草属 Mazus 通泉草 Mazus pumilus A 14.81 44.44 14.81 125.93 无患子科 Sapindaceae 栾属 Koelreuteria 栾 Koelreuteria paniculata T 29.63 44.44 22.22 14.81 槭属 Acer 元宝槭 Acer truncatum T 59.26 苋科 Amaranthaceae 沙冰藜属 Bassia 地肤 Bassia scoparia A 74.07 藜属 Chenopodium 藜 Chenopodium album A 29.63 32.59 39.51 48.15 苋属 Amaranthus 凹头苋 Amaranthus blitum A 29.63 44.44 旋花科 Convolvulaceae 打碗花属 Calystegia 打碗花 Calystegia hederacea A 14.81 虎掌藤属 Ipomoea 牵牛 Ipomoea nil A 14.81 荨麻科 Urticaceae 雾水葛属 Pouzolzia 雾水葛 Pouzolzia zeylanica P 14.81 苎麻属 Boehmeria 苎麻 Boehmeria nivea S 29.63 29.63 74.07 44.44 鸭跖草科 Commelinaceae 鸭跖草属 Commelina 鸭跖草 Commelina communis A 14.81 银杏科 Ginkgoaceae 银杏属 Ginkgo 银杏 Ginkgo biloba T 14.81 罂粟科 Papaveraceae 紫堇属 Corydalis 紫堇 Corydalis edulis A 14.81 鸢尾科 Iridaceae 鸢尾属 Iris 鸢尾 Iris tectorum P 29.63 紫草科 Boraginaceae 附地菜属 Trigonotis 附地菜 Trigonotis peduncularis B 107.41 69.63 212.35 80.00 酢浆草科 Oxalidaceae 酢浆草属 Oxalis 酢浆草 Oxalis corniculata P 19.75 37.04 98.77 59.26 注:A.一年生草本;B.二年生草本;AB.一或二年生草本;P.多年生草本;V.藤本;S.灌木;T.乔木。Notes: A, annual herb; B, biennial herb; AB, annual or biennial herb; P, perennial herb; V, vine; S, shrub; T, tree. 表 3 不同类型城市公园之间土壤种子库、地上植被Sørensen相似性系数
Table 3 Sørensen similarity coefficients of soil seed banks and aboveground vegetation species among different types of urban parks
公园类型 土壤种子库间物种相似性
Species similarity among soil seed banks地上植被间物种相似性
Species similarity among aboveground vegetations综合公园
Comprehensive park郊野公园
Country park文化遗址公园
Cultural heritage park综合公园
Comprehensive park郊野公园
Country park文化遗址公园
Cultural heritage park郊野公园
Country park0.64 0.62 文化遗址公园
Cultural heritage park0.64 0.57 0.60 0.59 社区公园
Community park0.68 0.56 0.57 0.65 0.64 0.60 -
[1] Cheng Y Y, Zhang J G, Wei W, et al. Effects of urban parks on residents’ expressed happiness before and during the COVID-19 pandemic[J/OL]. Landscape and Urban Planning, 2021, 212: 104118[2021−10−25]. https://doi.org/10.1016/j.landurbplan.2021.104118.
[2] 陶晓丽, 陈明星, 张文忠, 等. 城市公园的类型划分及其与功能的关系分析: 以北京市城市公园为例[J]. 地理研究, 2013, 32(10): 1964−1976. Tao X L, Chen M X, Zhang W Z, et al. The classification of urban parks and its relationship with functions: a case study of urban parks in Beijing[J]. Geographical Research, 2013, 32(10): 1964−1976.
[3] Özgüner H. Cultural differences in attitudes towards urban parks and green spaces[J]. Landscape Research, 2011, 36: 599−620. doi: 10.1080/01426397.2011.560474
[4] Wang M, Zhang H, Fan S, et al. A zoning-based solution for hierarchical forest patch mosaic in urban parks[J/OL]. Urban Forestry & Urban Greening, 2021, 65: 127352[2022−12−23]. https://doi.org/10.1016/j.ufug.2021.127352.
[5] Morelli F, Benedetti Y, Su T, et al. Taxonomic diversity, functional diversity and evolutionary uniqueness in bird communities of Beijing’s urban parks: effects of land use and vegetation structure[J]. Urban Forestry & Urban Greening, 2017, 23: 84−92.
[6] Wu W, Ding K. Optimization strategy for parks and green spaces in Shenyang City: improving the supply quality and accessibility[J/OL]. International Journal of Environmental Research and Public Health, 2022, 19(8): 4443[2023−01−12]. https://doi.org/10.3390/ijerph19084443.
[7] Brown G, Rhodes J, Dade M. An evaluation of participatory mapping methods to assess urban park benefits[J]. Landscape and Urban Planning, 2018, 178: 18−31. doi: 10.1016/j.landurbplan.2018.05.018
[8] Mata L, Garrard G E, Fidler F, et al. Punching above their weight: the ecological and social benefits of pop-up parks[J]. Frontiers in Ecology and the Environment, 2019, 17: 341−347. doi: 10.1002/fee.2060
[9] 康冰, 王得祥, 崔宏安, 等. 秦岭山地油松群落更新特征及影响因子[J]. 应用生态学报, 2011, 22(7): 1659−1667. doi: 10.13287/j.1001-9332.2011.0236 Kang B, Wang D X, Cui H A, et al. Regeneration characteristics and related affecting factors of Pinus tabulaeformis secondary forests in Qinling Mountains[J]. Chinese Journal of Applied Ecology, 2011, 22(7): 1659−1667. doi: 10.13287/j.1001-9332.2011.0236
[10] 李小双, 彭明春, 党承林. 植物自然更新研究进展[J]. 生态学杂志, 2007, 26(12): 2081−2088. doi: 10.13292/j.1000-4890.2007.0364 Li X S, Peng M C, Dang C L. Research progress on natural regeneration of plants[J]. Chinese Journal of Ecology, 2007, 26(12): 2081−2088. doi: 10.13292/j.1000-4890.2007.0364
[11] Harper J L. Population biology of plants[M]. London: Academic Press, 1977.
[12] Roberts H A. Seed banks in soils[J]. Advances in Applied Biology, 1981, 6: 1−55.
[13] 李彦娇, 包维楷, 吴福忠. 岷江干旱河谷灌丛土壤种子库及其自然更新潜力评估[J]. 生态学报, 2010, 30(2): 399−407. Li Y J, Bao W K, Wu F Z. Soil seed bank and natural regeneration potential of shrubland in dry valleys of Minjiang River[J]. Acta Ecologica Sinica, 2010, 30(2): 399−407.
[14] 卢正宽, 刘贺永, 蹇述莲, 等. 森林草原过渡带持久土壤种子库沿降水梯度的格局[J]. 应用生态学报, 2022, 33(9): 2363−2370. Lu Z K, Liu H Y, Jian S L, et al. Pattern of persistent soil seed bank along precipitation gradient in forest-steppe transition zone[J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2363−2370.
[15] 王东丽, 郭莹莹, 谢伟, 等. 风沙黄土区排土场不同恢复类型植物群落与土壤种子库特征[J]. 水土保持研究, 2022, 29(5): 171−177. Wang D L, Guo Y Y, Xie W, et al. Community and soil seed bank characteristics of different vegetation restoration types in aeolian sandy loess dumps[J]. Research of Soil and Water Conservation, 2022, 29(5): 171−177.
[16] 陈颖颖, 吴自荣, 潘萍, 等. 飞播马尾松林土壤种子库的萌发特征及其与土壤理化性质的关系[J]. 土壤通报, 2016, 47(1): 92−97. Chen Y Y, Wu Z R, Pan P, et al. The germination characteristics of soil seed bank and its relationship with doil properties in aerially-seeded Pinus massoiana plantations[J]. Chinese Journal of Soil Science, 2016, 47(1): 92−97.
[17] 李国旗, 邵文山, 赵盼盼, 等. 荒漠草原区4种植物群落土壤种子库特征及其土壤理化性质[J]. 生态学报, 2019, 39(17): 6282−6292. Li G Q, Shao W S, Zhao P P, et al. Analysis of soil seed bank characteristics and soil physical and chemical properties of four plant communities in a desert steppe region[J]. Acta Ecologica Sinica, 2019, 39(17): 6282−6292.
[18] Basto S, Thompson K, Phoenix G, et al. Long-term nitrogen deposition depletes grassland seed banks[J/OL]. Nature Communications, 2015, 6(1): 6185[2022−12−25]. https://www.nature.com/articles/ncomms7185.
[19] Zhao D J, Sun M Q, Xue Y W, et al. Spatial variations of plant species diversity in urban soil seed banks in Beijing, China: Implications for plant regeneration and succession[J/OL]. Urban Forestry & Urban Greening, 2023, 86: 128012[2023−10−30]. https://doi.org/10.1016/j.ufug.2023.128012.
[20] Zhao D J, Yang Q M, Sun M Q, et al. Urbanization and greenspace effect on plant biodiversity variations in Beijing, China[J/OL]. Urban Forestry & Urban Greening, 2023, 89: 128119[2023−10−30]. https://doi.org/10.1016/j.ufug.2023.128119.
[21] Monteiro M V, Doick K J, Handley P, et al. The impact of greenspace size on the extent of local nocturnal air temperature cooling in London[J]. Urban Forestry & Urban Greening, 2016, 16: 160−169.
[22] 仇宽彪. 北京市五环内城市植被格局及公园绿地生态服务功能价值初步研究[D]. 北京: 中国林业科学研究院, 2011. Qiu K B. Primary study on the urban vegetation pattern and the ecological services valuation of parks within the 5th Ring Road in Beijing[D]. Beijing: Chinese Academy of Forestry, 2011.
[23] 中华人民共和国建筑部. 城市绿地分类标准: CJJ/T85−2017[S]. 北京: 中国建筑工业出版社, 2017. Ministry of Construction of the People’s Republic of China. Classification standard of urban green space: CJJ/T85−2017[S]. Beijing: China Architecture and Building Press, 2017.
[24] 北京市园林绿化局. 北京市公园分类分级管理办法[EB/OL]. (2022−04−15)[2023−03−03]. https://www.beijing.gov.cn/zhengce/gfxwj/202210/W020221008609059716277.pdf. Beijing Municipal Forestry and Parks Bureau. Measures of Beijing for the Administration of Parks by Classification and Classification[EB/OL]. (2022−04−15)[2023−03−03]. https://www.beijing.gov.cn/zhengce/gfxwj/202210/W020221008609059716277.pdf.
[25] 王子尧, 高宇, 王向荣. 北京中心城区城市公园使用状况与影响因素量化研究[J]. 北京规划建设, 2020(2): 88−93. Wang Z Y, Gao Y, Wang X R. A quantitative study on the use status and influencing factors of urban parks in central Beijing[J]. Beijing Planning Review, 2020(2): 88−93.
[26] Warr S J, Kent M, Thompson K. Seed bank composition and variability in five woodlands in south-west England[J]. Journal of Biogeography, 1994, 21(2): 151−168. doi: 10.2307/2845469
[27] Bigwood D W, Inouye D W. Spatial pattern analysis of seed banks: an improved method and optimized sampling[J]. Ecology, 1988, 2: 497−507.
[28] 刘静逸, 牛艳东, 郭克疾, 等. 南洞庭湖杨树清理迹地恢复初期土壤种子库特征及其与土壤因子的关系[J]. 应用生态学报, 2020, 31(12): 4042−4050 doi: 10.13287/j.1001-9332.202012.005 Liu J Y, Niu Y D, Guo K J, et al. Characteristics of soil seed bank and their correlations with soil factors in the early restoration period of Populus deltoides cutting slash in Lake South Dongting, China[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4042−4050. doi: 10.13287/j.1001-9332.202012.005
[29] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2002: 146−185. Lu R K. Methods for agricultural chemical analysis of soil[M]. Beijing: China Agricultural Science and Technology Press, 2002: 146−185.
[30] Gross K L. A comparison of methods for estimating seed numbers in the soil[J]. Journal of Ecology, 1990,78(4): 1079−1093.
[31] Wang J, Huang L, Ren H, et al. Regenerative potential and functional composition of soil seed banks in remnant evergreen broad-leaved forests under urbanization in South China[J]. Community Ecology, 2015, 16: 86−94. doi: 10.1556/168.2015.16.1.10
[32] Vieira M D, Overbeck G E. Small seed bank in grasslands and tree plantations in former grassland sites in the South Brazilian Highlands[J]. Biotropica, 2020, 52: 775−782. doi: 10.1111/btp.12785
[33] 罗超, 郭小平, 冯昶栋, 等. 乌海周边土壤种子库特征及其与地上植被和土壤因子的关系[J]. 草业学报, 2021, 30(11): 13−28. Luo C, Guo X P, Feng C D, et al. The characteristics of the soil seed bank in Wuhai and surrounding areas and the relationship with vegetation and soil factors[J]. Acta Prataculturae Sinica, 2021, 30(11): 13−28.
[34] 胡安. 滩羊轮牧对典型草原土壤种子库的作用[D]. 兰州: 兰州大学, 2021. Hu A. Rotational grazing of Tan-Sheep affects soil seed bank of typical steppe[D]. Lanzhou: Lanzhou University, 2021.
[35] Bengtsson J. Which species? What kind of diversity? Which ecosystem function? Some problems in studies of relations between biodiversity and ecosystem function[J]. Applied Soil Ecology, 1998, 10: 191−199. doi: 10.1016/S0929-1393(98)00120-6
[36] 李晓鹏, 董丽, 关军洪,等. 北京城市公园环境下自生植物物种组成及多样性时空特征[J]. 生态学报, 2018, 38(2): 581−594. Li X P, Dong L, Guan J H, et al. Temporal and spatial characteristics of spontaneous plant composition and diversity in a Beijing urban park[J]. Acta Ecologica Sinica, 2018, 38(2): 581−594.
[37] 刘庆艳, 王国栋, 姜明, 等. 三江平原沟渠土壤种子库特征及其与地上植被的关系[J]. 植物生态学报, 2014, 38(1): 17−26 doi: 10.3724/SP.J.1258.2014.00002 Liu Q Y, Wang G D, Jiang M, et al. Characteristics of soil seed banks and their relationships with aboveground vegetation in ditches in the Sanjiang Plain[J]. Chinese Journal of Plant Ecology, 2014, 38(1): 17−26. doi: 10.3724/SP.J.1258.2014.00002
[38] Decocq G, Valentin B, Toussaint B, et al. Soil seed bank composition and diversity in a managed temperate deciduous forest[J]. Biodiversity & Conservation, 2004, 13: 2485−2509.
[39] Pearson T R H, Burslem D F R P, Mullins C E, et al. Germination ecology of neotropical pioneers: interacting effects of environmental conditions and seed size[J]. Ecology, 2002, 10: 2798−2807.
[40] Sitvertown J W. Introduction to plantation population ecology[M]. London: Longman, 1982: 126−135.
[41] 张姝萌. 上海城市废弃地杂草种子库季相动态与城乡差异[D]. 上海: 华东师范大学, 2017. Zhang S M. Seasonal dynamics of weed seed bank in wasteland of Shanghai and its difference along urban-rural gradient[D]. Shanghai: East China Normal University, 2017.
[42] 张博, 高尚军, 殷鸣放, 等. 城市近郊林土壤种子库研究[J]. 辽宁林业科技, 2009(3): 5−9. Zhang B, Gao S J, Yin M F, et al. Studies on soil seed bank of forest in suburbs[J]. Liaoning Forestry Science and Technology, 2009(3): 5−9.
[43] 伏凯. 北京山区自然边坡土壤种子库特征研究[D]. 北京: 北京林业大学, 2016. Fu K. Soil seed bank of typical slope in Beijing mountain area[D]. Beijing: Beijing Forestry University, 2016.
[44] 牛瑞芳, 吴铁航, 柴宝峰. 黄土高原亚高山草地退化对土壤种子库的影响[J]. 草地学报, 2021, 29(5): 972−981. Niu R F, Wu T H, Chai B F. Effects of subalpine grassland degradation on soil seed bank in the Loess Plateau[J]. Acta Agrestia Sinica, 2021, 29(5): 972−981.
[45] Paluch J G. Ground seed density patterns under conditions of strongly overlapping seed shadows in Abies alba Mill. stands[J]. European Journal of Forest Research, 2011, 130: 1009−1022. doi: 10.1007/s10342-011-0486-4
[46] Thompson K. Small-scale heterogeneity in the seed bank of an acidic grassland[J]. Journal of Ecology, 1986, 74: 733−738. doi: 10.2307/2260394
[47] Pekas K M, Schupp E W. Influence of aboveground vegetation on seed bank composition and distribution in a Great Basin Desert sagebrush community[J]. Journal of Arid Environments, 2013, 88: 113−120. doi: 10.1016/j.jaridenv.2012.08.013
[48] 贺士元, 邢其华, 尹祖棠,等. 北京植物志[M]. 北京: 北京出版社, 1984. He S Y, Xing Q H, Yin Z T, et al. Flora of Beijing[M]. Beijing: Beijing Publishing Group, 1984.
[49] Tedoradze G, Nakhutsrishvili G, Seip M, et al. Terrain impacts the composition of the persistent soil seed bank: a case study of steep high mountain grasslands in the Greater Caucasus, Georgia[J]. Phytocoenologia, 2020, 50: 47−63. doi: 10.1127/phyto/2019/0321
[50] Zhang D J, Zhang J, Yang W Q, et al. Plant and soil seed bank diversity across a range of ages of Eucalyptus grandis plantations afforested on arable lands[J]. Plant and Soil, 2014, 376: 307−325. doi: 10.1007/s11104-013-1954-z
[51] Thompson K, Grime J P. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats[J]. Journal of Ecology, 1979, 67: 893−921. doi: 10.2307/2259220
[52] White E, Tucker N, Meyers N, et al. Seed dispersal to revegetated isolated rainforest patches in North Queensland[J]. Forest Ecology and Management, 2004, 192: 409−426. doi: 10.1016/j.foreco.2004.02.002
[53] Klimkowska A, Diggelen R V, Held S D, et al. Seed production in fens and fen meadows along a disturbance gradient[J]. Applied Vegetation Science, 2009, 12: 304−315. doi: 10.1111/j.1654-109X.2009.01024.x
[54] Guo Y L, Li Y F, Li J X, et al. Comparison of aboveground vegetation and soil seed bank composition among three typical vegetation types in the karst regions of Southwest China[J/OL]. Agronomy, 2022, 12: 1871[2022−12−23]. https://doi.org/10.3390/agronomy12081871.
[55] 孙映通, 夏礼庆, 林琳, 等. 香格里拉亚高山森林带退化群落土壤种子库特征与土壤理化性质分析[J]. 云南大学学报(自然科学版), 2020, 42(5): 1014−1026. Sun Y T, Xia L Q, Lin L, et al. Characteristics of soil seed bank and soil physicochemical properties of degraded communities in Shangri-la subalpine forest belt[J]. Journal of Yunnan University (Natural Sciences Edition), 2020, 42(5): 1014−1026.
[56] 冯璐, 刘京涛, 韩广轩, 等. 黄河三角洲滨海湿地地下水位变化对土壤种子库特征的影响[J]. 生态学报, 2021, 41(10): 3826−3835. Feng L, Liu J T, Han G X, et al. Effects of groundwater level fluctuation characteristics of soil seed banks in coastal wetlands of the Yellow River Delta[J]. Acta Ecologica Sinica, 2021, 41(10): 3826−3835.
[57] Valdés-Rodríguez O A, Sánchez-Sánchez O, Pérez-Vázquez A. Effects of soil texture on germination and survival of non-toxic Jatropha curcas seeds[J]. Biomass and Bioenergy, 2013, 48: 167−170. doi: 10.1016/j.biombioe.2012.10.025
-
期刊类型引用(5)
1. 买永辉,贾艳玲,齐蓉,陈帅,王宏彬,丁志辉. 基于LoRa的沙漠近地环境参数监测系统设计. 数字技术与应用. 2023(07): 163-165 . 百度学术
2. 屈英,刘小强,李明淇. 枣树滴灌水肥一体化发展现状及建议. 河北农机. 2023(18): 94-96 . 百度学术
3. 丁磊,鲁延芳,占玉芳,甄伟玲,滕玉风,钱万建. 沙荒地红枣矮化密植丰产栽培技术. 林业科技通讯. 2022(04): 78-81 . 百度学术
4. 韩齐齐,张娅妮,冯荦荦,闫欣鹏,张有林. 冬枣采后生理与气调贮藏关键技术研究. 食品与发酵工业. 2021(04): 33-39 . 百度学术
5. 张波,吕廷波,赵秀杰,王东旺,徐强,邢猛,周小杰. 不同灌溉定额对滴灌骏枣生长的影响. 水土保持学报. 2021(06): 168-174+182 . 百度学术
其他类型引用(1)