高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气候敏感的杉木树高−胸径非线性混合效应模型研建

杜志 陈振雄 李锐 刘紫薇 黄鑫

杜志, 陈振雄, 李锐, 刘紫薇, 黄鑫. 气候敏感的杉木树高−胸径非线性混合效应模型研建[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20230052
引用本文: 杜志, 陈振雄, 李锐, 刘紫薇, 黄鑫. 气候敏感的杉木树高−胸径非线性混合效应模型研建[J]. 北京林业大学学报. doi: 10.12171/j.1000-1522.20230052
Du Zhi, Chen Zhenxiong, Li Rui, Liu Ziwei, Huang Xin. Research on the nonlinear mixed effect model of height-DBH of climatic sensitive Cunninghamia lanceolata[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20230052
Citation: Du Zhi, Chen Zhenxiong, Li Rui, Liu Ziwei, Huang Xin. Research on the nonlinear mixed effect model of height-DBH of climatic sensitive Cunninghamia lanceolata[J]. Journal of Beijing Forestry University. doi: 10.12171/j.1000-1522.20230052

气候敏感的杉木树高−胸径非线性混合效应模型研建

doi: 10.12171/j.1000-1522.20230052
基金项目: 国家自然科学基金面上项目(31971578)。
详细信息
    作者简介:

    杜志,高级工程师。主要研究方向:森林资源调查监测。Email:duzhi6880448@163.com 地址:410014 湖南省长沙市雨花区香樟东路 143 号

    责任作者:

    陈振雄,正高级工程师。主要研究方向:森林资源调查监测。Email:674862391@qq.com 地址:同上。

  • 中图分类号: S791.27;S750

Research on the nonlinear mixed effect model of height-DBH of climatic sensitive Cunninghamia lanceolata

  • 摘要:   目的  建立基于林分优势高和气候因子的杉木树高−胸径非线性混合效应模型,为杉木生长研究和经营管理提供理论依据。  方法  基于2020年国家森林资源年度监测评价广西壮族自治区试点25块杉木样地的每木胸径和树高实测数据及样地位置对应的气候数据,选择7个常用的树高−胸径模型,筛选出模拟精度最高的模型作为基础模型,再引入代表林分竞争、立地条件和气候因子的变量构建广义非线性模型,并在此基础上,加入样地效应构建杉木非线性混合效应模型。最后,运用十折交叉验证法对3种模型进行检验。  结果  Chapman-Richards模型为最佳杉木树高−胸径关系基础模型,林分优势高、林分断面积和年平均降水量与树高生长显著相关,用于构建广义非线性模型,对比分析确定随机参数为3个的组合构造非线性混合效应模型。基础模型、广义非线性模型、非线性混合效应模型的调整决定系数分别为0.674 2、0.797 3和0.857 3,平均绝对误差分别为1.607 5、1.270 1和1.010 6 m,均方根误差分别为2.032 1、1.632 1和1.338 4 m,相对均方根误差分别为20.796 4%、16.703 3%和13.697 3%,混合效应模型呈现出更好的拟合效果。  结论  引入林分优势高和气候因子的杉木树高−胸径非线性混合效应模型可以较好地描述杉木树高胸径曲线,适用于大范围的树高预测。

     

  • 图  1  样地分布示意图

    Figure  1.  Sketch map of sample plot distribution

    图  2  不同模型残差图

    Figure  2.  Residual plot of different models

    表  1  样地因子和气候因子统计

    Table  1.   Statistical table of survey factors and climatic variables in sample plots

    变量 Variable变量符号
    Variable symbol
    最小值
    Min. value
    最大值
    Max. value
    平均值
    Mean
    标准差
    SD
    胸径
    Diameter at breast height/cm
    D5.040.911.75.1
    树高
    Tree height/m
    H3.021.89.83.6
    林分断面积/(m2·hm−2
    Stand basal area/(m2·ha−1)
    SBA5.6152.8828.1112.49
    林分密度/(株·hm−2
    Stand density/(tree·ha−1)
    NT3755 6402 5211 354
    平均年龄/a
    Average age/year
    A443148
    林分优势高
    Stand dominant height/m
    Hdom9.821.014.72.4
    年平均气温
    Annual mean temperature/℃
    MAT13.5023.5018.282.25
    最热月平均气温
    Mean temperature of the warmest month/℃
    MWMT23.5029.5027.061.66
    最冷月平均气温
    Mean temperature of the coldest month/℃
    MCMT−1.1017.405.344.14
    平均温差
    Mean temperature difference/℃
    TD8.8021.5018.263.20
    年平均降水量
    Annual mean precipitation/mm
    MAP486.002 083.001 592.84374.27
    湿热指数
    Humidex
    AHM11.4062.0020.4311.02
    0 ℃以下天数
    Days below 0 ℃
    DD_002558
    5 ℃以上天数
    Days above 5 ℃
    DD53 2716 5484 840752
    18 ℃以下天数
    Days below 18 ℃
    DD_181162 1311 126489
    18 ℃以上天数
    Days above 18 ℃
    DD184821 9901 221358
    下载: 导出CSV

    表  2  树高−胸径候选模型

    Table  2.   Candidate models of tree height-DBH

    模型名称
    Model name
    模型公式
    Model formula
    公式序号
    Equation No.
    Curtis $H = 1.3 + {a_1}{\left[ {D/\left( {1 + D} \right)} \right]^{{a_2}}} + \varepsilon $ (1)
    Meyer $ H = 1.3 + {a_1}\left[ {1 - \exp \left( { - {a_2}D} \right)} \right] + \varepsilon $ (2)
    Wykoff $ H = 1.3 + \exp \left[ {{a_1} + {a_2}/(D + 1)} \right] + \varepsilon $ (3)
    Chapman-Richards $H = 1.3 + {a_1}{\left[ {1 - \exp \left( { - {a_2}D} \right)} \right]^{{a_3}}} + \varepsilon $ (4)
    Logistic $H = 1.3 + {a_1}/\left[ {1 + {a_2}\exp \left( { - {a_3}D} \right)} \right] + \varepsilon $ (5)
    Weibull $ H = 1.3 + {a_1}\left[ {1 - \exp \left( { - {a_2}{D^{{a_3}}}} \right)} \right] + \varepsilon $ (6)
    Gompertz $H = 1.3 + {a_1}\exp \left[ { - {a_2}\exp \left( { - {a_3}D} \right)} \right] + \varepsilon $ (7)
    注:a1a2a3为模型系数,ε为误差项。Notes: a1, a2, a3 are the model coefficients, ε is the error term.
    下载: 导出CSV

    表  3  基础模型拟合结果

    Table  3.   Fitting results of basic models

    模型名称
    Model name
    参数估计值 Estimate平均绝对误差
    MAE/m
    均方根误差
    RMSE/m
    相对均方根误差
    rRMSE/%
    调整决定系数
    R2 adj
    a1a2a3
    Curtis21.552 3***10.449 5***1.632 22.051 720.996 10.668 3
    Meyer22.296 5***0.043 3***1.715 52.102 921.521 40.573 0
    Wykoff3.106 3***−11.399 5***1.634 62.052 221.002 40.664 3
    Richards15.478 3***0.124 7***1.988 9***1.607 52.032 120.796 40.674 2
    Logistic14.274 7***8.671 5***0.231 9***1.608 42.039 220.868 80.668 1
    Weibull14.798 3***0.022 9***1.516 9***1.612 92.039 720.874 30.673 1
    Gompertz14.954 7***3.171 4***0.158 7***1.612 42.039 220.869 30.671 3
    注:***为表现显著(P < 0.001)。Notes: *** means significant at the P < 0.001 level.
    下载: 导出CSV

    表  4  广义非线性模型参数估计结果

    Table  4.   Results of parameter estimation of generalized nonlinear models

    参数
    Parameter
    估计值
    Estimate
    标准差
    SD
    tP
    a16.226 00.452 213.766 < 0.000 1
    a20.085 60.005 216.372 < 0.000 1
    a31.507 00.086 017.514 < 0.000 1
    a40.570 50.025 822.152 < 0.000 1
    a50.001 10.000 113.432 < 0.000 1
    a60.000 10.000 02.8030.005 1
    下载: 导出CSV

    表  5  混合效应模型随机参数组合的部分拟合结果

    Table  5.   Partial results of combinations of random parameters for mixed-effects model

    模型
    Model
    随机参数
    Random parameter
    AICBICLoglikLRTP
    广义非线性模型
    Generalized nonlinear model
    无 None11 841.211 883.5−5 913.63
    模型1 Model 1a210 904.410 952.7−5 444.20
    模型2 Model 2a2a310 814.910 875.3−5 397.4993.41 < 0.000 1
    模型3 Model 3a2a3a610 811.810 890.3−5 392.929.140.027 5
    注:模型2的LRT和P值为模型2与1相比较而得;模型3的LRT和P值为模型3与2相比较而得。Notes: the LRT and P in the line of model 2 are caululated by model 2 and 1. The LRT and P in the line of model 3 are caululated by model 3 and 2.
    下载: 导出CSV

    表  6  基于不同异方差函数的非线性混合效应模型比较

    Table  6.   Comparison of nonlinear mixed-effects models based on different variance functions

    模型
    Model
    异方差函数 Heteroscedasticity functionAICBICLoglikLRTP
    模型3
    Model 3
    无 None 10 811.8 10 890.3 −5 392.92
    模型3.1
    Model 3.1
    常数加幂函数 ConstPower function 10 760.2 10 850.8 −5 365.12 55.60 < 0.000 1
    模型3.2
    Model 3.2
    幂函数 Power function 10 758.2 10 842.7 −5 365.12 55.60 < 0.000 1
    模型3.3
    Model 3.3
    指数函数 Exponent function 10 782.0 10 866.5 −5 377.00 31.84 < 0.000 1
    注:LRT和P值为模型与模型3相比较而得。Note: LRT and P are caululated by model and model 3.
    下载: 导出CSV

    表  7  不同模型比较

    Table  7.   Comparison of different models

    模型 ModelAICBICLoglikMAE/mRMSE/mrRMSE/%R2 adj
    基础模型
    Basic model
    13 223.713 247.8−6 607.841.607 52.032 120.796 40.674 2
    广义非线性模型 Generalized nonlinear model11 841.211 883.5−5 913.631.270 11.632 116.703 30.797 3
    混合效应模型
    Mixed-effects model
    1 0758.210 842.7−5365.121.010 61.338 413.697 30.857 3
    下载: 导出CSV
  • [1] 邓祥鹏, 许芳泽, 赵善超, 等. 基于贝叶斯法的新疆天山云杉树高−胸径模型研究[J]. 北京林业大学学报, 2023, 45(1): 11−20.

    Deng X P, Xu F Z, Zhao S C, et al. Tree height-DBH model for Picea schrenkiana in Tianshan Mountain, Xinjiang of northwestern China based on Bayesian method[J]. Journal of Beijing Forestry University, 2023, 45(1): 11−20.
    [2] Curtis R O. Height-diameter and height-diameter-age equations for second-growth Douglas-fir[J]. Forestry Science, 1967, 13(4): 365−375.
    [3] Fang Z X, Bailey R L. Height-diameter models for tropical forests on Hainan Island in southern China[J]. Forest Ecology and Management, 1998, 110: 315−327. doi: 10.1016/S0378-1127(98)00297-7
    [4] 王明亮, 唐守正. 标准树高曲线的研制[J]. 林业科学研究, 1997, 10(4): 259−264.

    Wang M L, Tang S Z. Research on universal height-diameter curves[J]. Forest Research, 1997, 10(4): 259−264.
    [5] 骆期邦, 曾伟生, 彭长清. 可变参数相对树高曲线模型及其应用研究[J]. 林业科学, 1997, 33(3): 202−210.

    Luo Q B, Zeng W S, Peng C Q. Variable relative tree height curve model and its application in tree volume estimation[J]. Scientia Silvae Sinicae, 1997, 33(3): 202−210.
    [6] 赵俊卉, 亢新刚, 刘燕. 长白山主要针叶树种最优树高曲线研究[J]. 北京林业大学学报, 2009, 31(4): 13−18.

    Zhao J H, Kang X G, Liu Y. Optimal height-diameter models for dominant coniferous species in Changbai Mountain northeastern China[J]. Journal of Beijing Forestry University, 2009, 31(4): 13−18.
    [7] Temesgen H, Gadow K V. Generalized height-diameter models: an application for major tree species in complex stands of interior British Columbia[J]. European Journal of Forest Research, 2004, 123: 45−51. doi: 10.1007/s10342-004-0020-z
    [8] 赵俊卉, 亢新刚, 张慧东, 等. 长白山3个主要针叶树种的标准树高曲线[J]. 林业科学, 2010, 46(10): 191−194.

    Zhao J H, Kang X G, Zhang H D, et al. Generalized height-diameter models for three main coniferous trees species in Changbai Mountain[J]. Scientia Silvae Sinicae, 2010, 46(10): 191−194.
    [9] 赵俊卉, 亢新刚, 张慧东, 等. 长白山主要针叶树种胸径和树高变异系数与竞争因子的关系[J]. 应用生态学报, 2009, 20(8): 1832−1837.

    Zhao J H, Kang X G, Zhang H D, et al. Relationships between coefficient of variation of diameter and height competition index of main coniferous trees in Changbai Mountains[J]. Chinese Journal of Applied Ecology, 2009, 20(8): 1832−1837.
    [10] 蒋益, 邓华锋, 高东启, 等. 用度量误差模型方法建立油松树高曲线方程组[J]. 东北林业大学学报, 2015, 43(5): 126−129.

    Jiang Y, Deng H F, Gao D Q, et al. Constructing height-diameter curve equations with measurement error models for Chinese pine stands[J]. Journal of Northeast Forestry University, 2015, 43(5): 126−129.
    [11] 娄明华, 张会儒, 雷相东, 等. 基于空间自相关的天然蒙古栎阔叶混交林林木胸径−树高模型[J]. 林业科学, 2017, 53(6): 67−76.

    Lou M H, Zhang H R, Lei X D, et al. Individual diameter-height models for mixed Quercus mongolica broadleaved natural stands based on spatial autocorrelation[J]. Scientia Silvae Sinice, 2017, 53(6): 67−76.
    [12] Sharma M, Parton J. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach[J]. Forest Ecology and Management, 2007, 249(3): 187−198. doi: 10.1016/j.foreco.2007.05.006
    [13] Felipe C, Margarida T, Paula S, et al. A generalized nonlinear mixed-effects height-diameter model for Eucalyptus globulus L. in northwestern Spain[J]. Forest Ecology and Management, 2009, 259: 943−952.
    [14] Karol B, Lauri M, Paula S. Mixed-effects generalized height-diameter model for young silver birch stands on post-agricultural lands[J]. Forest Ecology and Management, 2020, 460: 117901. doi: 10.1016/j.foreco.2020.117901
    [15] 李杰. 基于分级的福建将乐地区栲树树高曲线模型研究[J]. 西北农林科技大学学报, 2019, 47(11): 34−42.

    Li J. Classification based height-diameter model for Castanopsis fargesii in Jiangle, Fujian[J]. Journal of Northwest A&F University, 2019, 47(11): 34−42.
    [16] 李海奎, 法蕾. 基于分级的全国主要树种树高−胸径曲线模型[J]. 林业科学, 2011, 47(10): 83−90.

    Li H K, Fa L. Height-diameter model for major tree species in China using the classified height method[J]. Scientia Silvae Sinicae, 2011, 47(10): 83−90.
    [17] 郭嘉, 孙帅超, 田相林, 等. 引入优势木树高建立的秦岭林区松栎林树高−胸径模型[J]. 东北林业大学学报, 2019, 47(11): 66−72.

    Guo J, Sun S C, Tian X L, et al. Predicting tree height from tree diameter and dominant height for pine-oak forests in Qinling Mountains[J]. Journal of Northeast Forestry University, 2019, 47(11): 66−72.
    [18] 符利勇. 非线性混合效应模型及其在林业上应用[D]. 北京: 中国林业科学研究院, 2012.

    Fu L Y. Nonlinear mixed effects model and its application in forestry[D]. Beijing: Chinese Academy of Forestry, 2012.
    [19] 董云飞. 福建杉木人工林单木主长模型的研究[D]. 北京: 北京林业大学, 2015.

    Dong Y F. Study on individual tree growth model for Chinese fir plantation in Fujian[D]. Beijing: Beijing Forestry University, 2015.
    [20] 张海平, 李凤日, 董利虎, 等. 基于气象因子的白桦天然林单木直径生长模型[J]. 应用生态学报, 2017, 28(6): 1851−1859.

    Zhang H P, Li F R, Dong L H, et al. Individual tree diameter increment model for natural Betula platyphylla forests based on meteorological factors[J]. Chinese Journal of Applied Ecology, 2017, 28(6): 1851−1859.
    [21] 杨鑫, 王建军, 杜志, 等. 基于气候因子的兴安落叶松天然林单木直径生长模型构建[J]. 北京林业大学学报, 2022, 44(8): 1−11.

    Yang X, Wang J J, Du Z, et al. Development of individual-tree diameter increment model for natural Larix gmelinii forests based on climatic factors[J]. Journal of Beijing Forestry University, 2022, 44(8): 1−11.
    [22] 王淼, 白淑菊, 陶大立, 等. 大气增温对长白山林木直径生长的影响[J]. 应用生态学报, 1995, 6(2): 128−132.

    Wang M, Bai S J, Tao D L, et al. Effect of rise in air-temperature on tree ring growth of forest on Changbai Mountain[J]. Chinese Journal of Applied Ecology, 1995, 6(2): 128−132.
    [23] 于健, 徐倩倩, 刘文慧, 等. 长白山东坡不同海拔长白落叶松径向生长对气候变化的响应[J]. 植物生态学报, 2016, 40(1): 24−35. doi: 10.17521/cjpe.2015.0216

    Yu J, Xu Q Q, Liu W H, et al. Response of radial growth to climate change for Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountain, Northeast China[J]. Chinese Journal of Plant Ecology, 2016, 40(1): 24−35. doi: 10.17521/cjpe.2015.0216
    [24] 韩艳刚, 周旺明, 齐麟, 等. 长白山树木径向生长对气候因子的响应[J]. 应用生态学报, 2019, 30(5): 1513−1520.

    Han Y G, Zhou W M, Qi L, et al. Tree radial growth-climate relationship in Changbai Mountain, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1513−1520.
    [25] Wang X, Fang J, Tang Z, et al. Climatic control primary forest structure and DBH-height allometry in northeast China[J]. Forest Ecology and Management, 2006, 234(1): 264−274.
    [26] Leites L P, Robinson A P, Rehfeldt G E, et al. Height-growth response to climatic changes differs among populations of Douglas-fir: a novel analysis of historic data[J]. Ecological Applications, 2012, 22(1): 154−165. doi: 10.1890/11-0150.1
    [27] Yang Y, Huang S. Effects of competition and climate variables on modelling height to live crown for three boreal tree species in Alberta, Canada[J]. European Journal of Forest Research, 2018, 137(2): 153−167. doi: 10.1007/s10342-017-1095-7
    [28] Fortin M, van Couwenberghe R, Perez V, et al. Evidence of climate effects on the height-diameter relationships of tree species [J/OL]. Annals of Forest Science, 2019, 76(1): 1[2022−12−19]. https://link.springer.com/article/10.1007/s13595-018-0784-9.
    [29] 国家林业和草原局. 2021中国林草资源及生态状况[M]. 北京: 中国林业出版社, 2022.

    National Forestry and Grassland Administration. Forest and grassland resources and ecological status in China in 2021 [M]. Beijing: China Forestry Publishing House, 2022.
    [30] Wang T, Hamann A, Spittlehouse D L, et al. Climatewna-high-resolution spatial climate data for western north America[J]. Journal of Applied Meteorology and Climatology, 2012, 51(1): 16−29. doi: 10.1175/JAMC-D-11-043.1
    [31] Sharma M. Comparing height-diameter relationships of boreal tree species grown in plantations and natural stands[J]. Society of American Foresters, 2016, 62(1): 70−77.
    [32] Han Y G, Lei Z Y, Ciceu A, et al. Determining an accurate and cost-effective individual height-diameter model for Mongolian pine on sandy land [J/OL]. Forests, 2021, 12: 1144[2023−01−19]. https://doi.org/10.3390/f12091144.
    [33] Vonesh E F, Chinchilli V M. Linear and nonlinear models for the analysis of repeated measurements [M]. New York: Marcel Dekker Inc., 1997.
    [34] Neumann M, Mues V, Moreno A, et al. Climate variability drives recent tree mortality in Europe[J]. Global Change Biology, 2017, 23: 4788−4797. doi: 10.1111/gcb.13724
    [35] 刘敏, 毛子军, 厉悦, 等. 不同纬度阔叶红松林红松径向生长对气候因子的响应[J]. 应用生态学报, 2016, 27(5): 1341−1352.

    Liu M, Mao Z J, Li Y, et al. Response of radial growth of Pinus koraiensis in broad-leaved Korean pine forests with different latitudes to climatical factors[J]. Chinese Journal of Applied Ecology, 2016, 27(5): 1341−1352.
    [36] Wang M, Zhao Y H, Zhen Z, et al. Individual-tree diameter growth model for Korean pine plantations based on optimized interpolation of meteorological variables[J]. Journal of Forestry Research, 2021(4): 1535−1552.
    [37] Franceschini T, Schneider R. Influence of shade tolerance and development stage on the allometry of ten temperate tree species[J]. Physiological Ecology, 2014, 176(3): 739−749.
    [38] Tian D Y, Jiang L C, Shahzad M K, et al. Climate-sensitive tree height-diameter models for mixed forests in Northeastern China[J]. Agricultural and Forest Meteorology, 2022, 326: 1−12.
    [39] Fang Z, Bailey R L. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments[J]. Forest Science, 2001, 47: 287−300.
    [40] Calama R, Montero G. Interregional nonlinear height-diameter model with random coefficients for stone pine in Spane[J]. Canadian Journal of Forest Research, 2004, 34: 150−163. doi: 10.1139/x03-199
    [41] 符利勇, 唐守正, 张会儒, 等. 基于多水平非线性混合效应蒙古栎林单木断面积模型[J]. 林业科学研究, 2015, 28(1): 23−31.

    Fu L Y, Tang S Z, Zhang H R, et al. Multilevel nonlinear mixed-effects basal area models for individual trees of Quercus mongolica[J]. Forest Research, 2015, 28(1): 23−31.
  • 加载中
图(2) / 表(7)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  43
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-10
  • 修回日期:  2023-04-12
  • 录用日期:  2023-05-12
  • 网络出版日期:  2023-05-15

目录

    /

    返回文章
    返回