Response and mechanism of plant leaf nitrogen and phosphorus resorption efficiency to nutrient addition in an alpine meadow
-
摘要:目的
本研究旨在揭示植物叶片氮和磷重吸收率对氮磷添加及交互作用的响应和机理,明确高寒草甸植物养分利用策略多样性。
方法以高寒草甸优势植物(垂穗披碱草、发草、灰苞蒿和鹅绒委陵菜)为研究对象,基于氮和磷添加两因子交互试验,研究高寒植物叶片养分重吸收率对养分添加的响应。
结果(1)禾本科叶片氮重吸收率随氮添加而增加,但杂类草叶片不受影响;此外,4种植物叶片磷重吸收率均不受氮添加的影响。(2)磷添加对所有植物叶片氮重吸收率和两种杂类草叶片磷重吸收率没有显著影响,但提高了禾本科叶片的磷重吸收率。(3)氮和磷共同添加降低了垂穗披碱草、灰苞蒿和鹅绒委陵菜叶片氮重吸收率,但提高了发草叶片的氮重吸收率。此外,氮和磷同时添加对4种植物叶片磷重吸收效率没有显著影响。
结论综上所述,本研究揭示了养分富集下高寒植物3种不同的养分重吸收策略,即对外源获取的养分全部重吸收(绿叶养分增加但凋落叶不增加)、部分重吸收(绿叶和凋落叶同时增加,但凋落叶增加较慢)和不进行重吸收(绿叶和凋落叶均增加,但凋落叶的幅度大于或等于绿叶;或绿叶和凋落叶不响应)。这些研究结果为理解高寒植物养分内循环策略的多样性和互补性提供了一定的启示。
Abstract:ObjectiveThe purpose of our study was to reveal the response and mechanism of plant leaf nutrient resorption efficiency to nitrogen and phosphorus addition and their interaction, and to clarify the diversity of plant nutrient use strategies in alpine meadows.
MethodTo answer this question, we performed an experiment of N and P addition in an alpine meadow, measured leaf nutrient resorption efficiency in four dominant species (Elymus nutans, Deschampsia cespitosa, Artemisia roxburghiana, Potentilla anserina).
Result(1) N addition had positive effects on leaf N resorption efficiency (NRE) in graminoids, but the leaf NRE of forbs was not affected by N addition, while it did not affect P resorption efficiency (PRE) among four plant species. (2) P addition had no significant effect on the leaf NRE of all plants and the leaf PRE of two forbs, but increased the leaf PRE of graminoids. (3) N and P addition together reduced leaf NRE in E. nutans, A. roxburghiana and P. anserina, but increased NRE in D. cespitosa. Moreover, the combination of N and P addition had not significant effect on leaf PRE of four plants.
ConclusionOverall, our study indicates that alpine plants adopt three nutrient resorption strategies for more nutrient supply: full resorption (increase green leaf nutrient but no change in senescent leaf), partial resorption (more increase in green leaf nutrient than senescent leaf) and no resorption (similar increase in green and senescent leaf nutrient). These findings provide implications for understanding the diversity and complementarity of nutrient internal circulation strategies in alpine plants.
-
-
图 2 4种植物叶片氮重吸收效率对氮添加(N)、磷添加(P)和氮磷同时添加(N + P)的响应
^、*分别表示在 P < 0.1、0.05水平上处理与对照差异显著。下同。^, * indicate a significant treatment effect compared with control treatment at P < 0.1, 0.05 level, respectively. The same below.
Figure 2. Responses of nitrogen resorption efficiency in four plant species leaves to nitrogen (N), phosphorus (P) addition and their combined treatments (N + P)
图 3 氮添加(N)、磷添加(P)和氮磷同时添加(N + P)对4种植物绿叶和凋落叶氮含量的影响
不同小写字母表示差异显著(P < 0.05)。下同。Different lowercase letters indicate a significant difference between control and treatment (P < 0.05). The same below.
Figure 3. Effects of nitrogen addition (N), phosphorus addition (P) and their combined treatments (N + P) on nitrogen concentration ingreen and senescent leaves of four plant species
图 4 4种植物叶片磷重吸收率对氮添加(N)、磷添加(P)和氮磷同时添加(N + P)的响应
***表示在 P < 0.001水平上处理与对照差异显著。*** indicates a significant difference between treatment and control at P < 0.001 level.
Figure 4. Responses of phosphorus resorption efficiency in four plant species to nitrogen addition (N), phosphorus addition (P) andtheir combined treatments (N + P)
表 1 氮、磷添加及其交互作用对4种植物绿叶和凋落叶的养分含量以及氮和磷重吸收率影响的两因素方差分析
Table 1 Two-way ANOVA on the effects of nitrogen and phosphorous addition on green and senescent leaf nutrient concentration and nutrient resorption efficiency
物种 Species 指标 Index 氮添加
N addition磷添加
P addition氮磷交互作用
N × P interaction垂穗披碱草
Elymus nutans绿叶氮含量 Green leaf nitrogen content 9.503** 0.481 0.886 凋落叶氮含量 Senescent leaf nitrogen content 0.823 6.819* 0.488 氮重吸收率 Nitrogen resorption efficiency 0.766 39.198*** 15.953** 绿叶磷含量 Green leaf phosphorus content 6.794* 131.218*** 0.053 凋落叶磷含量 Senescent leaf phosphorus content 1.327 30.389*** 14.597** 磷重吸收率 Phosphorus resorption efficiency 12.460** 12.290** 22.770*** 发草
Deschampsia cespitosa绿叶氮含量 Green leaf nitrogen content 25.652*** 0.227 3.900 凋落叶氮含量 Senescent leaf nitrogen content 0.117 0.472 3.071 氮重吸收率 Nitrogen resorption efficiency 24.287*** 0.161 19.047*** 绿叶磷含量 Green leaf phosphorus content 21.625*** 28.256*** 1.834 凋落叶磷含量 Senescent leaf phosphorus content 2.227 18.638** 0.988 磷重吸收率 Phosphorus resorption efficiency 5.350* 0.009 6.918* 灰苞蒿
Artemisia roxburghiana绿叶氮含量 Green leaf nitrogen content 1.217 3.466 2.466 凋落叶氮含量 Senescent leaf nitrogen content 29.555*** 6.503* 2.600 氮重吸收率 Nitrogen resorption efficiency 0.701 2.203 0.580 绿叶磷含量 Green leaf phosphorus content 10.669** 56.367*** 2.207 凋落叶磷含量 Senescent leaf phosphorus content 9.194* 54.704*** 2.674 磷重吸收率 Phosphorus resorption efficiency 0.313 1.532 0.005 鹅绒委陵菜
Potentilla anserina绿叶氮含量 Green leaf nitrogen content 7.005* 1.971 0.017 凋落叶氮含量 Senescent leaf nitrogen content 72.432*** 1.885 8.259* 氮重吸收率 Nitrogen resorption efficiency 8.840* 5.448* 4.439 绿叶磷含量 Green leaf phosphorus content 0.734 67.760*** 0.950 凋落叶磷含量 Senescent leaf phosphorus content 0.353 33.474*** 1.900 磷重吸收率 Phosphorus resorption efficiency 4.163 1.476 0.762 -
[1] Aerts R, Chapin F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[M]//Fitter A H, Raffaelli D G. Advances in ecological research. New York: Academic Press, 1999.
[2] Jackson R B, Schenk H J, Jobbágy E G, et al. Belowground consequences of vegetation change and their treatment in models[J]. Ecological Applications, 2000, 10(2): 470−483. doi: 10.1890/1051-0761(2000)010[0470:BCOVCA]2.0.CO;2
[3] Zhao Q, Guo J, Shu M, et al. Impacts of drought and nitrogen enrichment on leaf nutrient resorption and root nutrient allocation in four Tibetan plant species[J]. Science of the Total Environment, 2020, 723: 138106. doi: 10.1016/j.scitotenv.2020.138106
[4] Wang F, Fang X, Wang G G, et al. Effects of nutrient addition on foliar phosphorus fractions and their resorption in different-aged leaves of Chinese fir in subtropical China[J]. Plant and Soil, 2019, 443(1−2): 41−54. doi: 10.1007/s11104-019-04221-8
[5] Kou L, Wang H, Gao W, et al. Nitrogen addition regulates tradeoff between root capture and foliar resorption of nitrogen and phosphorus in a subtropical pine plantation[J]. Trees, 2017, 31: 77−91. doi: 10.1007/s00468-016-1457-7
[6] Li X, Liu J, Fan J, et al. Combined effects of nitrogen addition and litter manipulation on nutrient resorption of Leymus chinensis in a semi-arid grassland of northern China[J]. Plant Biology (Stuttgart, Germany), 2014, 17(1): 9−15.
[7] Wang M, Murphy M T, Moore T R. Nutrient resorption of two evergreen shrubs in response to long-term fertilization in a bog[J]. Oecologia, 2014, 174(2): 365−377. doi: 10.1007/s00442-013-2784-7
[8] Zhang Y, Yang G, Shi F, et al. Biomass allocation between leaf and stem regulates community-level plant nutrient resorption efficiency response to nitrogen and phosphorus additions in a temperate wetland of Northeast China[J]. Journal of Plant Ecology, 2021, 14(1): 58−66. doi: 10.1093/jpe/rtaa077
[9] Lu J, Yang M, Liu M, et al. Nitrogen and phosphorus fertilizations alter nitrogen, phosphorus and potassium resorption of alfalfa in the Loess Plateau of China[J]. Journal of Plant Nutrition, 2019, 42: 1−13. doi: 10.1080/01904167.2018.1509996
[10] van Heerwaarden L M, Toet S, Aerts R. Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization[J]. Journal of Ecology, 2003, 91(6): 1060−1070. doi: 10.1046/j.1365-2745.2003.00828.x
[11] Su Y, Ma X, Gong Y, et al. Responses and drivers of leaf nutrients and resorption to nitrogen enrichment across northern China’s grasslands: a meta-analysis[J/OL]. Catena, 2021, 199(1): 105110[2022−10−09]. https://doi.org/10.1016/j.catena.2020.105110.
[12] You C, Wu F, Yang W, et al. Does foliar nutrient resorption regulate the coupled relationship between nitrogen and phosphorus in plant leaves in response to nitrogen deposition?[J]. Science of the Total Environment, 2018, 645: 733−742. doi: 10.1016/j.scitotenv.2018.07.186
[13] See C R, Yanai R D, Fisk M C, et al. Soil nitrogen affects phosphorus recycling: foliar resorption and plant-soil feedbacks in a northern hardwood forest[J]. Ecology, 2015, 96(9): 2488−2498. doi: 10.1890/15-0188.1
[14] Liu Y, Li L, Li X, et al. Effect of nitrogen and phosphorus addition on leaf nutrient concentrations and nutrient resorption efficiency of two dominant alpine grass species[J]. Journal of Arid Land, 2021, 13(10): 1041−1053. doi: 10.1007/s40333-021-0080-7
[15] Mao R, Zeng D H, Zhang X H, et al. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China[J/OL]. Scientific Reports, 2015, 5: 8097 [2022−10−07]. https://www.nature.com/articles/srep08097.
[16] Li L J, Zeng D H, Mao R, et al. Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China[J]. Plant, Soil and Environment, 2012, 58(10): 446−451. doi: 10.17221/6339-PSE
[17] Lü X T, Reed S C, Yu Q, et al. Nutrient resorption helps drive intra-specific coupling of foliar nitrogen and phosphorus under nutrient-enriched conditions[J]. Plant and Soil, 2016, 398(1): 111−120.
[18] Yuan Z Y, Chen H Y H. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation[J]. Global Ecology and Biogeography, 2009, 18(1): 11−18. doi: 10.1111/j.1466-8238.2008.00425.x
[19] Zhang J, Li H, Shen H, et al. Effects of nitrogen addition on nitrogen resorption in temperate shrublands in northern China[J/OL]. PLoS One, 2015, 10(6): e0130434 [2022−12−13]. http://doi.org/10.1371/journal.pone.0130434.
[20] He M, Yan Z, Cui X, et al. Scaling the leaf nutrient resorption efficiency: nitrogen vs phosphorus in global plants[J]. The Science of the Total Environment, 2020, 729: 138920. doi: 10.1016/j.scitotenv.2020.138920
[21] Tateno R, Takeda H. Nitrogen resorption efficiency of 13 tree species of a cool temperate deciduous forest in Central Japan[J]. Journal of Forest Research, 2018, 23(2): 91−97. doi: 10.1080/13416979.2018.1432303
[22] Chen H, Xu B, Wei S, et al. Nutrient resorption and phenolics concentration associated with leaf senescence of the subtropical mangrove aegiceras corniculatum: implications for nutrient conservation[J]. Forests, 2016, 7(11): 290.
[23] Urbina I, Grau O, Sardans J, et al. High foliar K and P resorption efficiencies in old-growth tropical forests growing on nutrient-poor soils[J]. Ecology and Evolution, 2021, 11(13): 8969−8982. doi: 10.1002/ece3.7734
[24] Wright I J, Westoby M. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species[J]. Functional Ecology, 2003, 17(1): 10−19. doi: 10.1046/j.1365-2435.2003.00694.x
[25] Franklin O, Ågren G I. Leaf senescence and resorption as mechanisms of maximizing photosynthetic production during canopy development at N limitation[J]. Functional Ecology, 2002, 16(6): 727−733. doi: 10.1046/j.1365-2435.2002.00674.x
[26] Chen J, Groenigen K J V, Hungate B A, et al. Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems[J]. Global Change Biology, 2020, 26(9): 5077−5086. doi: 10.1111/gcb.15218
[27] Lü X, Reed S, Yu Q, et al. Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland[J]. Global Change Biology, 2013, 19(9): 2775−2784. doi: 10.1111/gcb.12235
[28] Yuan Z Y, Chen H Y H. Negative effects of fertilization on plant nutrient resorption[J]. Ecology, 2015, 96(2): 373−380. doi: 10.1890/14-0140.1
[29] Gerdol R, Iacumin P, Brancaleoni L. Differential effects of soil chemistry on the foliar resorption of nitrogen and phosphorus across altitudinal gradients[J]. Functional Ecology, 2019, 33(7): 1351−1361. doi: 10.1111/1365-2435.13327
[30] Vourlitis G L, Lobo F D A, Lawrence S, et al. Nutrient resorption in tropical savanna forests and woodlands of central Brazil[J]. Plant Ecology, 2014, 215(9): 963−975. doi: 10.1007/s11258-014-0348-5
[31] Yan Z B, Kim N, Han X W, et al. Effects of nitrogen and phosphorus supply on growth rate, leaf stoichiometry, and nutrient resorption of Arabidopsis thaliana[J]. Plant and Soil, 2014, 388: 147−155.
[32] Chen F S, Niklas K J, Liu Y, et al. Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age[J]. Tree Physiology, 2015, 35(10): 1106−1117. doi: 10.1093/treephys/tpv076
[33] Hidaka A, Kitayama K. Allocation of foliar phosphorus fractions and leaf traits of tropical tree species in response to decreased soil phosphorus availability on Mount Kinabalu, Borneo[J]. Journal of Ecology, 2011, 99(3): 849−857. doi: 10.1111/j.1365-2745.2011.01805.x
[34] Vitousek P. Nutrient cycling and nutrient use efficiency[J]. American Naturalist, 1982, 119(4): 553−572. doi: 10.1086/283931
[35] Zhang M, Zhang L, Yao X, et al. Co-evaluation of plant leaf nutrient concentrations and resorption in response to fertilization under different nutrient-limited conditions[J]. Diversity-Basel, 2022, 14(5): 385.
[36] Drenovsky R, Richards J. Low leaf N and P resorption contributes to nutrient limitation in two desert shrubs[J]. Plant Ecology, 2006, 183: 305−314. doi: 10.1007/s11258-005-9041-z
[37] 符义稳, 田大栓, 牛书丽, 等. 氮磷添加和干旱对高寒草甸优势植物叶片化学计量的影响[J]. 北京林业大学学报, 2020, 42(5): 115−123. doi: 10.12171/j.1000-1522.20190469 Fu Y W, Tian D S, Niu S L, et al. Effects of nitrogen, phosphorus addition and drought on leaf stoichiometry in dominant species of alpine meadow[J]. Journal of Beijing Forestry University, 2020, 42(5): 115−123. doi: 10.12171/j.1000-1522.20190469
[38] Li N, Wang G, Yang Y, et al. Plant production, and carbon and nitrogen source pools, are strongly intensified by experimental warming in alpine ecosystems in the Qinghai-Tibet Platea[J]. Soil Biology & Biochemistry, 2011, 43(5): 942−953.
[39] Yang Z, Gao J, Zhao L, et al. Linking thaw depth with soil moisture and plant community composition: effects of permafrost degradation on alpine ecosystems on the Qinghai-Tibet Plateau[J]. Plant and Soil, 2013, 367(1−2): 687−700. doi: 10.1007/s11104-012-1511-1
[40] Zhao X, Zhou X. Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem research station[J]. Ambio, 1999, 28: 642−647.
[41] 杨晓霞, 任飞, 周华坤, 等. 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应[J]. 植物生态学报, 2014, 38(2): 159−166. doi: 10.3724/SP.J.1258.2014.00014 Yang X X, Ren F, Zhou H K, et al. Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau[J]. Chinese Journal of Plant Ecology, 2014, 38(2): 159−166. doi: 10.3724/SP.J.1258.2014.00014
[42] Butler O M, Elser J J, Lewis T, et al. The phosphorus-rich signature of fire in the soil-plant system: a global meta-analysis[J]. Ecology Letters, 2018, 21(3): 335−344. doi: 10.1111/ele.12896
[43] Borer E T, Seabloom E W, Gruner D S, et al. Herbivores and nutrients control grassland plant diversity via light limitation[J]. Nature, 2014, 508(517): 520.
[44] Borer E T, Harpole W S, Adler P B, et al. Finding generality in ecology: a model for globally distributed experiments[J]. Methods in Ecology and Evolution, 2014, 5(1): 65−73. doi: 10.1111/2041-210X.12125
[45] Boerner R E J. Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility[J]. Journal of Applied Ecology, 1984, 21(3): 1029−1040. doi: 10.2307/2405065
[46] Zong N, Song M, Zhao G, et al. Nitrogen economy of alpine plants on the north Tibetan Plateau: nitrogen conservation by resorption rather than open sources through biological symbiotic fixation[J]. Ecology and Evolution, 2020, 10(4): 2051−2061. doi: 10.1002/ece3.6038
[47] Liang D, Zhang J, Zhang S. Patterns of nitrogen resorption in functional groups in a Tibetan alpine meadow[J]. Folia Geobotanica, 2015, 50(3): 267−274. doi: 10.1007/s12224-015-9217-9
[48] 安卓, 牛得草, 文海燕, 等. 氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C∶N∶P化学计量特征的影响[J]. 植物生态学报, 2011, 35(8): 801−807. doi: 10.3724/SP.J.1258.2011.00801 An Z, Niu D C, Wen H Y, et al. Effects of N addition on nutrient resorption efficiency and C∶N∶P stoichiometric characteristics in Stipa bungeana of steppe grasslands in the Loess Plateau, China[J]. Chinese Journal of Plant Ecology, 2011, 35(8): 801−807. doi: 10.3724/SP.J.1258.2011.00801
[49] Dong W Y, Zhang X Y, Liu X Y, et al. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China[J]. Biogeosciences, 2015, 12(18): 5537−5546. doi: 10.5194/bg-12-5537-2015
[50] Zemunik G, Turner B L, Lambers H, et al. Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development[J/OL]. Nature Plants, 2015, 1(5): 15050 [2022−10−15]. https://www.nature.com/articles/nplants201550.
[51] Delgado B M, Maestre F T, Gallardo A, et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands[J]. Nature, 2013, 502: 672−676. doi: 10.1038/nature12670
[52] Du E, Terrer C, Pellegrini A F A, et al. Global patterns of terrestrial nitrogen and phosphorus limitation[J]. Nature Geoscience, 2020, 13(3): 221−226. doi: 10.1038/s41561-019-0530-4
-
期刊类型引用(4)
1. 杨桦,李祥乾,王帆,方睿,杨伟. 长足大竹象信息素结合蛋白CbuqPBP2互作蛋白的筛选与验证. 西北农林科技大学学报(自然科学版). 2024(01): 87-97 . 百度学术
2. 万超,张月,胡莉,伍炳华,袁媛. 茉莉花JsMYB305转录因子的原核表达及蛋白纯化. 福建农业学报. 2022(02): 164-169 . 百度学术
3. 武建颖,张燕,孙贺贺,赵玉兰,董金皋,申珅,郝志敏. 玉米大斑病菌蛋白激酶A催化亚基StPKA-C1/C2的表达与互作蛋白筛选. 农业生物技术学报. 2022(10): 1976-1986 . 百度学术
4. 胡莉,万超,张蕖,陈清西,伍炳华,袁媛. 茉莉花JsMYB305转录因子互作蛋白的筛选及验证. 福建农业学报. 2022(09): 1135-1144 . 百度学术
其他类型引用(9)