In vitro polyploid induction and optimization of its proliferation and rooting culture system for ‘Jingzao 39’
-
摘要:目的
研究秋水仙素溶液质量浓度、处理时间和预培养时间对‘京枣39’离体多倍体诱导的影响,优化枣树良种‘京枣39’的增殖和生根培养基,建立‘京枣39’的离体多倍体诱导体系,获得多倍体植株。
方法采用完全随机区组试验设计,探索不同秋水仙素溶液质量浓度和处理时间组合对‘京枣39’不定芽再生的影响,不同预培养时间对‘京枣39’离体多倍体诱导的影响,不同生长调节剂组合对‘京枣39’增殖培养的影响,不同基本培养基和生长调节剂组合对‘京枣39’组培苗生根培养的影响。
结果(1)当秋水仙素溶液质量浓度为80 mg/L、处理48 h时‘京枣39’刻伤叶片存活率为(50.00 ± 7.07)%,分化系数为(2.06 ± 0.17)。(2)最佳预培养时间为6 d,并施以80 mg/L秋水仙素浓度处理48 h,获得了纯合四倍体‘京枣39’。(3)最佳增殖培养基为MS + 0.8 mg/L 6-BA + 0.4 mg/L IBA + 30 g/L麦芽糖,pH = 5.8,平均增殖系数为(4.22 ± 0.22)。(4)最佳生根培养基为改良1/2MS + 0.8 mg/L IBA + 30 g/L麦芽糖,pH = 5.8,平均根长为(5.22 ± 0.19) cm;平均生根数为(3.20 ± 0.22)。
结论初步建立了‘京枣39’的离体多倍体诱导体系,获得了‘京枣39’的多倍体植株,并优化了其增殖培养及生根培养方法。本研究为优良枣树品种‘京枣39’的种质创新提供了切实可行的技术方法,为多倍体诱导在枣树以及其他果树中的应用奠定了试验基础。
Abstract:ObjectiveThis paper studies the effects of colchicine solution mass concentration, treatment time and pre-culture time on the induction of polyploidof ‘Jingzao 39’ in vitro, optimizes the proliferation and rooting medium of ‘Jingzao 39’, and an in vitro polyploid induction system for ‘Jingzao 39’ was established and polyploid plants were obtained.
MethodUsing randomized complete block design, we investigated the effects of different mass concentrations of colchicine solution and treatment time combinations on adventitious bud regeneration of ‘Jingzao 39’, the effects of different pre-culture time on polyploid induction of ‘Jingzao 39’ in vitro, the effects of different growth regulator combinations on the proliferation culture of ‘Jingzao 39’ and the effects of different basic media and growth regulator combinations on the rooting culture of ‘Jingzao 39’.
Result(1) When the mass concentration of colchicine solution was 80 mg/L and treated for 48 h, the survival rate of ‘Jingzao 39’ leaves was (50.00 ± 7.07)%, and the differentiation coefficient was (2.06 ± 0.17). (2) The best pre-culture time was 6 d, and the tetraploid ‘Jingzao 39’ was obtained with 80 mg/L colchicine and treatment for 48 h. (3) The optimal proliferation medium was MS + 0.8 mg/L 6-BA + 0.4 mg/L IBA + 30 g/L maltose, pH = 5.8, and the average proliferation coefficient was (4.22 ± 0.22). (4) The best rooting medium was modified 1/2MS + 0.8 mg/L IBA + 30 g/L maltose, pH = 5.8, and the average root length was (5.22 ± 0.19) cm, and the average rooting number was (3.20 ± 0.22).
ConclusionThe polyploid induction system of ‘Jingzao 39’ is established preliminarily, and one polyploid ‘Jingzao 39’ is obtained. The methods of its proliferation and rooting culture are optimized. It provides a feasible technical method for the germplasm innovation of fine jujube variety ‘Jingzao 39’, and provides an experimental basis for the application of polyploid induction in jujube and other fruit trees.
-
Keywords:
- ‘Jingzao 39’ /
- polyploid induction /
- colchicine /
- proliferation culture /
- rooting culture /
- system optimization
-
-
图 1 不同秋水仙素质量浓度和处理时间组合对‘京枣39’不定芽存活率的影响
不同小写字母表示差异显著(P < 0.05)。下同。Different lowercase letters indicate significant differences (P < 0.05). The same below.
Figure 1. Effects of different colchicine mass concentrations and co-culture time combinations on the survival rate of adventitious buds of ‘Jingzao 39’
表 1 ‘京枣39’秋水仙素处理组合
Table 1 Combination of ‘Jingzao 39’ colchicine treatment
水平
Level因素 Factor 秋水仙素质量浓度
Colchicine mass concentration/(mg·L−1)处理时间
Processing time/h1 40 48 2 60 72 3 80 表 2 ‘京枣39’增殖培养中不同质量浓度的6-BA和IBA处理组合
Table 2 Treatment combinations of different mass concentrations of 6-BA and IBA in ‘Jingzao 39’ multiplication culture
水平
Level因素 Factor 6-BA/(mg·L−1) IBA/(mg·L−1) 1 1.0 0.5 2 0.8 0.4 3 0.6 0.3 4 0.4 0.2 表 3 ‘京枣39’增殖培养中不同质量浓度的6-BA和NAA处理组合
Table 3 Treatment combinations of different mass concentrations of 6-BA and NAA in ‘Jingzao 39’ multiplication culture
水平
Level因素 Factor 6-BA/(mg·L−1) NAA/(mg·L−1) 1 1.0 0.5 2 0.8 0.4 3 0.6 0.3 4 0.4 0.2 表 4 ‘京枣39’生根培养处理组合
Table 4 Treatment combinations of rooting culture of ‘Jingzao 39’
水平
Level因素 Factor 基本培养基
Basic mediumIBA/(mg·L−1) 6-BA/(mg·L−1) 1 1/2MS 0.8 0.2 2 改良1/2MS
Modified 1/2MS0.6 0.0 3 0.4 4 0.2 注:改良1/2MS培养基参考自文献[21]。Note: modified 1/2MS medium referencd from reference [21]. 表 5 不同预培养时间‘京枣39’多倍体诱导结果
Table 5 Polyploid induction results of ‘Jingzao 39’ under different pre-culture time
预培养天数
Pre-culture day四倍体数
Number of tetraploids混倍体数
Number of mixoploid4 0 0 5 0 0 6 1 0 7 0 3 表 6 培养基组合对‘京枣39’生根情况的影响
Table 6 Effects of culture medium combinations on rooting of ‘Jingzao 39’
处理
Treatment基本培养基
Basic mediumIBA/(mg·L−1) 6-BA/(mg·L−1) 根长
Root length/cm生根量
Rooting number1 1/2MS 0.8 0.0 3.10 ± 0.19f 1.30 ± 0.14fg 2 0.2 3.46 ± 0.21de 1.46 ± 0.15f 3 0.6 0.0 1.44 ± 0.19i 1.34 ± 0.21fg 4 0.2 1.72 ± 0.33h 1.32 ± 0.08fg 5 0.4 0.0 0.78 ± 0.15g 1.28 ± 0.13fg 6 0.2 0.96 ± 0.23g 1.16 ± 0.11g 7 0.2 0.0 0.42 ± 0.19k 1.44 ± 0.34f 8 0.2 0.46 ± 0.21k 0.96 ± 0.19h 9 改良1/2MS
Modified 1/2MS0.8 0.0 5.22 ± 0.19a 3.20 ± 0.22b 10 0.2 4.56 ± 0.17b 3.54 ± 0.15a 11 0.6 0.0 4.76 ± 0.11b 2.90 ± 0.14c 12 0.2 4.06 ± 0.11c 3.22 ± 0.08b 13 0.4 0.0 3.54 ± 0.23d 2.62 ± 0.13d 14 0.2 3.22 ± 0.19ef 2.64 ± 0.17d 15 0.2 0.0 1.30 ± 0.16i 2.44 ± 0.17de 16 0.2 2.40 ± 0.32g 2.40 ± 0.16e 表 7 培养基组合对‘京枣39’生根长度和数量的方差分析
Table 7 Variance analysis of medium combination on rooting length and number of ‘Jingzao 39’
变异来源
Source of variation自由度
Degree of freedom (df)均方Mean square (MS) F 根长
Root length生根量
Rooting number根长
Root length生根量
Rooting number区组 Block 4 0.056 0.018 基本培养基 Basic medium (A) 1 87.362 50.403 2 028.726* 2 139.125* IBA (B) 3 31.355 1.314 728.132* 55.772* 6-BA (C) 1 0.025 0.010 0.569 0.430 A × B 3 2.361 0.581 54.835* 24.677* A × C 1 0.648 0.378 15.048* 16.048* B × C 3 0.652 0.255 15.152* 10.828* A × B × C 3 1.190 0.024 27.634* 1.038 随机误差 Random error 60 0.042 0.024 总计 Total 79 注:*表示具有显著性差异(P < 0.05)。Note: * indicates significant differences (P < 0.05). -
[1] 王利虎, 卢彦琦, 苏行,等. 果树多倍化育种研究进展[J]. 山西农业大学学报(自然科学版), 2022, 42(3): 14−24. Wang L H, Lu Y Q, Su X, et al. Research progress on polyploidy breeding of fruit trees[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2022, 42(3): 14−24.
[2] José J D, Javier L, Enrique M, et al. Phenotypic diploidization in plant functional traits uncovered by synthetic neopolyploids[J]. Journal of Experimental Botany, 2021, 72(15): 5522−5533. doi: 10.1093/jxb/erab179
[3] 欧春青, 李林光, 何平,等. 寒富苹果叶片离体再生及四倍体诱导[J]. 果树学报, 2008, 25(3): 293−297. Ou C Q, Li L G, He P, et al. In vitro adventitious shoot regeneration and induction of tetraploid from leaves of Hanfu apple[J]. Journal of Fruit Science, 2008, 25(3): 293−297.
[4] Podwyszyńska M, Sowik I, Machlańska A, et al. In vitro tetraploid induction of Malus × domestica Borkh. using leaf or shoot explants[J]. Scientia Horticulturae, 2017, 226(12): 379−388.
[5] 徐靓. 二倍体猕猴桃资源的离体再生与多倍体诱导[D]. 铜川: 西北农林科技大学, 2017. Xu L. In vitro regeneration of diploid Actinidia and polyploid induction[D]. Tongchuan: Northwest A&F University, 2017.
[6] 王利虎. 枣和酸枣田间愈伤组织途径芽再生技术优化及其在多倍体诱变中的应用[D]. 保定: 河北农业大学, 2015. Wang L H. Optimization of in vivo bud regeneration technique via callus and its applicationin polyploidy induction in Chinese jujube and sour jujube[D]. Baoding: Hebei Agricultural University, 2015.
[7] Gu X F, Yang A F, Meng H, et al. In vitro induction of tetraploid plants from diploid Zizyphus jujuba Mill. cv. Zhanhua[J]. Plant Cell Reports, 2005, 24(11): 671−676. doi: 10.1007/s00299-005-0017-1
[8] 郭烨, 崔艳红, 孔德仓,等. 茶壶枣离体多倍体诱导关键技术研究[J]. 北京林业大学学报, 2019, 41(7): 49−56. Guo Y, Cui Y H, Kong D C, et al. Study on key techniques of polyploid induction in Ziziphus jujuba Mill. cv. ‘Teapot’[J]. Journal of Beijing Forestry University, 2019, 41(7): 49−56.
[9] Cui Y, Hou L, Li X, et al. In vitro induction of tetraploid Ziziphus jujuba Mill. var. spinosa plants from leaf explants[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2017, 131(1): 175−182. doi: 10.1007/s11240-017-1274-8
[10] 曲泽州, 王永蕙. 中国果树志: 枣卷[M]. 北京: 中国林业出版社, 1993: 1−5. Qu Z Z, Wang Y H. Chinese fruit tree chronicle: jujube roll[M]. Beijing: China Forestry Publishing House, 1993: 1−5.
[11] 王向红, 崔同, 刘孟军,等. 不同品种枣的营养成分分析[J]. 营养学报, 2002, 24(2): 206−208. Wang X H, Cui T, Liu M J, et al. Analysis of nutritional composition of different Chinese jujubes[J]. Acta Nutrimenta Sinica, 2002, 24(2): 206−208.
[12] Jin X. Jujuba: Ziziphus jujuba[M]. Ballarat: Exotic Fruits, 2018: 263−269.
[13] 张砚垒. 不同品种红枣营养成分分析及抗氧化活性研究[D]. 泰安: 山东农业大学, 2021. Zhang Y L. Nutritional components analysis and antioxidant properties of different varieties of jujube (Ziziphus jujuba Mill.)[D]. Taian: Shandong Agricultural University, 2021.
[14] 潘青华, 白金, 郑立梅. 优质鲜食大枣新品种京枣39[J]. 北京农业, 2003, 23(6): 19. Pan Q H, Bai J, Zheng L M. High quality fresh jujube new variety Jingzao 39[J]. Beijing Agriculture, 2003, 23(6): 19.
[15] 彭华, 潘青华, 张洪. 京枣39的品种特性及丰产栽培[J]. 林业实用技术, 2005, 48(11): 30−31. Peng H, Pan Q H, Zhang H. Variety characteristics and high-yield cultivation of Jingzao 39[J]. Forest Science and Technology, 2005, 48(11): 30−31.
[16] 卢翠. 京枣39引种表现及丰产栽培技术[J]. 绿色科技, 2021, 23(13): 183−184. Lu C. Introduction performance and high-yield cultivation techniques of Jingzao 39[J]. Journal of Green Science and Technology, 2021, 23(13): 183−184.
[17] 刘志国. 南疆砾质戈壁条件下枣种质资源的评价与筛选[D]. 保定: 河北农业大学, 2011. Liu Z G. Evaluation and selection of Chinese jujube (Ziziphus jujuba Mill.) germplasmson gravel gobi of south Xinjiang[D]. Baoding: Hebei Agricultural University, 2011.
[18] 高艺, 薄文浩, 李颖岳,等. ‘京枣39’离体叶片高效再生体系的建立[J]. 北京林业大学学报, 2023, 45(2): 68−77. Gao Y, Bo W H, Li Y Y, et al. Establishment of high-efficiency regeneration system from in vitro leaves of ‘Jingzao 39’[J]. Journal of Beijing Forestry University, 2023, 45(2): 68−77.
[19] 李玉岭, 闫少波, 毛秀红,等. 秋水仙素诱导林木多倍体研究进展[J]. 农学学报, 2022, 12(8): 55−61. Li Y L, Yan S B, Mao X H, et al. Polyploidy induction by colchicine in forest trees: research progress[J]. Journal of Agriculture, 2022, 12(8): 55−61.
[20] 吴辉晶. 无刺刺梨的组织培养及多倍体诱导[D]. 贵阳: 贵州大学, 2023. Wu H J. Tissue culture and polyploid induction of Rosa roxburghii f. eseiosa Ku[D]. Guiyang: Guizhou University, 2023.
[21] 崔艳红. 枣组培体系的建立及四倍体诱导和生根研究[D]. 北京: 北京林业大学, 2018. Cui Y H. Establishment of jujube tissue culture system and study on tetraploid induction and rooting[D]. Beijing: Beijing Forestry University, 2018.
[22] 李云, 冯大领. 木本植物多倍体育种研究进展[J]. 植物学通报, 2005, 22(3): 375−382. Li Y, Feng D L. Advances in research into polyploidy breeding of woody plants[J]. Chinese Bulletin of Botany, 2005, 22(3): 375−382.
[23] 马荣群, 张蕊芬, 宋正旭 ,等. 红果肉苹果‘红脆甜’多倍体诱导研究[J]. 果树学报, 2020, 37(10): 1499−1505. Ma R Q, Zhang R F, Song Z X, et al. A study on the induction of polyploidy in red-fleshed apple ‘Hongcuitian’[J]. Journal of Fruit Science, 2020, 37(10): 1499−1505.
[24] 刘庆忠, 马怀宇, 魏海蓉,等. 秋水仙素诱导樱桃矮化砧木‘吉塞拉6号’获得六倍体再生植株[J]. 园艺学报, 2008, 35(2): 285−288. Liu Q Z, Ma H Y, Wei H R, et al. Regeneration of hexaploid plants of cherry dwarf rootstock ‘Gisela 6’ from in vitro leaves treated with colchicine[J]. Acta Horticulturae Sinica, 2008, 35(2): 285−288.
[25] Marangelli F, Pavese V, Vaia G, et al. In vitro polyploid induction of highbush blueberry through de novo shoot organogenesis[J]. Plants, 2022, 11(18): 2349. doi: 10.3390/plants11182349
[26] 周慧文, 冯斗, 严华兵. 秋水仙素离体诱导多倍体研究进展[J]. 核农学报, 2015, 29(7): 1307−1315. Zhou H W, Feng D, Yan H B. The progress of polyploids induced in vitro via colchicine[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(7): 1307−1315.
[27] 刘晓婷. 库尔勒香梨叶片再生与多倍体诱导研究[D]. 铜川: 西北农林科技大学, 2015. Liu X T. Leaf regeneration and polyploid induction of ‘Korla Fragrant’ pear[D]. Tongchuan: Northwest A&F University, 2015.
[28] Cai X, Kang X. In vitro tetraploid induction from leaf explants of Populus pseudo-simonii Kitag[J]. Plant Cell Reports, 2011, 30(9): 1771−1778. doi: 10.1007/s00299-011-1085-z
[29] Zhang Y, Wang Z, Qi S, et al. In vitro tetraploid induction from leaf and petiole explants of hybrid sweetgum (Liquidambar styraciflua × Liquidambar formosana)[J]. Forests, 2017, 8(8): 264. doi: 10.3390/f8080264
[30] 石庆华. 田间愈伤组织途径诱导枣和酸枣多倍体研究[D]. 保定: 河北农业大学, 2013. Shi Q H. In vivo polyploid induction via callus in Chinese jujube and sour jujube[D]. Baoding: Hebei Agricultural University, 2013.
[31] 闫超, 苏彩霞, 刘晓红,等. 灰枣田间愈伤组织诱导多倍体的育种方法研究[J]. 新疆农垦科技, 2016, 39(8): 35−37. Yan C, Su C X, Liu X H, et al. A study on the breeding method of inducing polyploidy from field callus of grey jujube[J]. Xinjiang Farm Research of Science and Technology, 2016, 39(8): 35−37.
[32] Wu J, Sang Y, Zhou Q, et al. Colchicine in vitro tetraploid induction of Populus hopeiensis from leaf blades[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2020, 141(2): 1−11.
[33] 邱芬, 林源, 辛培尧,等. 无籽刺梨多倍体诱导及鉴定[J]. 中国南方果树, 2017, 46(4): 121−124, 128. Qiu F, Lin Y, Xin P Y, et al. Induction and identification of polyploidy Rosa sterilis[J]. South China Fruits, 2017, 46(4): 121−124, 128.
[34] 许从萍. 青杨四倍体诱导及其营养生长缓慢的分子基础研究[D]. 北京: 北京林业大学, 2018. Xu C P. Tetraploid induction and molecular basic of vegetative slowly growth in tetraploid Populus spp. (Section Tacamahaca)[D]. Beijing: Beijing Forestry University, 2018.
[35] 王娜. 利用组织培养诱导枣和酸枣多倍体研究[D]. 保定: 河北农业大学, 2004. Wang N. Polyploid induction of Ziziphus jujuba Mill. and Ziziphus acidojujuba C. Y. Cheng et M. J. Liu by tissue culture[D]. Baoding: Hebei Agricultural University, 2004.
[36] Costantini E, Landi L, Silvestroni O, et al. Auxin synthesis-encoding transgene enhances grape fecundity[J]. Plant Physiology, 2007, 143(4): 1689−1694. doi: 10.1104/pp.106.095232
[37] 付为国, 韦晨, 王醒. 苹果属植物组织培养的研究进展[J]. 分子植物育种, 2019, 17(4): 1320−1325. Fu W G, Wei C, Wang X. Research progress on tissue culture of Malus plant[J]. Molecular Plant Breeding, 2019, 17(4): 1320−1325.
[38] 王金祥, 严小龙, 潘瑞炽. 不定根形成与植物激素的关系[J]. 植物生理学通讯, 2005, 41(2): 133−142. Wang J X, Yan X L, Pan R Z. Relationship between adventitious root formation and plant hormones[J]. Plant Physiology Journal, 2005, 41(2): 133−142.
[39] 彭子模, 程伟, 高雁,等. 萘乙酸对几种植物扦插生根的影响[J]. 新疆师范大学学报(自然科学版), 2002, 21(2): 34−38. Peng Z M, Cheng W, Gao Y, et al. How does the NAA exert effects on root growth of several plants’ cuttage shoots[J]. Journal of Xinjiang Normal University (Natural Sciences Edition), 2002, 21(2): 34−38.
[40] Frank R A W, Leeper F J, Luisi B F. Structure, mechanism and catalytic duality of thiamine-dependent enzymes[J]. Cellular and Molecular Life Sciences: CMLS, 2007, 64(7−8): 892−905.
-
期刊类型引用(16)
1. 钟思琪,宁金魁,黄锦程,陈鼎泸,欧阳勋志,臧颢. 基于混合效应的杉木人工林冠幅模型. 森林与环境学报. 2024(02): 127-135 . 百度学术
2. 段平,王云川,晋秋梅,李佳. 基于无人机可见光影像的单木胸径估算方法. 测绘与空间地理信息. 2023(01): 14-17 . 百度学术
3. 魏智海,魏姿芃. 基于单木分割及点云特征提取的单木胸径估测. 陕西林业科技. 2023(02): 18-23 . 百度学术
4. 王杰芬,夏磊,林露花,胡璐璐,徐怀兴,王聚中,徐小军. 结合放射线法和无人机影像提取冠幅估算杉木碳储量研究. 浙江林业科技. 2023(05): 42-50 . 百度学术
5. 夏洪涛,郭晓斌,张珍,田相林,郭福涛,孙帅超. 基于不同立地质量评价指标的杉木大径材林分树高-胸径模型. 中南林业科技大学学报. 2023(10): 80-88 . 百度学术
6. 肖德卿,罗芊芊,范辉华,邱群,周志春. 栽植模式对木荷幼林生长和形质性状家系变异影响. 林业科学. 2022(05): 85-92 . 百度学术
7. 王志波,季蒙,李永乐,李银祥,马世明,张海东. 华北落叶松人工林差分地位指数模型构建. 林业资源管理. 2021(01): 156-163 . 百度学术
8. 杨洋,尤龙辉,叶功富,聂森,程分生,余锦林. 沙质海岸基干林木麻黄幼林模拟抚育预测. 福建农林大学学报(自然科学版). 2021(02): 206-215 . 百度学术
9. 田红灯,申文辉,谭一波,郑威,何琴飞,朱慧,甘国娟. 不同林龄杉木人工林冠幅与生长因子的关系. 中南林业科技大学学报. 2021(05): 93-101 . 百度学术
10. 朱晋梅,朱光玉,易烜,杨琬珑,牟村,王琢玙. 湖南省栎类次生林冠幅—胸径模型模拟研究. 湖南林业科技. 2021(03): 46-51 . 百度学术
11. 赵保国,朱江,艾训儒,姚兰,郭秋菊,洪建峰. 水杉原生种群胸径树高与树冠的通径分析. 东北林业大学学报. 2021(10): 16-20 . 百度学术
12. 于晓池,李凤,欧阳,张鹏,郭小龙,肖遥,赵秋玲,杨桂娟,王军辉,麻文俊. 基于表型的灰楸核心种质构建. 林业科学研究. 2021(06): 38-45 . 百度学术
13. 贾鹏刚,夏凯,董晨,冯海林,杨垠晖. 基于无人机影像的银杏单木胸径预估方法. 浙江农林大学学报. 2019(04): 757-763 . 百度学术
14. 张冬燕,王冬至,范冬冬,张健东,李大勇. 不同立地类型华北落叶松人工林冠幅与胸径关系研究. 林业资源管理. 2019(04): 69-73 . 百度学术
15. 伍小敏,徐春,杨汉波,陈炙,郭洪英,黄振,王泽亮. 四川桤木天然林和人工林的单木生长模型研究. 四川林业科技. 2018(04): 8-11+44 . 百度学术
16. 周凤艳. 沙地樟子松不同林龄树高、胸径等生长指标的关系研究. 吉林林业科技. 2017(01): 12-15 . 百度学术
其他类型引用(13)