高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

杉木主伐林分材种结构及其出材率模型研建

潘昕 李骏 孙帅超 陈明华 华伟平 江希钿

潘昕, 李骏, 孙帅超, 陈明华, 华伟平, 江希钿. 杉木主伐林分材种结构及其出材率模型研建[J]. 北京林业大学学报, 2023, 45(8): 84-93. doi: 10.12171/j.1000-1522.20230031
引用本文: 潘昕, 李骏, 孙帅超, 陈明华, 华伟平, 江希钿. 杉木主伐林分材种结构及其出材率模型研建[J]. 北京林业大学学报, 2023, 45(8): 84-93. doi: 10.12171/j.1000-1522.20230031
Pan Xin, Li Jun, Sun Shuaichao, Chen Minghua, Hua Weiping, Jiang Xidian. Timber assortment structure and outturn model for final felling stands of Cunninghamia lanceolata plantations[J]. Journal of Beijing Forestry University, 2023, 45(8): 84-93. doi: 10.12171/j.1000-1522.20230031
Citation: Pan Xin, Li Jun, Sun Shuaichao, Chen Minghua, Hua Weiping, Jiang Xidian. Timber assortment structure and outturn model for final felling stands of Cunninghamia lanceolata plantations[J]. Journal of Beijing Forestry University, 2023, 45(8): 84-93. doi: 10.12171/j.1000-1522.20230031

杉木主伐林分材种结构及其出材率模型研建

doi: 10.12171/j.1000-1522.20230031
基金项目: “十四五”国家重点研发计划项目(2021YFD2201302),福建省林业科技项目(KLB18H18A、KFA17283A)
详细信息
    作者简介:

    潘昕,博士生。主要研究方向:森林经营和资产评估研究。Email:363988391@qq.com 地址:350002福建省福州市仓山区上下店路15号福建农林大学

    责任作者:

    江希钿,博士生导师,教授。主要研究方向:森林经营和资产评估研究。Email:fjjxd@126.com 地址:同上

  • 中图分类号: S757;S791.27

Timber assortment structure and outturn model for final felling stands of Cunninghamia lanceolata plantations

  • 摘要:   目的  明晰杉木主伐林分的材种结构规律并构建合理的林分出材率模型,为我国杉木人工林木材产量提高、营林技术提升以及经营方案优化提供科学依据。  方法  根据福建省6个国有林场近15年的杉木人工林492块伐区调查数据,选用林分平均胸径、平均高、年龄、蓄积量、密度、立地质量等林分因子,探讨林分规格材、非规格材、经济材、薪材、商品材、废材6种材种出材率对各因素的响应。在此基础上筛选影响材种出材率的主要林分因子,构建杉木主伐林分材种出材率模型,并对模型进行适用性评价。  结果  杉木主伐林分的各林分因子中,林分平均胸径和平均高对各材种出材率的影响最大,且远高于其他林分因子,其次为林分蓄积量、年龄和密度,立地质量的影响相对较小。以林分平均胸径和平均高为自变量构建杉木主伐林分的规格材、经济材、薪材出材率模型,模型拟合及检验效果均良好,以此为基础构建非规格材、商品材、废材出材率模型。对不同径阶的各材种出材率模型进行预测误差计算,预测误差均较小,且误差分布较为均匀。  结论  本研究揭示了杉木主伐林分的材种结构规律及其影响因子,建立的出材率模型体系可用于杉木主伐林分的出材率测算,为杉木人工林合理生产计划的制定提供支持。

     

  • 图  1  根据不同林分因子的伐区数量统计

    Figure  1.  Number of felling area according to different stand factors

    图  2  各材种出材率随林分平均胸径的变化

    Figure  2.  Change of average outturn percentage with stand average DBH

    图  3  各材种出材率随林分平均高的变化

    Figure  3.  Changes of average outturn percentage with stand average height

    图  4  各材种出材率随林分密度的变化

    Figure  4.  Changes of average outturn percentage with stand density

    图  5  各材种出材率随林分年龄的变化

    Figure  5.  Changes of average outturn percentage with stand age

    图  6  不同立地质量的各材种出材率

    Figure  6.  Average outturn percentage with different site qualities

    图  7  各杉木林分材种出材率在不同径阶的预测误差

    箱型图显示了各径阶的出材率预测误差的均值、分位数、最大值、最小值和异常值。The box plots display the whiskers, percentiles and mean of the predicted errors of outturn percentages for each diameter class, as well as outliers.

    Figure  7.  Predicted errors of outturn percentages against diameter class for Cunninghamia lanceolata

    表  1  各伐区主要林分因子统计

    Table  1.   Statistics of stand factors for each felling area

    林分因子 Stand factor最小值 Minimum value最大值 Maximum value均值 Average valueSDCV
    伐区面积/hm2 Cutting area/ha0.221.04.33.7660.876
    平均胸径 Average DBH/cm10.030.817.13.1730.185
    平均高 Average height/m6.421.712.02.2960.192
    林分年龄/a Stand age/year1853327.7470.240
    林分密度/(株·hm−2) Stand density/(tree·ha−1)3604 8901543719.3990.466
    单位面积蓄积/(m3·hm−2) Stand volume unit area/(m3·ha−1)25.5580.5212.9100.4820.472
    下载: 导出CSV

    表  2  林分因子与材种出材率相关性分析

    Table  2.   Correlation analysis between stand factors and outturn percentage

    林分因子
    Stand factor
    出材率 Outturn percentage
    规格材
    Dimension timber
    非规格材
    Non-dimension timber
    经济材
    Commercial timber
    薪材
    Fuel wood
    商品材
    Merchantable timber
    废材
    Refuse wood
    平均胸径 Average DBH0.865**−0.444**0.888**−0.837**0.808**−0.808**
    平均高 Average height0.854**−0.438**0.877**−0.651**0.861**−0.861**
    林分年龄 Stand age0.278**−0.255**0.219**−0.205**0.200**−0.200**
    林分密度 Stand density−0.310**0.072−0.397**0.841**−0.182**0.182**
    林分蓄积量 Stand volume0.580**−0.373**0.527**−0.0230.673**−0.673**
    立地等级 Site level−0.101*−0.009−0.159**0.101*−0.165**0.165**
    注:*表示相关性达显著水平(p < 0.05),**表示相关性达极显著水平(p < 0.01)。 Notes: * indicates significant correlation (p < 0.05) and ** indicates extremely significant correlation (p < 0.01).
    下载: 导出CSV

    表  3  林分各材种出材率在不同立地等级的方差分析及多重比较结果

    Table  3.   Analysis of variance and multiple comparison results of the yield of various timber species in forest stands at different site levels

    材种
    Timber assortment
    FLSD多重比较 LSD multiple comparison
    $ {\overline P _1} $ – $ {\overline P _2} $$ {\overline P _1} $ – $ {\overline P _3} $$ {\overline P _2} $ – $ {\overline P _3} $
    规格材 Dimension timber3.361*1.263.32*2.06
    非规格材 Non-dimension timber1.0701.000.60−0.39
    薪材 Fuel wood4.028*−0.73*−0.85**−0.12
    废材 Refuse wood8.871**−1.53*−3.08**−1.54*
    经济材 Commercial timber8.474**2.26*3.92**1.66*
    商品材 Merchantable timber8.871**1.53*3.08**1.54*
    注:$ {\overline P _1} $、$ {\overline P _2} $、$ {\overline P _3} $分别代表Ⅰ、Ⅱ及Ⅲ类地的林分材种平均出材率。*表示差异显著(p < 0.05),**表示差异极显著(p < 0.01)。Notes: $ {\overline P _1} $, $ {\overline P _2} $ and $ {\overline P _3} $ represent the average outturn percentage in Ⅰ, Ⅱ and Ⅲ site level, respectively. * indicates significant correlation (p < 0.05), and ** indicates extremely significant correlation (p < 0.01).
    下载: 导出CSV

    表  4  各材种出材率模型拟合结果

    Table  4.   Fitting results of outturn percentage model

    材种 Timber assortment模型 Modelabcd均方根误差
    Root mean square error
    R2
    规格材 Dimension timber 1 52.373 1.582 −1 041.905 4 155.411 3.548 0.932
    2 7.014 1.201 −0.040 21.756 3.533 0.933
    3 0.041 0.762 3.868 0.920
    4 −0.837 −0.186 3.675 0.649 27.471 0.074
    5 238.370 0.028 −2.864 3.536 0.933
    经济材 Commercial timber 1 77.964 1.165 −546.872 1 846.520 2.110 0.954
    2 24.608 0.318 0.014 1.184 2.146 0.953
    3 13.207 0.196 2.260 0.947
    4 0.125 0.012 −0.077 −0.095 8.058 0.813
    5 −7.228 0.007 0.615 2.241 0.948
    薪材 Fuel wood 1 15.770 −0.501 46.615 −145.045 1.313 0.815
    2 202.769 −0.828 −0.036 2.824 1.295 0.821
    3 140.439 −0.326 1.340 0.807
    4 0.048 0.007 −0.104 −0.038 3.641 0.024
    5 127.559 0.210 −8.463 1.359 0.801
    注:abcd为模型求解参数。Note: a, b, c and d are the solving parameters of the model.
    下载: 导出CSV

    表  5  材种出材率模型适用性检验结果

    Table  5.   Results of suitability of volume ratio model

    材种
    Timber assortment
    模型
    Model
    成对差分均值
    Pairwise difference average value
    成对差分标准差
    Pairwise difference standard deviation
    成对差分均值的标准误差
    Standard error of pairwise difference average value
    平均相对误差
    Average relative error/%
    T检验值
    T test value
    p
    规格材
    Dimension timber
    1 0.309 3.730 0.333 0.142 0.093 0.926
    2 0.107 3.843 0.343 0.125 0.079 0.937
    3 −0.121 4.239 0.379 −0.557 −0.321 0.749
    5 0.272 3.615 0.323 0.437 0.333 0.740
    经济材
    Commercial timber
    1 0.166 2.093 0.187 0.279 0.974 0.332
    2 0.203 2.134 0.190 0.033 1.066 0.289
    3 0.182 2.238 0.200 −0.056 0.834 0.406
    5 0.169 2.232 0.199 −2.146 0.850 0.397
    薪材 Fuel wood 1 0.628 1.263 0.112 0.628 0.557 0.579
    2 0.593 1.239 0.110 −0.040 0.535 0.593
    3 0.442 1.284 0.114 −0.152 0.385 0.701
    5 0.342 1.313 0.117 −7.112 0.292 0.771
    下载: 导出CSV
  • [1] 郑仁华, 施季森, 苏顺德, 等. 杉木第3代种子园营建技术及应用[J]. 森林与环境学报, 2018, 38(4): 406−413.

    Zheng R H, Shi J S, Su S D, et al. The establishment technique and application of the third generation seed orchard of Chinese fir[J]. Journal of Forest and Environment, 2018, 38(4): 406−413.
    [2] Wang Z, Zhang X Q, Chhin S, et al. Disentangling the effects of stand and climatic variables on forest productivity of Chinese fir plantations in subtropical China using a random forest algorithm[J]. Agricultural and Forest Meteorology, 2021, 304−305(11): 108412.
    [3] 臧颢, 黄锦程, 刘洪生, 等. 杉木人工林碳汇木材多功能经营的最优轮伐期[J]. 北京林业大学学报, 2022, 44(10): 120−128.

    Zang H, Huang J C, Liu H S, et al. Optimal rotation period of carbon sequestration wood multifunctional management in Chinese fir plantation[J]. Journal of Beijing Forestry University, 2022, 44(10): 120−128.
    [4] Wang Z, Zhang X Q, Zhang J G, et al. Effects of stand factors on tree growth of Chinese fir in the subtropics of China depends on climate conditions from predictions of a deep learning algorithm: a long-term spacing trial[J]. Forest Ecology and Management, 2022, 520(84): 120363.
    [5] 宋重升, 王有良, 张利荣, 等. 基于大径材培育下杉木人工林间伐初始期的确定[J]. 北京林业大学学报, 2022, 44(3): 45−54.

    Song C S, Wang Y L, Zhang L R, et al. Determination of initial thinning period of Chinese fir plantation based on large diameter timber cultivation[J]. Journal of Beijing Forestry University, 2022, 44(3): 45−54.
    [6] 梁瑞婷, 孙玉军, 周来. 基于分位数回归法的杉木可变指数削度方程构建[J]. 北京林业大学学报, 2021, 43(7): 70−78.

    Liang R T, Sun Y J, Zhou L. Modeling variable exponential taper function for Cunninghamia lanceolata based on quantile regression[J]. Journal of Beijing Forestry University, 2021, 43(7): 70−78.
    [7] 索沛蘅, 杜大俊, 王玉哲, 等. 杉木连栽对土壤氮含量和氮转化酶活性的影响[J]. 森林与环境学报, 2019, 39(2): 113−119.

    Suo P H, Du D J, Wang Y Z, et al. Effects of successive rotation Chinese fir plantations on soil nitrogen content and soil enzyme activities related to nitrogen transformation[J]. Journal of Forest and Environment, 2019, 39(2): 113−119.
    [8] 韦如萍, 胡德活, 郑会全, 等. 杉木优树生长性状和材质性状的研究[J]. 中南林业科技大学学报, 2013, 33(2): 28−33.

    Wei R P, Hu D H, Zheng H Q, et al. Study on growth traits and wood properties of superior tree of Cunninghamia lanceolata[J]. Journal of Central South University of Forestry & Technology, 2013, 33(2): 28−33.
    [9] 张丹丹, 李婧, 郭琪, 等. 氮添加对杉木人工林土壤氮有效性、溶解性有机氮和酸化的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(12): 77−85, 114.

    Zhang D D, Li J, Guo Q, et al. Effects of nitrogen addition on soil nitrogen availability, dissolved organic nitrogen and acidification in a Chinese fir plantation[J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(12): 77−85, 114.
    [10] 孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2006: 143−151.

    Meng X Y. Mensuration[M]. Beijing: China Forestry Publishing House, 2006: 143−151.
    [11] Andrezj W, Mariusz B, Agnieszka A, et al. Relationship between stand density and value of timber assortments: a case study for Scots pine stands in north-western Poland[J]. New Zealand Journal of Forestry Science, 2018, 48(1): 1−9. doi: 10.1186/s40490-017-0108-0
    [12] Holopainen M, Vastaranta M, Rasinmaki J, et al. Uncertainty in timber assortment estimates predicted from forest inventory data[J]. European Journal of Forest Research, 2010, 129(6): 1131−1142. doi: 10.1007/s10342-010-0401-4
    [13] 李晓景, 江希钿, 庄崇洋, 等. 闽北天然阔叶林径阶材种结构分析及出材率表的编制[J]. 西南林业大学学报, 2012, 32(6): 39−42.

    Li X J, Jiang X D, Zhuang C Y, et al. Compilation of output structure of diameter grade wood assortments and volume ratio table for natural broad-leaved forest tree species in north Fujian Province[J]. Journal of Southwest Forestry University, 2012, 32(6): 39−42.
    [14] 林剑峰. 马尾松人工林材种出材率表的研究[J]. 北京林业大学学报, 2001, 23(4): 35−38.

    Lin J F. Research on log rule of timbers from artificial Masson pine forest[J]. Journal of Beijing Forestry University, 2001, 23(4): 35−38.
    [15] 李骏. 福州市国有林场杉木林林分材种出材率研究[D]. 福州: 福建农林大学, 2017.

    Li J. The research of outturn percentage of timber species in Fuzhou State-Owned Forest Farm fir[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017.
    [16] 赵铭臻, 王利艳, 刘静, 等. 间伐和施肥对杉木成熟林生长和材种结构的影响[J]. 浙江农林大学学报, 2022, 39(2): 338−346.

    Zhao M Z, Wang L Y, Liu J, et al. Effects of thinning and fertilization on growth and timber structure of mature Chinese fir forest[J]. Journal of Zhejiang A&F University, 2022, 39(2): 338−346.
    [17] 张水松, 陈长发, 吴克选, 等. 杉木林间伐强度材种出材量和经济效果的研究[J]. 林业科学, 2006, 42(7): 37−46.

    Zhang S S, Chen C F, Wu K X, et al. Studies on the timber assortment outturn and economic benefit of the intermediate cutting intensity for Cunninghamia lanceolata stands[J]. Scientia Silvae Sinicae, 2006, 42(7): 37−46.
    [18] 邓伦秀. 杉木人工林林分密度效应及材种结构规律研究[D]. 北京: 中国林业科学研究院, 2010.

    Deng L X. Studies on stand density effect and timber grade structure of Cunninghamia lanceolata plantations[D]. Beijing: Chinese Academy of Forestry, 2010.
    [19] 郭书彬, 宋熙龙, 尤海舟, 等. 经营密度对华北落叶松人工林生长的影响[J]. 中南林业科技大学学报, 2018, 38(4): 1−5.

    Guo S B, Song X L, You H Z, et al. Effects of forest density on Larix principis-rupprechtii plantation[J]. Journal of Central South University of Forestry & Technology, 2018, 38(4): 1−5.
    [20] 相聪伟, 张建国, 段爱国, 等. 杉木人工林材种结构的立地及密度效应研究[J]. 林业科学研究, 2015, 28(5): 654−659.

    Xiang C W, Zhang J G, Duan A G, et al. Effects of site quality and planting density on wood assortment rate in Chinese fir plantation[J]. Forest Research, 2015, 28(5): 654−659.
    [21] 王素萍, 江希钿, 杨锦昌. 杉木人工林林分材种出材率变化规律的分析[J]. 福建林学院学报, 2002, 22(2): 146−149.

    Wang S P, Jiang X D, Yang J C. An analysis on the change law of output of wood sort for Cunninghamia lanceolata plantation[J]. Journal of Fujian College of Forestry, 2002, 22(2): 146−149.
    [22] 李明阳. 森林经营规划[M]. 北京: 中国林业出版社, 2022: 136−141.

    Li M Y. Forest management planning[M]. Beijing: China Forestry Publishing House, 2022: 136−141.
    [23] 福建省市场监督管理局. 森林立地分类与立地质量等级: DB35/T 169—2022[S]. 福州: 福建省市场监督管理局, 2022.

    Market Supervision Administration of Fujian Province. Forest site classification and site quality grade: DB35/T 169−2022[S]. Fuzhou: Market Supervision Administration of Fujian Province, 2022.
    [24] 福建省市场监督管理局. 主要用材树种出材量测算方法: DB35/T 1876—2019[S]. 福州: 福建省市场监督管理局, 2019.

    Market Supervision Administration of Fujian Province. A calculating methods standard on output volume of main timber tree species: DB35/T 1876−2019[S]. Fuzhou: Market Supervision Administration of Fujian Province, 2019.
    [25] 王梓名, 赵明明, 任云卯, 等. 主伐龄油松建筑材林生长及土壤性质对林分密度的响应[J]. 北京林业大学学报, 2022, 44(12): 88−101.

    Wang Z M, Zhao M M, Ren Y M, et al. Response of growth and soil properties of Chinese pine building timber forest at felling age to stand density[J]. Journal of Beijing Forestry University, 2022, 44(12): 88−101.
    [26] 孙余丹, 刘爽, 刘金祥, 等. 不同红树林群落结构与植被碳分布[J]. 东北农业大学学报, 2018, 49(11): 58−64.

    Sun Y D, Liu S, Liu J X, et al. Community structure and vegetation carbon distribution of different mangrove forests[J]. Journal of Northeast Agricultural University, 2018, 49(11): 58−64.
    [27] 金菊良, 杨晓华, 丁晶. 标准遗传算法的改进方案—加速遗传算法[J]. 系统工程理论与实践, 2001, 21(4): 8−13.

    Jin J L, Yang X H, Ding J. An improved simple genetic algorithm-accelerating genetic algorithm[J]. Systems Engineering—Theory & Practice, 2001, 21(4): 8−13.
    [28] 黄朝法. 相容性杉木人工单木二元材种出材率模型[J]. 武夷学院学报, 2019, 38(6): 33−37.

    Huang C F. Compatible individual tree two-way merchantable volume model of Cunninghamia lanceolata plantation[J]. Journal of Wuyi University, 2019, 38(6): 33−37.
    [29] 郭光智, 段爱国, 张建国, 等. 南亚热带杉木人工林材种结构长期立地与密度效应[J]. 林业科学研究, 2020, 33(1): 35−43.

    Guo G Z, Duan A G, Zhang J G, et al. Long-term effects of site and density on timber assortment structure of Chinese fir plantations in south subtropical area, China[J]. Forest Research, 2020, 33(1): 35−43.
    [30] 郑鸣鸣, 任正标, 王友良, 等. 间伐强度对杉木中龄林生长和结构的影响[J]. 森林与环境学报, 2020, 40(4): 369−376.

    Zheng M M, Ren Z B, Wang Y L, et al. Effect of thinning intensity on the growth and structure of a middle-aged Chinese fir forest[J]. Journal of Forest and Environment, 2020, 40(4): 369−376.
    [31] 周国模, 郭仁鉴, 韦新良, 等. 浙江省杉木人工林生长模型及主伐年龄的确定[J]. 浙江林学院学报, 2001, 18(3): 219−222.

    Zhou G M, Guo R J, Wei X L, et al. Growth model and cutting age of Chinese fir planted forest in Zhejiang Province[J]. Journal of Zhejiang Forestry College, 2001, 18(3): 219−222.
    [32] 陈平留, 刘健, 郑德祥. 速生丰产优质杉木林经济效益分析及伐期确定[J]. 林业科学, 2001, 37(增刊1): 47−51. doi: 10.11707/j.1001-7488.2001S109

    Chen P L, Liu J, Zheng D X. The confirmation of harvesting period and the analysis of economic effect on the productive and high-quality Chinese fir plantation[J]. Scientia Silvae Sinicae, 2001, 37(Suppl.1): 47−51. doi: 10.11707/j.1001-7488.2001S109
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  40
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-09
  • 修回日期:  2023-05-15
  • 录用日期:  2023-07-04
  • 网络出版日期:  2023-07-06
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回