• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

极端降雨对晋西黄土区不同土地利用方式下的浅层滑坡形态特征和空间分布影响

唐鹏, 张建军, 李阳, 魏广阔, 胡亚伟, 赵炯昌

唐鹏, 张建军, 李阳, 魏广阔, 胡亚伟, 赵炯昌. 极端降雨对晋西黄土区不同土地利用方式下的浅层滑坡形态特征和空间分布影响[J]. 北京林业大学学报, 2023, 45(10): 109-117. DOI: 10.12171/j.1000-1522.20230070
引用本文: 唐鹏, 张建军, 李阳, 魏广阔, 胡亚伟, 赵炯昌. 极端降雨对晋西黄土区不同土地利用方式下的浅层滑坡形态特征和空间分布影响[J]. 北京林业大学学报, 2023, 45(10): 109-117. DOI: 10.12171/j.1000-1522.20230070
Tang Peng, Zhang Jianjun, Li Yang, Wei Guangkuo, Hu Yawei, Zhao Jiongchang. Effects of extreme rainfall on the morphological characteristics and spatial distribution of shallow landslides under different land use patterns in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 109-117. DOI: 10.12171/j.1000-1522.20230070
Citation: Tang Peng, Zhang Jianjun, Li Yang, Wei Guangkuo, Hu Yawei, Zhao Jiongchang. Effects of extreme rainfall on the morphological characteristics and spatial distribution of shallow landslides under different land use patterns in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 109-117. DOI: 10.12171/j.1000-1522.20230070

极端降雨对晋西黄土区不同土地利用方式下的浅层滑坡形态特征和空间分布影响

基金项目: 国家重点研发计划(2022YFE0104700)。
详细信息
    作者简介:

    唐鹏。主要研究方向:森林水文。Email:tp17305447719@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院

    责任作者:

    张建军,教授,博士生导师。主要研究方向:水土保持与森林水文研究。Email:zhangjianjun@bjfu.edu.cn 地址:同上。

  • 中图分类号: S761;S157.1

Effects of extreme rainfall on the morphological characteristics and spatial distribution of shallow landslides under different land use patterns in the loess region of western Shanxi Province, northern China

  • 摘要:
    目的 

    探究极端降雨对不同土地利用方式下浅层滑坡形态特征和空间分布的影响。

    方法 

    以山西吉县蔡家川农地、次生林、人工林3种土地利用方式的小流域为对象,在2021年10月3日至6日的极端暴雨后采用无人机摄影测量调查浅层滑坡的形态特征和空间分布。

    结果 

    (1)极端降雨在3个小流域内共诱发425处浅层滑坡,总体积为82 000 m3。其中农地小流域179处,体积为43 138 m3,人工林小流域196处,体积为33 489 m3,次生林小流域50处,体积为5 373 m3。(2)核密度分析表明农地小流域浅层滑坡密集程度最高,核密度峰值达到714处/km2,且多位于侵蚀沟坡和农地间的斜坡上,次生林小流域的浅层滑坡多沿沟谷分布,人工林小流域浅层滑坡整体沿西北—东南走向的山脊线呈带状分布。(3)农地小流域浅层滑坡主要集中在20° ~ 50°坡度范围和以正东、东南为主的阳坡;次生林小流域滑坡主要分布在40° ~ 50°坡度范围,且受到坡向的影响较小;人工林小流域滑坡集中分布在50° ~ 60°坡度和以正东、正西为主的坡向。

    结论 

    本次调查发现在小流域尺度上植被能够有效减少极端暴雨造成的浅层滑坡,尤其次生林防治浅层滑坡的效果更佳。因此,在全球气候变化背景下,黄土高原大力营造仿拟自然植被,对提高植被的水土保持功能具有重要意义。

    Abstract:
    Objective 

    This paper aims to explore the influence of extreme rainfall on the morphological characteristics and spatial distribution of shallow landslides under different land use patterns.

    Method 

    In this paper, the morphological characteristics and spatial distribution of shallow landslides were investigated by UAV photogrammetry after the extreme rainfall from October 3 to 6, 2021 in the Small Watershed of Caijiachuan Farmland, secondary forest and plantation in Jixian County, Shanxi Province of northern China.

    Result 

    (1) Extreme rainfall induced 425 shallow landslides in three small watersheds, with a total volume of 82 000 m3. Among them, there were 179 landslides with a volume of 43 138 m3 in the small watershed of farmland, 196 landslides with a volume of 33 489 m3 in the small watershed of planted forests, and 50 landslides with a volume of 5 373 m3 in the small watershed of secondary forest. (2) The analysis of kernel density showed that the shallow landslides in the small watershed of farmland had the highest density, and the peak of kernel density reached 714 per km2, and most of them were located on the erosion slope and the slope between farmlands. Most of the shallow landslides in the small watershed of secondary forest were distributed along ravines, and the shallow landslides in the small watershed of plantation were distributed in strips along the northwest-southeast ridge line. (3) Shallow landslides in small watershed of farmland were mainly concentrated in the slope range of 20°−50° and the slope direction mainly due east and southeast. Landslides in small watersheds of secondary forests were mainly distributed in slopes of 40°−50° and were less affected by slope aspects. Landslides in the small watershed of plantation were concentrated in the slope of 50°−60° and the slope aspects mainly due east and west.

    Conclusion 

    This survey shows that vegetation can effectively reduce the shallow landslides caused by extreme rainstorms in small watershed scale, especially the secondary forest has a better effect on preventing shallow landslides. Therefore, under the background of global climate change, it is of great significance to build imitation natural vegetation on the Loess Plateau to improve the function of soil and water conservation.

  • 图  1   蔡家川流域概况

    Figure  1.   General situation of Caijiachuan Watershed

    图  2   浅层滑坡分区图

    Figure  2.   Shallow landslide zoning map

    图  3   蔡家川小流域每小时降雨量和累计降雨量

    Figure  3.   Rainfall per hour and accumulated rainfall in Caijiachuan Small Watershed

    图  4   浅层滑坡的核密度分布

    Figure  4.   Distribution of kernel density of shallow landslide

    图  5   不同坡度、坡向下浅层滑坡数量与体积

    N. 正北;NE. 东北;E. 正东;SE. 东南;S. 正南;SW. 西南;W. 正西;NW. 西北。N, due north; NE, northeast; E, due east; SE, southeast; S, due south; SW; southwest; W, due west; NW, northwest.

    Figure  5.   Quantity and volume of shallow landslides with different slopes and aspects

    表  1   小流域概况

    Table  1   General situation of small watershed

    流域类型
    Watershed type
    土地利用类型
    Land use type
    植被覆盖率
    Vegetation
    coverage/%
    流域面积
    Watershed
    area/km2
    海拔高度差
    Relative
    height/m
    沟谷长度
    Gully
    length/km
    斜坡长度范围
    Slope length
    range/m
    农地小流域
    Farmland small watershed
    水平梯田、果园
    Level terrace, orchard
    85 0.71 282.10 3.06 70.60 ~ 290.47
    次生林小流域
    Secondary forest small watershed
    山杨、白桦、辽东栎为主的次生林
    Secondary forest dominated by Populus davidiana,
    Betula dahurica and Quercus wutaishanica
    99 1.93 272.46 7.46 41.40 ~ 215.42
    人工林小流域
    Plantation small watershed
    油松、刺槐、侧柏为主的人工林
    Plantation dominated by Pinus tabuliformis,
    Robinia pseudoacacia and Platycladus orientalis
    92 1.50 329.26 5.85 53.48 ~ 228.18
    下载: 导出CSV

    表  2   现场测量与遥感解译滑坡体体积对比表

    Table  2   Comparison table of landslide volume between field measurement and remote sensing interpretation

    编号
    No.
    现场测量体积
    Field measurement volume/m3
    遥感解译体积
    Remote sensing interpretation volume/m3
    相对误差
    Relative error/%
    R10138.5737.921.7
    R14384.7279.266.4
    R14462.8759.914.7
    N91130.56111.6114.5
    注:R代表人工林小流域,N代表农地小流域,数字代表浅层滑坡序号。Notes: R stands for plantation watershed, N stands for farmland watershed, and the number stands for shallow landslide serial No.
    下载: 导出CSV

    表  3   不同土地利用类型浅层滑坡特征参数

    Table  3   Characteristic parameters of shallow landslides of different land use types

    土地利用类型
    Land use type
    数量
    Number
    发生频次
    Occurrence
    frequency/(km−2)
    总面积
    Total
    area/m2
    平均面积
    Average
    area/m2
    总体积
    Total
    volume/m3
    平均体积
    Average
    volume/m3
    平均高程差
    Average elevation
    difference/m
    平均长度
    Average
    length/m
    平均深度
    Average
    depth/m
    农地 Farmland 179 252 43 617 262.75 43 138 259.87 19.09 24.89 0.88
    次生林
    Secondary forest
    50 26 9 097 185.65 5 373 109.65 15.83 30.48 0.52
    人工林
    Plantation
    196 131 36 316 186.24 33 489 171.74 18.33 22.36 0.81
    下载: 导出CSV
  • [1] 高杨, 李滨, 冯振, 等. 全球气候变化与地质灾害响应分析[J]. 地质力学学报, 2017, 23(1): 65−77.

    Gao Y, Li B, Feng Z, et al. Global climate change and geological disaster response analysis[J]. Journal of Geomechanics, 2017, 23(1): 65−77.

    [2] 翟婷婷, 赵广举, 穆兴民, 等. 黄河中游典型流域极端降雨条件的水沙过程变化[J]. 泥沙研究, 2021, 46(1): 57−63, 41.

    Zhai T T, Zhao G J, Mu X M, et al. Processes of water and sediment in the representative catchments of the middle Yellow River under extreme rainfalls[J]. Journal of Sediment Research, 2021, 46(1): 57−63, 41.

    [3] 邵葆蓉, 孙即超, 朱月琴, 等. 基于多元回归的黄土滑坡滑动距离预测模型探讨: 以甘肃天水地区为例[J]. 地质通报, 2020, 39(12): 1993−2003.

    Shao B R, Sun J C, Zhu Y Q, et al. Research on gliding distance estimation of loess landslide based on multiple regression: a case study of Tianshui region, Gansu Province[J]. Geological Bulletin of China, 2020, 39(12): 1993−2003.

    [4] 赵美龄, 郝利娜, 许晓露, 等. 土地利用/覆被变化对地质灾害发育的影响研究[J]. 遥感技术与应用, 2022, 37(2): 399−407.

    Zhao M L, Hao L N, Xu X L, et al. Research on the impact of land use/cover change on geological disaster development[J]. Remote Sensing Technology and Application, 2022, 37(2): 399−407.

    [5] 李阳, 张建军, 魏广阔, 等. 晋西黄土区极端降雨后浅层滑坡调查及影响因素分析[J]. 水土保持学报, 2022, 36(5): 44−50.

    Li Y, Zhang J J, Wei G K, et al. Investigation of shallow landslide after extreme rainfall and analysis of its influencing factors in the west Shanxi loess region[J]. Journal of Soil and Water Conservation, 2022, 36(5): 44−50.

    [6] 段钊, 赵法锁, 陈新建. 陕北黄土高原区崩塌发育类型及影响因素分析: 以吴起县为例[J]. 自然灾害学报, 2012, 21(6): 142−149.

    Duan Z, Zhao F S, Chen X J. Types and influencing factors of collapse development in Loess Plateau region of north Shaanxi: a case study of Wuqi County[J]. Journal of Natural Disasters, 2012, 21(6): 142−149.

    [7] 郭果, 陈筠, 李明惠, 等. 土质滑坡发育概率与坡度间关系研究[J]. 工程地质学报, 2013, 21(4): 607−612.

    Guo G, Chen J, Li M H, et al. Statistic relationship between slope gradient and landslide probability in soil slopes around reservoir[J]. Journal of Engineering Geology, 2013, 21(4): 607−612.

    [8] 王存智, 张炜, 李晨冬, 等. 基于GIS和层次分析法的沙溪流域滑坡地质灾害易发性评价[J]. 中国地质调查, 2022, 9(5): 51−60.

    Wang C Z, Zhang W, Li C D, et al. Susceptibility evaluation of landslide hazards of Shaxi River Basin based on GIS and AHP[J]. Geological Survey of China, 2022, 9(5): 51−60.

    [9] 牛全福, 冯尊斌, 党星海, 等. 黄土区滑坡研究中地形因子的选取与适宜性分析[J]. 地球信息科学学报, 2017, 19(12): 1584−1592.

    Niu Q F, Feng Z B, Dang X H, et al. Suitability analysis of topographic factors in loess landslide research[J]. Journal of Geo-Information Science, 2017, 19(12): 1584−1592.

    [10] 李德珅, 何芝远, 孔嘉旭, 等. 陕西省志丹县黄土滑坡空间分布规律与形态特征研究[J]. 地质与资源, 2022, 31(2): 214−220.

    Li D K, He Z Y, Kong J X, et al. Spatial distribution and morphological characteristics of loess landslide in Zhidan County, Shaanxi Province[J]. Geology and Resources, 2022, 31(2): 214−220.

    [11] 范宣梅, 王欣, 戴岚欣, 等. 2022年MS6.8级泸定地震诱发地质灾害特征与空间分布规律研究[J]. 工程地质学报, 2022, 30(5): 1504−1516.

    Fan X M, Wang X, Dai L X, et al. Characteristics and spatial distribution pattern of MS6.8 Luding Earthquake occurred on September 5, 2022[J]. Journal of Engineering Geology, 2022, 30(5): 1504−1516.

    [12]

    Guzzetti F, Ardizzone F, Cardinali M, et al. Landslide volumes and landslide mobilization rates in Umbria, central Italy[J]. Earth and Planetary Science Letters, 2009, 279(3−4): 222−229. doi: 10.1016/j.jpgl.2009.01.005

    [13] 张珊, 杨树文, 杨猛, 等. 兰州市降雨型黄土滑坡灾害空间分布特征[J]. 测绘科学, 2016, 41(12): 142−146, 211.

    Zhang S, Yang S W, Yang M, et al. Spatial distribution characteristics of precipitation-induced loess landslide hazards in Lanzhou[J]. Science of Surveying and Mapping, 2016, 41(12): 142−146, 211.

    [14] 许冲, 徐锡伟, 吴熙彦, 等. 2008年汶川地震滑坡详细编目及其空间分布规律分析[J]. 工程地质学报, 2013, 21(1): 25−44.

    Xu C, Xu X W, Wu X Y, et al. Detailed catalog of landslides triggered by the 2008 Wenchuan Earthquake and statistics analyses of their spatial distribution[J]. Journal of Engineering Geology, 2013, 21(1): 25−44.

    [15] 黄森, 崔素丽, 辛鹏, 等. 天水市“7.25”群发性浅层滑坡降雨阈值及空间分布研究[J]. 自然灾害学报, 2021, 30(3): 181−190.

    Huang S, Cui S L, Xin P, et al. Study on rainfall threshold and spatial distribution of clustered shallow landslides in Tianshui City on July 25[J]. Journal of Natural Disasters, 2021, 30(3): 181−190.

    [16] 陈卓鑫. 黄土高塬沟壑区植被恢复坡面浅层滑坡特征及其影响因素[D]. 西安: 西北农林科技大学, 2020.

    Chen Z X. Distribution characteristic and influencing factors of shallow landslide on vegetation-covered slope in the loess-tableland and gully region of the Loess Plateau[D]. Xi’an: Northwest A&F University, 2020.

    [17] 韩健楠. 基于重构滑动面的滑坡体积测算[D]. 西安: 长安大学, 2018.

    Han J N. Landslide volume estimation using reconstructed failure surfaces[D]. Xi’an: Chang’an University, 2018.

    [18]

    Baldo M, Bicocchi C, Chiocchini U, et al. LIDAR monitoring of mass wasting processes: the Radicofani landslide, Province of Siena, Central Italy[J]. Geomorphology, 2009, 105(3−4): 193−201. doi: 10.1016/j.geomorph.2008.09.015

    [19]

    Chen R F, Chan Y C, Angelier J, et al. Large earthquake-triggered landslides and mountain belt erosion: the Tsaoling case, Taiwan[J]. Comptes Rendus Geoscience, 2005, 337(13): 1164−1172. doi: 10.1016/j.crte.2005.04.017

    [20] 胡赛强, 刘淑虎, 林兆武. 基于GIS的福建省传统村落空间分布特征分析[J]. 宁夏大学学报(自然科学版), 2021, 42(3): 328−333.

    Hu S Q, Liu S H, Lin Z W. Analysis on spatial distribution characteristics of traditional villages in Fujian Province based on GIS[J]. Journal of Ningxia University (Natural Science Edition), 2021, 42(3): 328−333.

    [21] 王新胜, 滕德贵, 谢伟, 等. 山地城市滑坡灾害空间分布特征及影响因素分析[J]. 重庆大学学报, 2020, 43(8): 87−96.

    Wang X S, Teng D G, Xie W, et al. Spatial distribution characteristics and influencing factors of landslide disasters in mountain cities[J]. Journal of Chongqing University, 2020, 43(8): 87−96.

    [22] 许中旗, 吴增志, 李帅英, 等. 森林植被防灾学战略研究[J]. 北京林业大学学报(社会科学版), 2006, 5(增刊1): 63−65.

    Xu Z Q, Wu Z Z, Li S Y, et al. Hazard mitigation research of forest vegetation[J]. Journal of Beijing Forestry University (Social Sciences), 2006, 5(Suppl. 1): 63−65.

    [23] 秦明月, 郭剑, 邹强. 植被覆被条件下不稳定斜坡分布规律探究: 以大渡河流域为例[J]. 工程地质学报, 2023, 31(2): 628−637.

    Qin M Y, Guo J, Zou Q. Preliminary study on distribution characteristics of potentially unstable vegetated-slope: a case study of Dadu River Basin[J]. Journal of Engineering Geology, 2023, 31(2): 628−637.

    [24]

    Kobayashi Y, Mori A S. The potential role of tree diversity in reducing shallow landslide risk[J]. Environmental Management, 2017, 59(5): 807−815. doi: 10.1007/s00267-017-0820-9

    [25] 韩勇, 郑粉莉, 徐锡蒙, 等. 子午岭林区浅层滑坡侵蚀与植被的关系: 以富县“7·21”特大暴雨为例[J]. 生态学报, 2016, 36(15): 4635−4643.

    Han Y, Zheng F L, Xu X M, et al. Relationship between shallow landslide erosion and vegetation in the Ziwuling Forest Area: a case study of the “7·21” disaster in Fuxian County[J]. Acta Ecologica Sinica, 2016, 36(15): 4635−4643.

    [26] 宋渊, 张恩博, 任达. 基于GIS空间分析的兴山县滑坡灾害点分布特征研究[J]. 云南地质, 2022, 41(3): 382−388.

    Song Y, Zhang E B, Ren D. Study on the distribution feature of sliding disaster in Xingshan based on GIS spatial analysis[J]. Yunnan Geology, 2022, 41(3): 382−388.

    [27]

    Zhang Z L, Wang T, Wu S R. Distribution and features of landslides in the Tianshui Basin, Northwest China[J]. Journal of Mountain Science, 2020, 17(3): 686−708. doi: 10.1007/s11629-019-5595-4

    [28] 张钟远, 邓明国, 徐世光, 等. 镇康县滑坡易发性评价模型对比研究[J]. 岩石力学与工程学报, 2022, 41(1): 157−171.

    Zhang Z Y, Deng M G, Xu S G, et al. Comparison of landslide susceptibility assessment models in Zhenkang County, Yunnan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 157−171.

    [29]

    Anderson S A, Sitar N. Analysis of rainfall-induced debris flows[J]. Journal of Geotechnical Engineering, 1995, 121(7): 544−552.

  • 期刊类型引用(5)

    1. 买永辉,贾艳玲,齐蓉,陈帅,王宏彬,丁志辉. 基于LoRa的沙漠近地环境参数监测系统设计. 数字技术与应用. 2023(07): 163-165 . 百度学术
    2. 屈英,刘小强,李明淇. 枣树滴灌水肥一体化发展现状及建议. 河北农机. 2023(18): 94-96 . 百度学术
    3. 丁磊,鲁延芳,占玉芳,甄伟玲,滕玉风,钱万建. 沙荒地红枣矮化密植丰产栽培技术. 林业科技通讯. 2022(04): 78-81 . 百度学术
    4. 韩齐齐,张娅妮,冯荦荦,闫欣鹏,张有林. 冬枣采后生理与气调贮藏关键技术研究. 食品与发酵工业. 2021(04): 33-39 . 百度学术
    5. 张波,吕廷波,赵秀杰,王东旺,徐强,邢猛,周小杰. 不同灌溉定额对滴灌骏枣生长的影响. 水土保持学报. 2021(06): 168-174+182 . 百度学术

    其他类型引用(1)

图(5)  /  表(3)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  82
  • PDF下载量:  57
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-03-29
  • 修回日期:  2023-06-13
  • 网络出版日期:  2023-10-13
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回