高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气候变化下中国油茶毒蛾潜在分布区模拟预测研究

杨柳 刘君昂 周国英 何苑皞 段翔 周洁尘

杨柳, 刘君昂, 周国英, 何苑皞, 段翔, 周洁尘. 气候变化下中国油茶毒蛾潜在分布区模拟预测研究[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20230034
引用本文: 杨柳, 刘君昂, 周国英, 何苑皞, 段翔, 周洁尘. 气候变化下中国油茶毒蛾潜在分布区模拟预测研究[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20230034
Yang Liu, Liu Junang, Zhou Guoying, He Yuanhao, Duan Xiang, Zhou Jiechen. Simulation and prediction of potential distribution area of Euproctis pseudoconspersa under climate change scenarios in China[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20230034
Citation: Yang Liu, Liu Junang, Zhou Guoying, He Yuanhao, Duan Xiang, Zhou Jiechen. Simulation and prediction of potential distribution area of Euproctis pseudoconspersa under climate change scenarios in China[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20230034

气候变化下中国油茶毒蛾潜在分布区模拟预测研究

doi: 10.12171/j.1000-1522.20230034
基金项目: 湖南省林业科技创新资金项目(XLK202101-2)。
详细信息
    作者简介:

    杨柳。主要研究方向:植物有害生物综合治理。Email:981367866@qq.com 地址:411206 湖南省湘潭市雨湖区楠竹山镇湘林村湘潭市林业科学研究所

    责任作者:

    周国英,教授,博士生导师。主要研究方向:植物检疫。Email:zgyingqq@163.com 地址:410004 湖南省长沙市韶山南路498号中南林业科技大学林学院。

  • 中图分类号: S763

Simulation and prediction of potential distribution area of Euproctis pseudoconspersa under climate change scenarios in China

  • 摘要:   目的  油茶是国家重点发展的木本油料作物,具有较高的经济价值和生态价值。油茶毒蛾是油茶的主要病虫害之一,严重制约了油茶的产量和质量。本研究针对油茶毒蛾的潜在分布开展模拟预测,以期为油茶毒蛾的预警和具体防控行动提供科学依据。  方法  基于油茶毒蛾在中国的有效地理分布数据和生物气候数据,利用MaxEnt生态位模型和ArcGIS软件,模拟预测油茶毒蛾在当前气候条件的潜在分布,以及SSP1-2.6、SSP2-4.5和SSP5-8.5 3种气候情景下2050年和2070年油茶毒蛾在中国潜在适生区分布范围,并分析了制约其适生区分布的主导环境因子。  结果  (1)影响油茶毒蛾适生区分布的主导环境因子为最干月降水量、年降水量、最冷月最低温度和温度日较差月均值。当最干月降水量28 ~ 148 mm、年降水量1 290 ~ 2 080 mm、最冷月最低温度1.0 ~ 10.1 ℃、温度日较差月均值7.2 ~ 8.5 ℃时最适宜油茶毒蛾的生存。(2)当前气候条件下,油茶毒蛾总适生区面积占我国国土面积的20.0%,主要分布在我国南方的长江中下游地区和华南地区,高度适生区面积为64.2 × 104 km2,中度适生区面积为61.8 × 104 km2,低度适生区面积为66.0 × 104 km2。(3)在未来两个时期和三种气候情景下,油茶毒蛾适生区面积出现不同程度的扩大,新增适生区面积在9.4 × 104 ~ 33.1 × 104 km2之间,地理分布中心迁移距离在24.4 ~ 125.1 km之间。气候变暖越明显,油茶毒蛾的潜在分布区面积增加越多,地理分布中心点的迁移距离越远。  结论  油茶毒蛾在中国的适生区范围较广,几乎囊括了中国南部所有的省份。在未来气候情景下,油茶毒蛾的适生区将向北、向西等高纬度的内陆地区扩张。为此,建议相关部门应提前制定预案和政策,加强对油茶毒蛾的观测和防控,减少其对油茶产业造成的损失。

     

  • 图  1  油茶毒蛾危害点19个环境因子贡献率及相关性分析

    Figure  1.  Percent contribution and correlation analysis of 19 environmental variables of E. pseudoconspersa hazard points

    图  2  油茶毒蛾MaxEnt模型下ROC曲线

    Figure  2.  ROC curve of E. pseudoconspersa under Maxent model

    图  3  建模环境因子刀切图分析

    Figure  3.  Jacknife analysis of environmental variables of E. pseudoconspersa in MaxEnt model

    图  4  适生分布对主要环境因子的响应曲线

    Figure  4.  Response curves of E. pseudoconspersa to major environmental variables

    图  5  当前油茶毒蛾适生区分布情况

    基于自然资源部标准地图服务网站GS(2020)4619号标准地图制作,底图边界无修改。下同。Based on the standard map production of the Ministry of Natural Resources’ GS(2020)4619 standard map service website, the basemap boundaries have not been modified. The same below.

    Figure  5.  Suitable area of E. pseudoconspersa anthracnose

    图  6  油茶毒蛾不同时期在中国的潜在适生区面积

    Figure  6.  Suitable area of E. pseudoconspersa in China under different climate change

    图  7  油茶毒蛾不同气候情景下在中国的适生分布区

    Figure  7.  Suitable distribution areas of E. pseudoconspersa in China under different climatic conditions

    图  8  未来气候变化情景下油茶毒蛾空间分布格局变化

    Figure  8.  Spatial changes of E. pseudoconspersa in China under different climate change scenarios

    表  1  WorldClim2 数据中的气候变量

    Table  1.   Bioclimatic variables of WorldClim2

    名称 Name描述 Description单位 Unit
    Bio1年平均温度 Annual mean temperature
    Bio2温度日较差月均值 Mean diurnal range (mean of monthly (max temp - min temp))
    Bio3等温性 Isothermality (Bio2/Bio7) (× 100)
    Bio4温度季节性变化标准差 Temperature seasonality (standard deviation × 100)
    Bio5最热月最高温度 Max temperature of warmest month
    Bio6最冷月最低温度 Min temperature of coldest month
    Bio7温度年际变化 Temperature annual range (Bio5 - Bio6)
    Bio8最湿季平均温度 Mean temperature of wettest quarter
    Bio9最干季平均温度 Mean temperature of driest quarter
    Bio10最热季平均温度 Mean temperature of warmest quarter
    Bio11最冷季平均温度 Mean temperature of coldest quarter
    Bio12年降水量 Annual precipitationmm
    Bio13最湿月降水量 Precipitation of wettest monthmm
    Bio14最干月降水量 Precipitation of driest monthmm
    Bio15降水量变异系数 Precipitation seasonality (coefficient of variation)mm
    Bio16最湿季降水量 Precipitation of wettest quartermm
    Bio17最干季降水量 Precipitation of driest quartermm
    Bio18最热季降水量 Precipitation of warmest quartermm
    Bio19最冷季降水量 Precipitation of coldest quartermm
    下载: 导出CSV

    表  2  物种潜在分布变化矩阵

    Table  2.   Matrix of potential distribution changes for species

    未来气候情景 Future climate scenarios当前气候情景 Current climate scenarios
    适生 Suitable非适生 Unsuitable
    适生 Suitable保留适生区 Reserve suitable area新增适生区 New suitable area
    非适生 Unsuitable缩减适生区 Lost suitable area非适生区 Unsuitable area
    下载: 导出CSV

    表  3  环境因子贡献率和置换重要值

    Table  3.   Percent contribution and permutation importance of environmental variables

    环境变量
    Environmental variables
    贡献率
    Percent contribution/%
    置换重要值
    Permutation importance/%
    Bio1472.10.7
    Bio1216.22.0
    Bio63.052.9
    Bio51.914.2
    Bio41.84.8
    Bio21.74.2
    Bio151.49.5
    Bio31.44.8
    Bio80.44.7
    Bio180.12.2
    下载: 导出CSV

    表  4  不同时期几何中心(质心)迁移距离及适生区变化

    Table  4.   The migration distance of the geometric center (centroid) and the change of the suitable area in different periods

    气候情景
    Climate scenario
    质心迁移距离
    Migration distance of
    the centroid/km
    非适生区
    Unsuitable area/
    (104 km2)
    新增适生区
    New suitable area/
    (104 km2)
    保留适生区
    Reserve suitable area/
    (104 km2)
    缩减适生区
    Lost suitable area/
    (104 km2)
    当前
    2050SSP1-2.6 24.4 758.7 9.4 191.7 0.2
    2050SSP2-4.5 61.3 741.1 27.0 191.9 0.1
    2050SSP5-8.5 71.4 739.3 28.8 191.9 0.0
    2070SSP1-2.6 50.1 746.1 22.0 191.9 0.0
    2070SSP2-4.5 38.9 751.0 17.1 191.9 0.0
    2070SSP5-8.5 125.1 735.0 33.1 191.9 0.1
    下载: 导出CSV
  • [1] Bedia J, Busque J, Gutierrez J M. Predicting plant species distribution across an alpine rangeland in northern Spain. A comparison of probabilistic methods[J]. Applied Vegetation Science, 2011, 14(3): 415–432. doi: 10.1111/j.1654-109X.2011.01128.x
    [2] 王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007(4): 365–372. doi: 10.3321/j.issn:1005-0094.2007.04.005

    Wang Y S, Xie B Y, Wang F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models[J]. Biodiversity Science, 2007(4): 365–372. doi: 10.3321/j.issn:1005-0094.2007.04.005
    [3] Wang Y M, Ge F, Liu X H, et al. Evaluation of mass-trapping for control of tea tussock moth Euproctis pseudoconspersa (Strand) (Lepidoptera: Lymantriidae) with synthetic sex pheromone in south China[J]. International Journal of Pest Management, 2005, 51(4): 289–295. doi: 10.1080/09670870500337858
    [4] 刘万才, 刘振东, 朱晓明, 等. 我国昆虫性信息素技术的研发与应用进展[J]. 中国生物防治学报, 2022, 38(4): 803–811.

    Liu W C, Liu Z D, Zhu X M, et al. Development and application of insect sex pheromone technology in China[J]. Chinese Journal of Biological Control, 2022, 38(4): 803–811.
    [5] 李霞, 盛如, 王振营, 等. 二点委夜蛾两种新型性诱芯田间诱蛾性能比较[J]. 植物保护, 2013, 39(3): 141−143, 166. doi: 10.3969/j.issn.0529-1542.2013.03.028

    Li X, Sheng R, Wang Z Y, et al. Comparison of trapping efficacy of two kinds of sex pheromone lure of Athetis lepigone in field[J]. Plant Protection, 2013, 39(3): 141−143, 166. doi: 10.3969/j.issn.0529-1542.2013.03.028
    [6] Dong W W, Dong S Y, Jiang G F, et al. Characterization of the complete mitochondrial genome of tea tussock moth, Euproctis pseudoconspersa (Lepidoptera: Lymantriidae) and its phylogenetic implications[J]. Gene, 2016, 577(1): 37–46. doi: 10.1016/j.gene.2015.11.020
    [7] Lehmann P, Ammunet T, Barton M, et al. Complex responses of global insect pests to climate warming[J]. Frontiers in Ecology and the Environment, 2020, 18(3): 141–149. doi: 10.1002/fee.2160
    [8] 许仲林, 彭焕华, 彭守璋. 物种分布模型的发展及评价方法[J]. 生态学报, 2015, 35(2): 557–567.

    Xu Z L, Peng H H, Peng S Z. The development and evaluation of species distribution models[J]. Acta Ecologica Sinica, 2015, 35(2): 557–567.
    [9] Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3–4): 231–259.
    [10] Merow C, Smith M J, Silander J A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter[J]. Ecography, 2013, 36(10): 1058–1069. doi: 10.1111/j.1600-0587.2013.07872.x
    [11] 赵佳强, 石娟. 基于新型最大熵模型预测刺槐叶瘿蚊(双翅目: 瘿蚊科)在中国的适生区[J]. 林业科学, 2019, 55(2): 118–127. doi: 10.11707/j.1001-7488.20190212

    Zhao J Q, Shi J. Prediction of the potential geographical distribution of Obolodiplosis robiniae (Diptera: Cecidomyiidae) in China based on a novel maximum entropy model[J]. Scientia Silvae Sinicae, 2019, 55(2): 118–127. doi: 10.11707/j.1001-7488.20190212
    [12] 杜志宏, 刘伟, 曹学仁, 等. 气候变化情景下基于MaxEnt的麦瘟病在全球及中国的适生性分析[J]. 植物保护, 2022, 48(5): 158–166.

    Du Z H, Liu W, Cao X R, et al. Suitability analysis of wheat blast in the world and China under climate change scenarios based on MaxEnt[J]. Plant Protection, 2022, 48(5): 158–166.
    [13] 王艳君, 高泰, 石娟. 基于MaxEnt模型对舞毒蛾全球适生区的预测及分析[J]. 北京林业大学学报, 2021, 43(9): 59–69. doi: 10.12171/j.1000-1522.20200416

    Wang Y J, Gao T, Shi J. Prediction and analysis of the global suitability of Lymantria dispar based on MaxEnt[J]. Journal of Beijing Forestry University, 2021, 43(9): 59–69. doi: 10.12171/j.1000-1522.20200416
    [14] 孙红云, 徐亮胜, 冯浩, 等. 基于MaxEnt模型预测苹果树腐烂病在中国的潜在地理分布[J]. 西北农业学报, 2020, 29(3): 461–466. doi: 10.7606/j.issn.1004-1389.2020.03.017

    Sun H Y, Xu L S, Feng H, et al. Prediction for potential geographic distribution of valsamali in China based on MaxEnt model [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(3): 461–466. doi: 10.7606/j.issn.1004-1389.2020.03.017
    [15] Aiello-Lammens M E, Boria R A, Radosavljevic A, et al. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models[J]. Ecography, 2015, 38(5): 541–545. doi: 10.1111/ecog.01132
    [16] Sillero N, Barbosa A M. Common mistakes in ecological niche models[J]. International Journal of Geographical Information Science, 2021, 35(2): 213–226. doi: 10.1080/13658816.2020.1798968
    [17] 谭洁, 黄安宁, 史学丽, 等. BCC-CSM2-MR模式对中国陆面过程模拟能力评估[J]. 高原气象, 2022, 41(5): 1335–1347.

    Tan J, Huang A N, Shi X L, et al. Evaluating the performance of BCC-CSM2-MR model in simulating the land surface processes in China[J]. Plateau Meteorology, 2022, 41(5): 1335−1347.
    [18] Guisan A, Zimmermann N E. Predictive habitat distribution models in ecology[J]. Ecological Modelling, 2000, 135(2–3): 147–186.
    [19] Kumar R S, Kala R H, Kumar G S, et al. Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal[J]. Journal of Mountain Science, 2017, 14(3): 558–570. doi: 10.1007/s11629-015-3822-1
    [20] Elith J, Phillips S J, Hastie T, et al. A statistical explanation of MaxEnt for ecologists: statistical explanation of MaxEnt[J]. Diversity and Distributions, 2011, 17(1): 43–57. doi: 10.1111/j.1472-4642.2010.00725.x
    [21] Kalboussi M, Achour H. Modelling the spatial distribution of snake species in northwestern Tunisia using maximum entropy (Maxent) and geographic information system(GIS)[J]. Journal of Forestry Research, 2018, 29(1): 13. doi: 10.1007/s11676-017-0517-1
    [22] Fielding A. A review of methods for the assessment of prediction errors in conservation presence/absence models[J]. Environ Conser, 1997, 24(1): 38–49. doi: 10.1017/S0376892997000088
    [23] Kaky E, Nolan V, Alatawi A, et al. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: a case study with Egyptian medicinal plants[J]. Ecological Informatics, 2020, 60: 101150. doi: 10.1016/j.ecoinf.2020.101150
    [24] 刘欣. 基于GARP和MAXENT的空心莲子草在中国的入侵风险预测[D]. 济南: 山东师范大学, 2012.

    Liu X. Prediction of the invasion risk for Alternanthera philoxeroides in China based on the GARP and MAXENT Model[D]. Jinan: Shandong Normal University, 2012.
    [25] 崔相艳, 王文娟, 杨小强, 等. 基于生态位模型预测野生油茶的潜在分布[J]. 生物多样性, 2016, 24(10): 1117–1128. doi: 10.17520/biods.2016164

    Cui X X, Wang W J, Yang X Q, et al. Potential distribution of wild Camellia oleifera based on ecological niche modeling[J]. Biodiversity Science, 2016, 24(10): 1117–1128. doi: 10.17520/biods.2016164
    [26] Punyasena S W, Eshel G, Mcelwain J C. The influence of climate on the spatial patterning of Neotropical plant families[J]. Journal of Biogeography, 2010, 35(1): 117–130.
    [27] 杨丽娜. 舞毒蛾对环境因子及Pb胁迫的响应机制[D]. 哈尔滨: 东北林业大学, 2018.

    Yang L N. Response mechanism of gypsy moth to environmental factors and Pb stress[D]. Harbin: Northeast Forestry University, 2018.
    [28] 郭明明, 李晓峰, 邓盼, 等. 豆天蛾越冬幼虫滞育解除后生物学特性的研究[J]. 应用昆虫学报, 2021, 58(4): 966–972. doi: 10.7679/j.issn.2095-1353.2021.095

    Guo M M, Li X F, Deng P, et al. Diapause termination and post-diapause of overwintering Clanis bilineata tsingtauica larvae[J]. Chinese Journal of Applied Entomology, 2021, 58(4): 966−972. doi: 10.7679/j.issn.2095-1353.2021.095
    [29] 孙淑霞. 气候变化下中国栎属物种及其丰富度潜在分布格局模拟预测研究[D]. 济南: 山东大学, 2021.

    Sun S X. The effect of climate change on potential distribution pattern of oaks (Quercus L.) and its richness in China[D]. Jinan: Shandong University, 2021.
    [30] 赵光华. 气候变化背景下我国酸枣空间分布格局演变及影响因素分析[D]. 临汾: 山西师范大学, 2020.

    Zhao G H. Analysis on spatial distribution pattern evolution and influencing factors of Ziziphus jujuba var. spinosa in China under climate change[D]. Linfeng: Shanxi Normal University, 2020.
    [31] Musolin D L. Insects in a warmer world: ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change[J]. Global Change Biology, 2007, 13(8): 1565–1585. doi: 10.1111/j.1365-2486.2007.01395.x
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  10
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-14
  • 修回日期:  2023-03-07
  • 录用日期:  2023-09-01
  • 网络出版日期:  2023-09-06

目录

    /

    返回文章
    返回