Impact of greening around residential buildings on winter sunlight in Beijing
-
摘要:目的
当前中国居住区存在植物遮挡建筑,造成建筑日照不足的问题。通过软件数字模拟分析探究植物对建筑日照的影响,能为居住区的植物景观营造提供科学依据,也可为进一步探讨人居环境改善的实施途径提供参考。
方法以北京板式多层住宅为参照建立理想楼间模型,根据实地调研获取的植物形态结构参数构建冠层模块单元,使用Ecotect Analysis软件分析其对建筑日照的影响。
结果(1)楼间及楼旁约40°夹角范围内的植物冠层均会对建筑日照产生影响,楼间绿地植物对建筑日照的影响显著高于楼旁绿地,二者的影响在垂直方向上皆表现为高层位置显著高于低层位置,在水平方向上的影响规律则较为复杂。(2)对建筑宅旁空间进行日照影响敏感性分级,敏感性Ⅰ级(敏感)、Ⅱ级(一般敏感)、Ⅲ级(不敏感)区域分别占空间总体积的10.2%、56.2%、33.6%。(3)敏感性Ⅰ级区域不适合植物冠层存在,直接影响建筑日照达标;Ⅱ级区域的冠层分布影响建筑立面的总日照时数,存在影响2层及以上楼层日照时数达标的可能性;Ⅲ级区域的植物冠层不会对建筑日照产生影响。
结论(1)相比楼旁绿地,楼间绿地的植物冠层对建筑日照产生的影响更为广泛,且楼间绿地植物冠层的影响效果显著高于楼旁绿地。(2)楼间及楼旁绿地的植物冠层对建筑日照的影响存在着复杂的空间关系,不同位置的植物冠层对建筑日照影响的程度及范围呈现出较大差异性。(3)不同的日照敏感分区对于植物种植具有不同的要求。该区域内(Ⅰ级,Ⅱ级)植物冠层会影响到建筑日照时数,需谨慎进行植物景观的设计与管理。
Abstract:ObjectiveAt present, plants in residential areas in China are shading buildings, causing the problem of insufficient sunlight in buildings. Exploring the influence of plants on building sunlight through software numerical simulation analysis can provide a scientific basis for the construction of plant landscapes in residential areas, and can also provide a reference for further discussion on the implementation of ways to improve the living environment.
MethodTaking the slab multi-storey residential buildings in Beijing as an example, an ideal building model was established. The basic unit of canopy spatial distribution was constructed according to the plant survey data obtained in the previous study. The impact on building sunshine was explored by Ecotect analysis software.
Result(1) The plant canopy within the 40° included angle between the building and the side of the building will have an impact on the building sunshine. The impact of plants in the green space between the buildings on the building sunshine was significantly higher than that of the green space beside the building. Both of them showed that the high-rise location was significantly higher than the low-rise location in the vertical direction, and the impact law in the horizontal direction was more complex. (2) The sensitivity classification of sunlight impact was carried out for the space next to the building. The sensitivity level Ⅰ (sensitive), level Ⅱ (generally sensitive) and level Ⅲ (insensitive) areas accounted for 10.2%, 56.2% and 33.6% of the total space volume, respectively. (3) The sensitive level Ⅰ area was not suitable for the existence of plant canopy, which directly affected the building’s sunshine compliance. The canopy distribution of level Ⅱ areas affected the total sunshine hours of building facades, and there was a possibility of affecting the sunshine hours of the second floor and above. The canopy distribution of level Ⅲ areas will not affect building sunshine.
Conclusion(1) Compared with the green space next to the building, the plant canopy of the green space between the buildings has a wider impact on the building sunshine, and the impact effect is also significantly higher. (2) There is a complex spatial relationship in the influence of plant canopies on building sunshine, and the degree and scope of the influence of plant canopies on building sunlight in different positions show great differences. (3) Different sunshine-sensitive zones have varied requirements for planting. The plant canopy in this area (level Ⅰ, level Ⅱ) will affect the sunshine hours of the building, and the design and management of plant landscape should be carefully carried out.
-
白桦(Betula platyphylla)作为我国重要的阔叶用材树种,广泛分布于东北、华北、西北及西南高山林区等14个省区[1],其木质坚硬,质地细白,在家具、建材、造纸等方面具有广泛用途。由于白桦为异花授粉树种,自交不育,基因型高度杂合,因此群体内个体间遗传差异十分明显,主要表现在个体间的干型、生长、适应性等性状各不相同。开展白桦家系多点造林试验,对不同地点间的参试家系进行选择,可最大限度地利用家系间及家系内个体间变异,加速白桦遗传改良进程。
研究团队于1997—2000年间,依据表型性状从帽儿山、草河口、辉南、露水河、汪清、小北湖和东方红等多个种源内筛选出若干株白桦优良单株,将这些优树个体分年度定植于棚式种子园内,建立了白桦初级实生种子园。前期,对园中母树自由授粉的半同胞子代在单一地点的试验结果进行过初步分析[2],但是这仅为单一试验点的结果且林龄尚小。然而,通过多点试验研究,不仅能够分析各家系在单一地点的生长性状,同时也能够对参试家系进行基因型与环境交互作用的分析,是筛选对不同类型环境具有特殊适应性基因型的必要手段,也是进行优良家系选择及遗传改良的重要方法之一[3-4]。在以往的白桦多点试验研究中,本团队曾就白桦杂交子代2~5年生幼龄林测定数据进行过早期选择与评价[5-7],但也仅限于幼龄林时期,尚未对成年林分进行跟踪调查。为此,本试验开展12年生自由授粉的半同胞家系多点子代测定研究,在进行优良家系选择的同时对建园母树进行评价,为白桦种子园的改建提供参考。
1. 材料与方法
1.1 试验材料及设计
试验材料为东北林业大学白桦初级实生种子园内53株白桦母树自由授粉的半同胞子代家系。2001年采种,2002年育苗,2003年分别在黑龙江省伊春市朗乡林业局小白林场、吉林省吉林市林业科学研究院实验林场、黑龙江省尚志市帽儿山实验林场营建白桦半同胞家系测定林,3个试验点地理与气候条件见表 1。试验林按照完全随机区组设计,在帽儿山试验点为20株双行排列,在吉林与朗乡2试验点为10株单行排列,株行距2m×2m,3次重复。2015年春分别对3个地点的12年生白桦半同胞子代试验林进行全林树高、胸径调查。
表 1 3个试验点的地理气候条件Table 1. Geographical and climatic conditions of the three test sites序号
No.试验点
Test site纬度
Latitude经度
Longitude年降水量
Annual precipitation/mm年平均温度
Annual average temperature/℃无霜期
Frost-freeseason/d土壤类型
Soil type1 朗乡
Langxiang46°48′N 128°50′E 676.0 1.0 100 永冻暗棕壤
Permafrost dark brown2 帽儿山
Maoershan45°16′N 127°31′E 666.1 2.4 120 暗棕壤
Dark brown3 吉林
Jilin43°40′N 126°40′E 700.0 4.1 135 暗棕壤
Dark brown1.2 数据调查处理
1.2.1 生长性状测量
采用超声波测高仪及塔尺测量树高,采用围尺测量胸径。家系保存率按各试验点内各家系实际保存株数计算。根据白桦的二元材积表公式计算单株材积:V=0.0000051935163D1.8586884H1.0038941[8]。
1.2.2 遗传参数估计
表型变异系数(PCV)采用公式:PCV=σˉX×100%,式中:σ为性状标准差,X为性状平均值[9]。
遗传增益(G):G=h2SˉX×100%, 式中:h2为性状遗传力,S为入选各优良家系性状平均值与参试家系相应性状平均值的差值, X为参试家系性状平均值。
1.2.3 数据处理
方差分析及多重比较(Duncan)利用SPSS16.0和Microsoft Excel等统计分析软件进行计算。
各试验地点间及试验点内均采用双因素方差分析线性模型进行分析,其模型表达式及各参数含义详见参考文献[6]。
采用南京林业大学林木多地点半同胞子代测定遗传分析R语言程序包以及R软件进行多地点半同胞子代材积育种值BLUP估计。模型建立过程根据童春发[10-11]的方法进行,详见文献[11]。
BLUP的线性混合模型公式为[11]:
yy=XXβ+ZZu+e 式中: y为材积观测值向量,X和Z分别为β和u的相关矩阵,β为固定效应,u为随机遗传效应,e为随机误差效应。
2. 结果与分析
2.1 家系生长性状的多地点联合方差分析及主要遗传参数计算
3个地点联合方差分析(表 2)表明:单株材积、树高性状在地点间和家系间以及地点与家系的交互作用均表现出极显著(P<0.01)的差异,胸径性状在地点间和家系间也表现出极显著(P<0.01)的差异;说明不同家系在同一地点内生长差异明显,同一个家系在不同立地条件下的生长表现也各不一致,各地点与家系间存在较为明显的互作效应。
表 2 参试家系生长性状多地点联合方差分析Table 2. Joint variance analysis of growth traits for birch families at different sites生长性状
Growth trait变异来源
Source of variationdf SS MS F P 树高
Height(H)/m地点Site 2 1755.112 877.556 490.323** <0.01 地点内区组Site (Block) 6 315.480 52.580 29.378** <0.01 家系Family 52 351.766 6.765 3.780** <0.01 家系×地点Family×site(G×E) 104 474.421 4.562 2.549** <0.01 试验误差Experiment error 4065 7275.337 1.790 总变异Total variance 4230 423725.196 胸径
Diameter at breast height (DBH)/cm地点Site 2 3674.704 1837.352 435.896** <0.01 地点内区组Site (Block) 6 283.320 47.220 11.203** <0.01 家系Family 52 389.907 7.498 1.779** <0.01 家系×地点G×E 104 542.376 5.215 1.237 0.053 试验误差Experiment error 4065 17134.428 4.215 总变异Total variance 4230 366062.640 单株材积Volume(V)/m3 地点Site 2 0.189 0.094 509.010** <0.01 地点内区组Site (Block) 6 0.017 0.003 15.243** <0.01 家系Family 52 0.025 <0.001 2.621** <0.01 家系×地点G×E 104 0.029 <0.001 1.499** <0.01 试验误差Experiment error 4065 0.753 <0.001 总变异Total variance 4230 6.436 注: *差异显著,P<0.05; **差异极显著,P<0.01。下同。Notes: * means significant difference at P<0.05 level; ** means extremely significant difference at P<0.01 level. The same below. 单个地点的方差分析(表 3)表明:树高、胸径以及单株材积在家系间均达到差异显著(P<0.05)或极显著(P<0.01)水平,说明不同家系间生长存在明显差别。在3个试验点中,帽儿山试验点的白桦家系树高、胸径和单株材积生长表现最好,均值分别为10.3928m、9.6489cm和0.0408m3,且变异系数较小,分别为11.79%、22.64%和34.80%,说明参试家系在帽儿山试验点不仅生长量最大,而且生长整齐度也较好。吉林试验点的参试家系各性状均值均处于中间,生长变异水平也处于中等。朗乡试验点各性状均值最小,为8.6575m、7.1091cm和0.0226m3,这与当地年均温较低,无霜期较短等气候条件有关。
表 3 不同试验点间参试家系生长性状的遗传参数Table 3. Genetic parameters for growth traits of birch families at different sites试验地点
Test site性状
Growth trait均值
Mean标准差
Standarddeviation变幅
Amplitude ofvariation变异系数
Coefficient of variation/%F P 朗乡
Langxiang树高H/m 8.6575 1.6515 9.19~9.89 19.08 2.349 ** <0.01 胸径DBH/cm 7.1091 2.0069 5.90~8.34 28.23 1.446* 0.02 单株材积V/m3 0.0226 0.0119 0.0156~0.0311 52.65 1.650** <0.01 帽儿山
Maoershan树高H/m 10.3928 1.2252 9.39~11.30 11.79 7.984** <0.01 胸径DBH/cm 9.6489 2.1848 8.67~10.77 22.64 1.868** <0.01 单株材积V/m3 0.0408 0.0142 0.0331~0.0499 34.80 3.653** <0.01 吉林
Jilin树高H/m 9.7268 1.5534 8.15~11.00 15.97 3.408** <0.01 胸径DBH/cm 9.1610 1.9483 7.73~10.21 21.27 2.293** <0.01 单株材积V/m3 0.0351 0.0152 0.0231~0.0453 43.30 2.892** <0.01 2.2 各试验点参试家系生长性状多重比较及保存率比较
由于家系间各性状均达到显著差异水平(P<0.05),进而进行多重比较(表 4),初步筛选优良家系。将树高、胸径和单株材积分别在各试验点按均值高低排序后发现,由于3个试验点地理环境各有不同,基因型与环境的交互作用明显,所以53个家系在不同试验点生长表现各有差异,因此首先考虑在各试验点内进行单点优良家系初选,然后再进行3试验点间的联合选择。
表 4 各试验地点参试家系生长性状多重比较Table 4. Multiple comparisons of birch H, DBH and V for the tested lines at different sites家系
Family朗乡Langxiang 帽儿山Maoershan 吉林Jilin 树高H/m 胸径DBH/cm 单株材积V/m3 树高H/m 胸径DBH/cm 单株材积V/m3 树高H/m 胸径DBH/cm 单株材积V/m3 B1 9.65 abcd 7.43 abcde 0.0291 ab 10.23 fghijklm 9.40 bcdef 0.0384 defghijkl 9.58 bcdefghijkl 9.28 abcdef 0.0335 bcdefghij B2 7.90 hijk 6.93 abcde 0.0193 bcdefgh 10.28 efghijkl 9.64 abcdef 0.0394 cdefghijkl 8.72 lm 7.73 g 0.0265 jk B3 8.30 defghijk 6.77 abcde 0.0209 abcdefgh 10.41 bcdefghijkl 9.47 bcdef 0.0406 cdefghijk 10.07 abcdefghij 9.50 abcdef 0.0395 abcdef B4 8.86 abcdefghij 7.05 abcde 0.0251 abcdefgh 9.67 nop 8.67 f 0.0331 l 9.56 bcdefghijkl 8.39 cdefg 0.0311 cdefghijk B5 9.53 abcde 7.79 abcd 0.0280 abcd 10.13 hijklmno 9.70 abcdef 0.0382 defghijkl 10.30 abcdef 9.44 abcdef 0.0394 abcdef B6 8.27 efghijk 6.81 abcde 0.0205 bcdefgh 10.34 cdefghijkl 9.27 cdef 0.0383 defghijkl 8.69 lm 9.15 abcdef 0.0278 ijk B7 9.11 abcdefghij 6.68 abcde 0.0230 abcdefgh 9.92 lmno 8.95 ef 0.0354 ijkl 9.24 hijkl 8.25 defg 0.0295 efghijk B8 8.14 fghijk 6.27 cde 0.0172 efgh 10.44 bcdefghijkl 9.15 cdef 0.0390 cdefghijkl 8.15 m 8.43 cdefg 0.0231 k B9 8.28 defghijk 6.05 de 0.0177 defgh 9.91 lmno 9.70 abcdef 0.0366 hijkl 9.83 bcdefghijk 8.58 cdefg 0.0326 cdefghijk B10 8.81 abcdefghij 8.34 a 0.0251 abcdefgh 10.56 bcdefghij 9.60 abcdef 0.0411 cdefghijk 9.77 bcdefghijk 8.82 abcdefg 0.0343 bcdefghij B11 8.29 defghijk 6.75 abcde 0.0221 abcdefgh 10.89 abc 9.50 bcdef 0.0425 bcdefghi 9.57 bcdefghijkl 9.57 abcdef 0.0348 bcdefghij B12 9.09 abcdefghij 6.91 abcde 0.0230 abcdefgh 10.47 bcdefghijkl 9.45 bcdef 0.0404 cdefghijk 9.71 bcdefghijk 8.35 cdefg 0.0321 cdefghijk B13 8.84 abcdefghij 7.09 abcde 0.0221 abcdefgh 10.35 cdefghijkl 9.89 abcde 0.0408 cdefghijk 9.92 bcdefghijk 9.14 abcdef 0.0356 abcdefghij B14 9.15 abcdefghi 7.65 abcde 0.0275 abcdef 10.45 bcdefghijkl 9.88 abcde 0.0415 bcdefghij 9.97 bcdefghijk 9.25 abcdef 0.0366 abcdefghij B15 9.52 abcde 7.50 abcde 0.0277 abcde 10.45 bcdefghijkl 10.47 ab 0.0437 abcdefgh 11.00 a 9.78 abc 0.0453 a B16 8.96 abcdefghij 7.29 abcde 0.0237 abcdefgh 10.94 ab 9.98 abcde 0.0460 abc 10.38 abcde 9.45 abcdef 0.0410 abcd B17 8.77 abcdefghij 8.18 ab 0.0247 abcdefgh 10.21 fghijklm 9.55 bcdef 0.0387 cdefghijkl 9.74 bcdefghijk 10.13 ab 0.0376 abcdefghi B18 9.72 ab 7.55 abcde 0.0284 abc 10.32 defghijkl 9.17 cdef 0.0382 defghijkl 9.74 bcdefghijk 9.36 abcdef 0.0351 abcdefghij B19 9.27 abcdefgh 7.54 abcde 0.0254 abcdefgh 10.42 bcdefghijkl 9.57 bcdef 0.0405 cdefghijk 10.26 abcdefg 9.72 abc 0.0400 abcde B20 8.53 abcdefghij 7.02 abcde 0.0215 abcdefgh 10.10 ijklmno 9.23 cdef 0.0371 fghijkl 9.04 kl 8.47 cdefg 0.0283 hijk B21 8.06 fghijk 7.06 abcde 0.0200 bcdefgh 10.58 bcdefghij 9.51 bcdef 0.0414 bcdefghij 9.05 kl 8.69 bcdefg 0.0292 fghijk B22 9.02 abcdefghij 7.91 abc 0.0262 abcdefg 10.01 jklmno 9.32 bcdef 0.0381 efghijkl 9.32 fghijkl 8.77 abcdefg 0.0302 efghijk B23 8.71 abcdefghij 6.44 bcde 0.0200 bcdefgh 10.23 fghijklm 9.33 bcdef 0.0398 cdefghijkl 9.37 fghijkl 8.63 cdefg 0.0336 bcdefghij B24 8.75 abcdefghij 6.97 abcde 0.0229 abcdefgh 10.09 ijklmno 9.49 bcdef 0.0385 cdefghijkl 9.15 jkl 9.01 abcdefg 0.0300 efghijk B25 7.98 ghijk 6.24 cde 0.0172 fgh 10.25 fghijklm 10.01 abcde 0.0418 bcdefghi 10.09 abcdefghij 9.57 abcdef 0.0385 abcdefgh B26 9.08 abcdefghij 7.77 abcd 0.0251 abcdefgh 9.72 mnop 9.05 def 0.0369 ghijkl 9.13 jkl 9.28 abcdef 0.0350 abcdefghij B27 8.41 bcdefghijk 7.23 abcde 0.0226 abcdefgh 10.32 defghijkl 9.81 abcdef 0.0410 cdefghijk 9.52 cdefghijkl 9.17 abcdef 0.0329 cdefghijk B28 8.77 abcdefghij 6.22 cde 0.0251 abcdefgh 10.07 jklmno 10.10 abcde 0.0407 cdefghijk 10.52 ab 10.10 ab 0.0453 a B29 7.19 k 6.12 cde 0.0161 gh 10.91 abc 9.87 abcde 0.0444 abcdef 9.95 bcdefghijk 9.50 abcdef 0.0374 abcdefghi B30 9.68 abc 6.47 bcde 0.0254 abcdefgh 10.65 bcdefghi 9.58 bcdef 0.0418 bcdefghi 9.73 bcdefghijk 9.28 abcdef 0.0346 bcdefghij B31 8.91 abcdefghij 6.80 abcde 0.0228 abcdefgh 10.40 bcdefghijkl 9.66 abcdef 0.0414 cdefghij 10.39 abcde 9.71 abc 0.0416 abc B32 8.48 bcdefghijk 7.62 abcde 0.0221 abcdefgh 10.38 bcdefghijkl 9.53 bcdef 0.0399 cdefghijkl 9.29 ghijkl 8.70 bcdefg 0.0303 efghijk B33 8.94 abcdefghij 7.66 abcde 0.0258 abcdefgh 10.29 efghijkl 9.19 cdef 0.0387 cdefghijkl 10.00 bcdefghijk 9.70 abcd 0.0390 abcdefg B34 9.89 a 7.88 abcd 0.0311 a 10.87 abcd 10.16 abcd 0.0458 abc 10.50 abc 9.78 abc 0.0414 abc B35 8.30 defghijk 6.93 abcde 0.0206 bcdefgh 10.83 abcde 10.77 a 0.0486 ab 9.70 bcdefghijk 8.75 bcdefg 0.0342 bcdefghij B36 8.08 fghijk 7.04 abcde 0.0189 bcdefgh 10.70 bcdefgh 10.09 abcde 0.0444 abcdef 10.00 bcdefghijk 9.44 abcdef 0.0368 abcdefghij B37 8.25 efghijk 7.49 abcde 0.0214 abcdefgh 10.58 bcdefghij 10.00 abcde 0.0435 abcdefgh 9.87 bcdefghijk 9.28 abcdef 0.0355 abcdefghij B38 8.31 cdefghijk 7.44 abcde 0.0239 abcdefgh 9.61 op 8.96 ef 0.0339 kl 9.27 ghijkl 8.87 abcdefg 0.0313 cdefghijk B39 8.56 abcdefghij 7.58 abcde 0.0226 abcdefgh 10.17 ghijklmn 9.82 abcdef 0.0404 cdefghijk 9.61 bcdefghijkl 8.84 abcdefg 0.0334 bcdefghij B40 7.81 ijk 6.57 abcde 0.0169 gh 11.30 a 10.31 abc 0.0499 a 9.96 bcdefghijk 9.37 abcdef 0.0382 abcdefghi B41 8.12 fghijk 6.91 abcde 0.0199 bcdefgh 10.66 bcdefghi 9.37 bcdef 0.0404 cdefghijk 10.17 abcdefghi 9.34 abcdef 0.0382 abcdefghi B42 8.79 abcdefghij 7.33 abcde 0.0229 abcdefgh 10.91 abc 10.11 abcde 0.0456 abcd 9.96 bcdefghijk 9.75 abc 0.0382 abcdefghi B43 8.73 abcdefghij 7.76 abcd 0.0250 abcdefgh 10.69 bcdefgh 9.50 bcdef 0.0427 bcdefghi 9.83 bcdefghijk 9.36 abcdef 0.0356 abcdefghij B44 7.74 jk 7.11 abcde 0.0185 cdefgh 10.69 bcdefgh 10.04 abcde 0.0442 abcdefg 10.21 abcdefgh 9.61 abcdef 0.0389 abcdefgh B45 9.45 abcdef 7.41 abcde 0.0285 abc 10.69 bcdefgh 10.27 abc 0.0452 abcde 9.50 defghijkl 9.51 abcdef 0.0344 bcdefghij B46 8.93 abcdefghij 7.85 abcd 0.0245 abcdefgh 10.50 bcdefghijk 9.86 abcde 0.0418 bcdefghi 9.48 efghijkl 8.20 efg 0.0300 efghijk B47 8.66 abcdefghij 6.29 cde 0.0196 bcdefgh 9.39 p 9.37 bcdef 0.0342 jkl 9.19 ijkl 8.19 fg 0.0308 defghijk B48 9.33 abcdefg 6.54 abcde 0.0222 abcdefgh 10.73 bcdefg 10.33 abc 0.0452 abcde 9.96 bcdefghijk 9.46 abcdef 0.0364 abcdefghij B49 7.84 ijk 5.90 e 0.0156 h 10.41 bcdefghijkl 9.04 def 0.0384 defghijkl 10.11 abcdefghij 9.39 abcdef 0.0380 abcdefghi B50 8.15 efghijk 6.42 bcde 0.0183 cdefgh 10.55 bcdefghij 10.23 abcd 0.0436 abcdefgh 10.06 bcdefghij 9.66 abcde 0.0389 abcdefgh B51 8.96 abcdefghij 7.94 abc 0.0248 abcdefgh 10.45 bcdefghijkl 9.61 abcdef 0.0413 cdefghij 10.48 abcd 10.21 a 0.0439 ab B52 8.18 efghijk 7.14 abcde 0.0195 bcdefgh 9.97 klmno 9.20 cdef 0.0354 ijkl 9.06 kl 8.52 cdefg 0.0284 ghijk B53 7.83 ijk 7.13 abcde 0.0184 cdefgh 10.75 bcdef 9.67 abcdef 0.0427 bcdefghi 9.86 bcdefghijk 9.13 abcdefg 0.0352 abcdefghij 注:表中不同字母表示在P < 0.05水平上差异显著。Note: different letters mean significant difference at P < 0.05 level. 在朗乡试验点,若以各性状均值加上0.2倍标准差为选择条件,则3个性状均高于选择标准的有:B5、B14、B15、B18、B19、B22、B26和B34家系,这8个家系为生长性状最优家系,其树高、胸径和单株材积均值分别为:9.40m、7.70cm和0.0274m3, 分别高于参试家系均值的8.54%、8.30%和21.49%,仅有2个生长性状高于选择标准的有:B1、B10、B33、B43和B45家系,为生长良好家系,其树高、胸径和单株材积均值分别为:9.12m、7.72cm和0.0267m3。根据多重比较结果,朗乡试验点初步选择这13个家系为优良家系,入选率为24.53%。依据上述选择标准,在帽儿山试验点生长最优家系为B34、B35、B36、B40、B42、B45和B48,这7个家系的树高、胸径和单株材积均值为:10.86m、10.29cm、0.0464m3,分别高于参试家系均值的4.51%、6.66%和13.76%,较好家系为B15、B16、B29和B44,其树高、胸径和单株材积均值为:10.75m、10.09cm和0.0446m3,因此,这11个家系入选为帽儿山试验点的优良家系,入选率为20.75%。同样选择标准,在吉林试验点选择B15、B19、B25、B28、B31、B34、B44、B50、B51、B3、B5、B16、B33、B41和B42等15个家系为优良家系,入选率为28.30%。
进而对3个试验地点的选优结果进行比较发现:B34、B15家系在3个地点均入选为优良家系,说明这2个家系在各试验地不仅生长表现较为优异,而且生长稳定性也良好,是参试家系中的最优家系。另外,入选的优良家系中有些家系仅在2个地点表现良好,如在朗乡与吉林2试验点生长良好的是B5、B19和B33家系;在帽儿山与吉林2试验点均表现较好的是B16、B42和B44家系;在朗乡与帽儿山2试验点表现较好的是B45家系,说明这些家系虽然生长表现优良,但适应能力略低于B34、B15这2个最优家系。其余优良家系仅在其所入选地点内表现优良,说明这些家系由于基因型与环境交互作用的差异而导致的适应范围各有不同,所以仅在适宜其生长的地点表现良好。
参试的53个白桦家系在各试验点平均保存率不尽相同(表 5)。3个地点中吉林试验点的各家系保存率最好,53个家系保存率均值为69.75%,有12个家系的保存率大于80.00%,其中B9家系保存率高达96.67%,B8家系保存率最低,仅为43.33%;帽儿山试验点53个家系保存率均值为60.40%,其中保存率最高的是B14家系,为94.29%, 保存率最低的是B3家系,仅为38.57%;朗乡试验点参试家系保存率均值为54.34%,B35和B25家系的保存率最高,为90.00%,B4、B50等2个家系次之,其他49个家系的保存率均在80.00%以下,B53、B51家系保存率最低,仅为23.33%。
表 5 各试验地点参试家系保存率Table 5. Preservation rate for the tested families at different sites参试家系
Tested family保存率Preservation rate/% 3个地点保存率均值
Average preservation rate at three sites/%朗乡
Langxiang帽儿山
Maoershan吉林
JilinB1 40.00 55.71 63.33 53.01 B2 30.00 61.43 60.00 50.48 B3 66.67 38.57 46.67 50.64 B4 83.33 51.43 83.33 72.70 B5 73.33 45.71 76.67 65.24 B6 56.67 58.57 53.33 56.19 B7 33.33 62.86 70.00 55.40 B8 63.33 62.86 43.33 56.51 B9 40.00 50.00 96.67 62.22 B10 60.00 65.71 73.33 66.35 B11 26.67 62.86 76.67 55.40 B12 70.00 68.57 80.00 72.86 B13 66.67 68.57 83.33 72.86 B14 43.33 94.29 53.33 63.65 B15 30.00 50.00 53.33 44.44 B16 50.00 65.71 70.00 61.90 B17 40.00 65.71 76.67 60.79 B18 70.00 60.00 76.67 68.89 B19 76.67 51.43 63.33 63.81 B20 76.67 65.71 76.67 73.02 B21 73.33 61.43 66.67 67.14 B22 56.67 64.29 73.33 64.76 B23 33.33 54.29 90.00 59.21 B24 50.00 57.14 66.67 57.94 B25 90.00 55.71 76.67 74.13 B26 50.00 57.14 50.00 52.38 B27 50.00 60.00 70.00 60.00 B28 30.00 57.14 70.00 52.38 B29 36.67 70.00 70.00 58.89 B30 53.33 71.43 86.67 70.48 B31 36.67 65.71 60.00 54.13 B32 56.67 67.14 80.00 67.94 B33 63.33 54.29 76.67 64.76 B34 56.67 60.00 73.33 63.33 B35 90.00 67.14 66.67 74.60 B36 53.33 61.43 83.33 66.03 B37 53.33 68.57 76.67 66.19 B38 46.67 44.29 50.00 46.99 B39 63.33 50.00 60.00 57.78 B40 66.67 75.71 83.33 75.24 B41 70.00 70.00 80.00 73.33 B42 40.00 71.43 86.67 66.03 B43 70.00 70.00 76.67 72.22 B44 36.67 61.43 80.00 59.37 B45 60.00 58.57 46.67 55.08 B46 66.67 64.29 76.67 69.21 B47 53.33 44.29 70.00 55.87 B48 63.33 62.86 73.33 66.51 B49 46.67 40.00 60.00 48.89 B50 86.67 55.71 60.00 67.46 B51 23.33 60.00 76.67 53.33 B52 33.33 57.14 56.67 49.05 B53 23.33 57.14 46.67 42.38 2.3 参试家系材积性状育种值估算及优良家系选择
上述针对各试验点各家系间的树高、胸径和单株材积等3个性状单独进行了方差分析、多重比较及各试验点的优良家系初步筛选。但优良家系的评定往往应考虑多个地点的综合表现,考虑到材积是公认的反映立地质量的林木生长主要性状,并且是能够综合体现树高性状与胸径性状的高低最直接的指标。因此,在本研究中选择BLUP模型利用各家系在3个试验点的单株材积数据进行育种值估算,进而进行家系的评价和选择(表 6)。
表 6 参试家系材积性状育种值Table 6. Breeding value for volume of birch families综合排名
Comprehensive ranking家系
Family育种值
Breeding value标准误
Standard error1 B34 0.009487 0.408866 2 B15 0.008838 0.400508 3 B28 0.007473 0.404450 4 B16 0.006786 0.408455 5 B51 0.005843 0.403728 6 B40 0.005191 0.411808 7 B42 0.005067 0.408921 8 B45 0.004931 0.406538 9 B48 0.003846 0.409883 10 B35 0.003845 0.411074 11 B19 0.002876 0.408067 12 B31 0.002838 0.405394 13 B5 0.002812 0.409427 14 B43 0.002792 0.411366 15 B14 0.002778 0.410816 16 B44 0.002584 0.407243 17 B36 0.002060 0.409832 18 B29 0.001729 0.407011 19 B33 0.001726 0.409499 20 B11 0.001424 0.404868 21 B37 0.001349 0.409699 22 B17 0.001340 0.407742 23 B30 0.001311 0.410246 24 B18 0.001297 0.410728 25 B10 0.001276 0.409895 26 B50 0.001214 0.409561 27 B41 0.000381 0.411618 28 B3 0.000183 0.403408 29 B26 0.000130 0.405231 30 B13 -0.000096 0.410798 31 B53 -0.000154 0.399256 32 B1 -0.000505 0.405265 33 B46 -0.001507 0.410566 34 B25 -0.001666 0.411684 35 B39 -0.001780 0.407691 36 B12 -0.002024 0.411479 37 B22 -0.002113 0.409472 38 B23 -0.002169 0.405577 39 B27 -0.002352 0.407904 40 B32 -0.003134 0.410325 41 B24 -0.003471 0.407761 42 B49 -0.003577 0.402874 43 B21 -0.004966 0.409794 44 B20 -0.005170 0.411443 45 B7 -0.005506 0.405812 46 B38 -0.005755 0.403724 47 B6 -0.005835 0.406911 48 B9 -0.005966 0.407067 49 B4 -0.005967 0.410607 50 B2 -0.006776 0.403709 51 B47 -0.007239 0.407103 52 B52 -0.007793 0.403611 53 B8 -0.007885 0.406856 由育种值的结果可以看出,与前文多重比较选择的结果基本一致,综合排名在第1位的是B34家系,第2位的是B15家系,B28、B16、B51、B40、B42、B45、B48、B35、B19等家系次之。若以20.00%入选率为选择标准,则以上排名前11位的家系入选为优良家系,入选的优良家系材积均值分别较朗乡、帽儿山和吉林等3个地点的参试家系均值高8.29%、9.80%和13.60%,材积性状在3个地点的遗传增益分别为3.23%、7.16%和8.84%。
3. 结论与讨论
研究基因型与环境交互作用效应对林木遗传改良具有重要意义[12-13]。对3个参试地点的白桦家系生长性状遗传变异分析显示,位于小兴安岭朗乡试验点参试的白桦家系生长量明显低于另外2个试验点,但各性状的变异系数却普遍偏高。这与该试验点所处的地理位置以及特殊的气候环境密切相关,朗乡试验点位于纬度较高的小兴安岭地区,无霜期短,年均温与≥10℃年积温均较低,而参试的大部分家系原产地均处于纬度较低的张广才岭与长白山地区,原产地与造林地环境差异较大,导致参试白桦家系间产生较大分化,有部分家系生长较好,而大多数家系则长势较弱。从而导致了在朗乡试验点定植的家系各性状生长量较低,并且变异系数较高。但这也为抗逆性家系的选择提供了可能,在较恶劣环境条件下依然能保持稳定的生产力以及较高保存率的家系必然是首选,如B5、B19等家系在朗乡试验点生长性状均排在前列并且保存率均高于70.00%。另外2个试验点环境条件虽较朗乡试验点优越但家系生长依然各有差异,因此,分别依据参试家系在各试验点的生长表现,利用多重比较的结果在各试验点内进行了优良家系的初选。
早期选择可靠性及选择年龄的确定等问题一直以来都备受国内外同行关注。但是,越来越多的试验分析表明林木早期选择具有较高的可信度。如油松(Pinus tabulaeformis)、马尾松(P. massoniana)等树种的育种实践证明对生长期达1/4~1/2轮伐期的林分即可进行早期选择,并且早期选择的效率更高[14]。白桦人工林的主伐年龄为31~41年生[15],本项研究所选取的对象为12年生白桦半同胞家系子代测定林,其林龄已达1/3轮伐期,因此,对其进行早期选择应该具有较高准确性。
对于多点造林试验,由于待测群体数量庞大,加之各造林点间的地理气候环境不尽相同,试验林的保存率也各不相同,导致观测数据复杂多样,给遗传评价和选择带来相当难度[16-17]。而育种值的估算恰恰能克服这一问题,它能体现表型值中遗传效应的加性效应部分,对群体规模大、结构复杂的不平衡数据进行统计分析时,能有效地剔除各种非遗传因素的影响,因而具有较高的选择准确性,已被广泛应用于马尾松、火炬松(Pinus taeda)、尾叶桉(Eucalyptus urophylla)等多个树种的选择中,是一种较理想的综合评价方法[18-20]。本研究采用BLUP最佳线性无偏预测模型参试家系进行多地点材积育种值估算,依据育种值高低对参试家系进行综合评价,以20.00%入选率为标准选择育种值排名前11位的家系为优良家系。同时,基于各地点白桦半同胞子代测定林生长表现分析结果,建议种子园改建时B34和B15这2个家系的采种母树为首选保留母树,B28、B16、B51、B40、B42、B45、B48、B35、B19这9个家系的采种母树为备选母树。
-
-
[1] 李韵谱, 丁国际, 潘力军, 等. 日照强度对室内空气质量的影响[J]. 环境与健康杂志, 2012, 29(8): 726−727. Li Y P, Ding G J, Pan L J, et al. Effect of illumination intensity on indoor air quality[J]. Journal of Environment and Health, 2012, 29(8): 726−727.
[2] 袁博成, 余小鸣. 基于健康的住宅建筑日照研究[J]. 国外医学(卫生学分册), 2009, 36(1): 23−28. Yuan B C, Yu X M. Study on sunshine of residential buildings based on health[J]. Foreign Medical Sciences (Section of Hygiene), 2009, 36(1): 23−28.
[3] John E M, Dreon D M, Koo J, et al. Residential sunlight exposure is associated with a decreased risk of prostate cancer[J]. Journal of Urology, 2005, 89: 549−552.
[4] Prévost J, Francoise C C, Antoine R, et al. High residential sun exposure is associated with a low risk of incident Crohn’s disease in the prospective E3N cohort[J]. Inflammatory Bowel Diseases, 2014(1): 75−81.
[5] Kent S T, Mcclure L A, Crosson W L, et al. Effect of sunlight exposure on cognitive function among depressed and non-depressed participants: a REGARDS cross-sectional study[J]. Environmental Health, 2009, 8(1): 34. doi: 10.1186/1476-069X-8-34
[6] Šprah N, Košir M. Daylight provision requirements according to EN 17037 as a restriction for sustainable urban planning of residential developments[J]. Sustainability, 2019, 12(1): 315. doi: 10.3390/su12010315
[7] 姚霞, 吝涛, 叶红, 等. 贵阳市不同形态住区的日照环境[J]. 应用生态学报, 2020, 31(12): 4251−4257. Yao X, Lin T, Ye H, et al. Sunshine environment in different forms of communities in Guiyang, China[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4251−4257.
[8] Littlefair P. Daylight, sunlight and solar gain in the urban environment[J]. Solar Energy, 2001, 70(3): 177−185.
[9] 韩林飞, 柳振勇. 基于日照分析的住宅间距与日照时长关系研究: 以北京市某小区为例[J]. 华中建筑, 2019, 37(7): 65−68. Han L F, Liu Z Y. The relationship between residential space and sunshine duration based on sunshine analysis: a case study of a residential area in Beijing[J]. Huazhong Architecture, 2019, 37(7): 65−68.
[10] 张洪恩, 高涛, 刘伟, 等. 国内外住区日照管控进展[J]. 住区, 2019(1): 97−102. Zhang H E, Gao T, Liu W, et al. Domestic and foreign study progress on sunlight control of residential plots[J]. Design Community, 2019(1): 97−102.
[11] 张播, 赵文凯. 国外住宅日照标准的对比研究[J]. 城市规划, 2010, 34(11): 70−74. Zhang B, Zhao W K. Comparative study of overseas sunlight standard of residential building[J]. City Planning Review, 2010, 34(11): 70−74.
[12] 侯丽, 谭逸儒. 城市规划与法学交叉视角下阳光权保障的国际比较: 从公权和私权间的边界说起[J/OL]. 国际城市规划: 1−14[2023−08−02]. https://doi.org/10.19830/j.upi.2022.578. Hou L, Tan Y R. An international comparison on sunlight right protection from the perspective of urban planning and laws: defining the boundary between public intervention and private property right[J/OL]. Urban Planning International: 1−14[2023−08−02]. https://doi.org/10.19830/j.upi.2022.578.
[13] 谷一弘, 林波, 王陈栋. 日照限定下的建筑形体设计方法[J]. 南方建筑, 2021(4): 145−149. doi: 10.3969/j.issn.1000-0232.2021.04.145 Gu Y H, Lin B, Wang C D. Building shape design for solar access requirements[J]. South Architecture, 2021(4): 145−149. doi: 10.3969/j.issn.1000-0232.2021.04.145
[14] 周元. 基于户外空间日照的多层板式住宅形体优化[J]. 华中建筑, 2021, 39(11): 34−40. Zhou Y. Formal optimization of multi-story slab-formed residential building to improve outdoor sunlight[J]. Huazhong Architecture, 2021, 39(11): 34−40.
[15] 牛盛楠, 张欣宜, 黄成, 等. 天津地区居住区采光与室外风环境模拟研究[J]. 山东建筑大学学报, 2013, 28(1): 12−17. doi: 10.3969/j.issn.1673-7644.2013.01.003 Niu S N, Zhang X Y, Huang C, et al. Simulation and study of daylighting and outdoor wind environment of residential area of Tianjin area[J]. Journal of Shandong Jianzhu University, 2013, 28(1): 12−17. doi: 10.3969/j.issn.1673-7644.2013.01.003
[16] 刘芳妮, 尹豪, 周旭. 居住区楼间绿化对建筑采光条件影响的数字模拟研究[J]. 北京林业大学学报, 2020, 42(12): 101−114. doi: 10.12171/j.1000-1522.20200039 Liu F N, Yin H, Zhou X. Numerical simulation study on the influence of greening between buildings on sunlight conditions of building in residential area[J]. Journal of Beijing Forestry University, 2020, 42(12): 101−114. doi: 10.12171/j.1000-1522.20200039
[17] 梅晓丹, 马俊海, 刘佳尧, 等. 基于ArcGIS的城市建筑物日照分析及应用[J]. 测绘工程, 2018, 27(7): 36−40. Mei X D, Ma J H, Liu J Y, et al. Sunshine analysis and application of urban buildings based on ArcGIS[J]. Engineering of Surveying and Mapping, 2018, 27(7): 36−40.
[18] 魏合义, 黄正东, 杨和平. 基于GIS光照因子分析的园林植物选择和配置: 以浙江省桐乡市某小区为例[J]. 风景园林, 2015(6): 60−66. Wei H Y, Huang Z D, Yang H P. Landscape plant selection and configuration based on light factor analysis using GIS: a case study of a residential district in Tongxiang City, Zhejiang Province, China[J]. Landscape Architecture, 2015(6): 60−66.
[19] 杨艺红, 郭思远, 徐子涵. 日照分析在现代庭院景观设计中的研究与实践[J]. 南京林业大学学报(人文社会科学版), 2020, 20(3): 53−62. Yang Y H, Guo S Y, Xu Z H. Research and practice of sunshine analysis in modern courtyard landscape design[J]. Journal of Nanjing Forestry University (Humanities and Social Sciences Edition), 2020, 20(3): 53−62.
[20] 王俊杰. 中国城市单元式住宅的兴起: 苏联影响下的住宅标准设计, 1949—1957[J]. 建筑学报, 2018(1): 97−101. Wang J J. The rise of urban multiunit housing in China: standard design under the influence of the soviet union, 1949−1957[J]. Architectural Journal, 2018(1): 97−101.
[21] 叶耀先. 中国住房发展60年[J]. 中国人口·资源与环境, 2011, 21(1): 1−6. Ye Y X. China housing development in recent 60 years (1949−2009)[J]. China Population, Resources and Environment, 2011, 21(1): 1−6.
[22] 中华人民共和国住房和城乡建设部. 民用建筑设计统一标准: GB50352—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Uniform standard for design of civil buildings: GB50352−2019 [S]. Beijing: China Architecture & Building Press, 2019.
[23] 胡世德. 北京住宅建筑的发展与探讨[J]. 建筑技术, 2001(11): 732−735. Hu S D. Development of and discussion on dwelling architecture in Beijing[J]. Architecture Technology, 2001(11): 732−735.
[24] 金海燕, 任宏. 中外城市住宅高度形态比较研究[J]. 城市问题, 2012(1): 2−8. Jin H Y, Ren H. Comparative study on the height form of urban housing between China and foreign countries[J]. Urban Problems, 2012(1): 2−8.
[25] 中华人民共和国住房和城乡建设部. 住宅设计规范: GB 50096—2011[S]. 北京: 中国计划出版社, 2012. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Design code for residential buildings: GB 50096−2011[S]. Beijing: China Planning Press, 2012.
[26] 中华人民共和国住房和城乡建设部. 城市居住区规划设计标准: GB 50180—2018[S]. 北京: 中国建筑工业出版社, 2018. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for urban residential area planning and design: GB 50180−2018[S]. Beijing: China Architecture & Building Press, 2018.
[27] Ayoub M. A review on light transport algorithms and simulation tools to model daylighting inside buildings[J]. Solar Energy, 2020, 198: 623−642. doi: 10.1016/j.solener.2020.02.018
[28] Petersen S, Svendsen S. Method and simulation program informed decisions in the early stages of building design[J]. Energy & Buildings, 2010, 42(7): 1113−1119.
[29] 罗涛, 燕达, 赵建平, 等. 天然光光环境模拟软件的对比研究[J]. 建筑科学, 2011, 27(10): 1−6, 12. doi: 10.3969/j.issn.1002-8528.2011.10.001 Luo T, Yan D, Zhao J P, et al. Comparative study on simulation softwares of natural light environment[J]. Building Science, 2011, 27(10): 1−6, 12. doi: 10.3969/j.issn.1002-8528.2011.10.001
[30] Li Y, He B J, Miao Y. Application research of ECOTECT in residential estate planning[J]. Energy & Buildings, 2014, 72: 195−202.
[31] Wu J. A study on ecotect application of local climate at a residential area in Chuncheon, Korea[J]. Journal of Environmental Engineering and Landscape Management, 2015, 23(2): 94−101. doi: 10.3846/16486897.2014.980264
[32] 王蓬媛. 光环境舒适度视角下寒地住区公共空间优化策略研究: 以天津市既有住区为例[D]. 天津: 天津大学, 2016. Wang P Y. Research on the optimal design of residential public space in cold zone from the perspective of light environment comfort: case study on Tianjin’s residential areas [D]. Tianjin: Tianjin University, 2016.
[33] 熊光艳. 基于气候适应性的西安高层住区户外活动空间布局研究: 以华清学府城为例[D]. 西安: 西安建筑科技大学, 2019. Xiong G Y. Spatial distribution of outdoor activities in Xi’an high-rise residential areas based on climate adaptability: a case study of Huaqing Xuefu City[D]. Xi’an: Xi’an University of Architecture and Technology, 2019.
[34] 张晶. 哈尔滨高层住区绿地光环境分析及规划设计策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. Zhang J. Light environment analysis and planning strategy of green space in harbin high-rise residential area[D]. Harbin: Harbin Institute of Technology, 2016.
-
期刊类型引用(3)
1. 管奥,毋玉婷,陈宇,孙扬,祁鹏志,郭宝英. 曼氏无针乌贼转录组微卫星特征分析. 渔业科学进展. 2018(03): 144-151 . 百度学术
2. 杜改改,孙鹏,索玉静,韩卫娟,刁松锋,傅建敏,李芳东. 基于柿雌雄花芽转录组测序的SSR和SNP多态性分析. 中国农业大学学报. 2017(10): 45-55 . 百度学术
3. 梅利那,范付华,崔博文,文晓鹏. 基于马尾松转录组的SSR分子标记开发及种质鉴定. 农业生物技术学报. 2017(06): 991-1002 . 百度学术
其他类型引用(5)