Processing math: 78%
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

不同密度和水分管理下毛白杨林分土壤水分特征

周欧, 古丽米热·依力哈木, 祝维, 王亚飞, 曲冠博, 李少然, 贾黎明, 席本野

周欧, 古丽米热·依力哈木, 祝维, 王亚飞, 曲冠博, 李少然, 贾黎明, 席本野. 不同密度和水分管理下毛白杨林分土壤水分特征[J]. 北京林业大学学报, 2024, 46(1): 55-67. DOI: 10.12171/j.1000-1522.20230092
引用本文: 周欧, 古丽米热·依力哈木, 祝维, 王亚飞, 曲冠博, 李少然, 贾黎明, 席本野. 不同密度和水分管理下毛白杨林分土壤水分特征[J]. 北京林业大学学报, 2024, 46(1): 55-67. DOI: 10.12171/j.1000-1522.20230092
Zhou Ou, Yilihamu Gulimire, Zhu Wei, Wang Yafei, Qu Guanbo, Li Shaoran, Jia Liming, Xi Benye. Soil water characteristics of Populus tomentosa stands under different densities and water treatments[J]. Journal of Beijing Forestry University, 2024, 46(1): 55-67. DOI: 10.12171/j.1000-1522.20230092
Citation: Zhou Ou, Yilihamu Gulimire, Zhu Wei, Wang Yafei, Qu Guanbo, Li Shaoran, Jia Liming, Xi Benye. Soil water characteristics of Populus tomentosa stands under different densities and water treatments[J]. Journal of Beijing Forestry University, 2024, 46(1): 55-67. DOI: 10.12171/j.1000-1522.20230092

不同密度和水分管理下毛白杨林分土壤水分特征

基金项目: “十四五”国家重点研发计划(2021YFD2201203)。
详细信息
    作者简介:

    周欧。主要研究方向:森林培育。Email:1823935793@qq.com 地址:100083 北京市海淀区清华东路 35 号北京林业大学林学院

    责任作者:

    贾黎明,博士,教授。主要研究方向:森林培育。Email:jlm@bjfu.edu.cn 地址:同上。

  • 中图分类号: S725.5

Soil water characteristics of Populus tomentosa stands under different densities and water treatments

  • 摘要:
    目的 

    土壤水分是影响我国北方水分亏缺地区植被生长的重要因素,探究不同造林密度和水分管理下毛白杨林分的土壤水分状况,能为华北黄泛平原地区人工林土壤水分维持提供参考。

    方法 

    以不同造林密度(Ⅲ3 m × 3 m、Ⅱ3 m × 6 m、Ⅰ6 m × 6 m)和水分管理(滴灌FI、雨养NI)下的5种(FI、FI、NI、NI、NI)毛白杨林分为研究对象,在2021年生长季内(5、6、8和10月),采用烘干称重法测定各处理6 m剖面内的土壤含水量(SWC),研究不同处理土壤水分状况及土壤干层现象。

    结果 

    (1)各处理毛白杨林分浅土层(0 ~ 30 cm和30 ~ 100 cm)的SWC(5.62% ~ 15.53%)显著低于深土层(100 ~ 200 cm、200 ~ 400 cm和400 ~ 600 cm)(16.50% ~ 27.00%);林分SWC在0 ~ 240 cm垂直剖面内随深度增加而增加,并在240 ~ 260 cm(26.37% ~ 30.56%)和360 ~ 400 cm(22.79% ~ 33.00%)出现两个峰值,而400 ~ 600 cm变化平缓;(2)5种林分土壤均在10月最为湿润,平均SWC为20.16% ~ 23.16%;雨养条件下,不同密度毛白杨林分在6月最干燥,平均SWC为13.11% ~ 14.96%,滴灌减轻了30 cm以下土层SWC的季节变异程度;(3)不同水分管理下,高密度林分中深土层土壤水分状况最好(FI和NI深土层平均SWC分别为23.18%和21.13%),但雨季末(10月),NI土壤水分补偿量最高,达403.12 mm。在高密度和低密度林分中滴灌显著提高了林分0 ~ 30 cm土层的SWC,且增加了深土层土壤水分补偿量(FI较NI和FI较NI的储水量变化量分别提高了84.40%和173.99%),滴灌仅显著提高了高密度林分土壤储水量(P < 0.05);(4)滴灌和降雨均能缓解或消除不同密度林分在2 m深度内出现的可恢复性土壤干层现象。

    结论 

    根据本研究结果,建议在华北黄泛平原毛白杨大径材林培育过程中,以3 m × 3 m密度造林且于旱季(4—6月)辅以多频率滴灌充分灌溉,促进杨树人工林在快速生长期(2 ~ 4年)的林木生长并改善其深层土壤水分状况。待林分出现密度效应及深层土壤水消耗后,可通过间伐等措施在实现土壤水分维持的同时提高杨树人工林林地生产力。

    Abstract:
    Objective 

    In water-deficit area of northern China, soil water content is a crucial factor affecting plant growth. Studying the soil water status of Populus tomentosa stands under different planting densities and water treatments can provide a reference basis for soil water maintenance of plantations in the North China Plain.

    Method 

    Populus tomentosa plantations under five different planting densities (Ⅲ 3 m × 3 m, Ⅱ 3 m × 6 m and Ⅰ 6 m × 6 m) and water (drip irrigation, FI and rainfed, NI) treatments (FI, FI, NI, NI and NI) were selected in this study. During the growing season (May, June, August and October) in 2021, soil water content (SWC) within the 6 m-depth soil profile was measured using the drying-weighing method, soil water content conditions and the occurrence of dry soil layer (DSL) were investigated and compared among different treatments.

    Result 

    (1) Shallow soil layers (0−30 cm and 30−100 cm, ranging from 5.62% to 15.53%) showed significantly lower SWC than the deep soil layers (100−200 cm, 200−400 cm, and 400−600 cm, ranging from 16.50% to 27.00%) in each treatment. The SWC in all stands increased with depth within the vertical profile of 0−240 cm, showing two peaks at 240−260 cm (26.37%−30.56%) and 360−400 cm (22.79%−33.00%), while the change of SWC at 400−600 cm was relatively gradual. (2) All five stands exhibited the highest soil water availability in October, with an average SWC from 20.16% to 23.16%. In rainfed treatment, soil was driest in June independent of planting density, the average SWC ranged from 13.11% to 14.96%. Drip irrigation treatment reduced the seasonal variation in SWC in the soil layer below 30 cm. (3) Under different water treatments, high density stands exhibited the highest soil water availabilities in the deep soil layers (average SWC of 23.18% for FI and 21.13% for NI). However, NI exhibited the highest soil water compensation at the end of the rainy season (October) of 403.12 mm. In both high and low density stands, SWC in the 0−30 cm soil layer was significantly increased by drip irrigation treatment, the compensation of soil water in the deep layers was also enhanced (the change in water storage was 84.40% in FI than in NI, and 173.99% higher in FI than in NI). Drip irrigation treatment only significantly improved soil water storage in high density stands (P < 0.05). (4) Both drip irrigation and precipitation effectively alleviated or eliminated the occurrence of recoverable DSL within 2 m-depth under different planting densities.

    Conclusion 

    According to the results of this study, a 3 m × 3 m planting density with frequent full irrigation treatment during dry season (April to June) is recommended for the cultivation of large-diameter poplar plantation in the North China Yellow River Plain in order to achieve fast tree growth in the early growing stage (2−4 years) and improve water condition of the deep soil layers. After the occurrence of evident density effect and deep soil water content depletion, management practices like thinning can be implemented to maintain soil water production and enhance the productivity of poplar plantations.

  • 油松(Pinus tabuliformis)为我国北方地区特有的乡土针叶树种[1],广泛分布于山西、河北、河南、辽宁、内蒙古、甘肃等省区[2],在三北地区大规模国土绿化、脆弱生态系统保护与修复、国家储备林、森林碳汇等国家重大战略过程中发挥重要作用[3]。当前,油松的遗传改良层次普遍较低,正处于初级种子园向高世代种子园的过渡阶段。油松高世代基本群体以种子园半同胞子代林为主,少部分是全同胞子代林,普遍存在参与控制授粉的亲本数量偏少、家系间和家系内单株间遗传变异巨大等问题,需要开展针对油松高世代基本群体特点的亲本选择策略研究。

    近年来,配合选择策略已广泛应用于红松(Pinus koraiensis[4]、青海云杉(Picea crassifolia[5]、马尾松(Pinus massoniana[6]、日本落叶松(Larix kaempferi[7]、白桦(Betula platyphylla[8]和枫香(Liquidambar formosana[9]等树种高世代种子园建园亲本选择过程中,最优单株直接选择策略在油松[10]和柏木(Cupressus funebris[11]中也逐渐得到应用。在树种多世代改良中采用配合选择策略,可以延缓近交率发展过快,使高世代种子园种子产量和品质稳固提高[12]。然而,配合选择策略忽略了被淘汰家系中存在遗传品质更优单株资源等情况,造成了大量优良育种资源的损失,从而弱化了油松高世代遗传改良中亲本选择的预期效果。最优单株直接选择策略可以有效避免遗传品质优良单株资源的损失,但单株间存在近交的可能,需要借助分子标记技术鉴别单株间的亲缘关系。

    目前,油松第二代种子园建园亲本的选择多采用配合选择策略。袁虎威等[12]在油松初级种子园优树自由授粉子代测定林内,以家系平均材积优势比为指标,选出了20个优良家系,并配合单株材积优势比的相对大小选出了20个优良单株,材积遗传增益平均值为0.13%。王建伟[13]采用多性状育种值评选法和综合指数法,从桥山双龙112个油松半同胞家系中筛选出16个优良家系,并从中配合选择筛选出70个优良单株。杨培华等[14]对142个油松优树进行半同胞子代测定之后,利用独立淘汰水平法根据数量标准选出了36个优良家系,然后从中选出了263个优良单株,子代材积增益十分显著。然而,依据 2017年袁虎威等[10]提出的“油松高育种周期优良种质资源可来源于大规模种子园自由授粉子代人工林中的优良单株”的新思路,可知有必要开展油松高世代种子园建园亲本选择策略的对比分析研究,进一步提高亲本选择效率和选择效果。

    本文以上庄油松初级种子园自由授粉子代测定林为基本群体,选用测定林内42个油松半同胞家系的生长性状调查数据,对半同胞家系生长性状进行遗传变异分析、遗传参数估算和相关性分析,在此基础上分别采用配合选择策略和最优单株直接选择策略来筛选油松第二代种子园建园亲本,并对比分析二者选择效果,旨在为油松高改良世代亲本的评价选择提供参考依据,加速油松育种改良的换代升级。

    试验地位于山西省隰县上庄油松良种基地(111°12′E,36°45′N),地处吕梁山脉南端,紫荆山东麓,海拔1 570 ~ 1 930 m,年均气温8 ℃,年无霜期120 ~ 140 d,极端最高气温32 ℃,极端最低气温−21.5 ℃,最深冻土层0.91 m,年降雨量580 ~ 810 mm,土壤为山地棕壤,地形为石质山。供试材料为1984年营建的油松第二世代半同胞子代测定林,种子来源为该良种基地油松初级种子园优良无性系自由授粉种子。试验林采用完全随机区组试验设计,4次重复,每重复小区数45个,包含45个家系(表1),其中3个对照家系PT43(CK0)、PT40(CK1)和PT44(CK2)为当地油松天然林分优树子代,每个小区5株,单株编号1 ~ 5,共900株,株行距为2 m × 2 m结合4 m × 2 m,试验地内管理措施和坡度、坡向等立地条件基本一致。试验林内家系PT5、PT34和PT45缺失,对照家系PT40缺失5株、PT43缺失1株、PT44缺失8株,剩余家系各缺失1 ~ 2株,选择对照家系PT43作为唯一对照。本研究将以半同胞子代测定林为油松第二世代基本群体。

    表  1  45个油松半同胞家系编号和对应亲本无性系
    Table  1.  No. and corresponding parental clones from 45 half-sib families of P. tabuliformis
    家系号
    Family No.
    对应亲本无性系
    Corresponding parental clone
    家系号
    Family No.
    对应亲本无性系
    Corresponding parental clone
    家系号
    Family No.
    对应亲本无性系
    Corresponding parental clone
    PT1复1PT16关53PT31关38
    PT2关24PT17初25PT32初2
    PT3关14PT18关22PT33关3
    PT4关4PT19复8PT34初18
    PT5关44PT20复13PT35复11
    PT6关28PT21关50PT36复18
    PT7复12PT22关23PT37关55
    PT8关6PT23关35PT38关51
    PT9关1PT24关46PT39关26
    PT10关17PT25关42PT40CK1
    PT11关8PT26关7PT41关11
    PT12复9PT27初4PT42关5
    PT13关2PT28关37PT43CK0
    PT14关56PT29关29PT44CK2
    PT15关9PT30关58PT45复17
    下载: 导出CSV 
    | 显示表格

    2018年4月对试验林42个家系(家系PT5、PT34和PT45缺失)的生长性状进行调查,测量统计了781个单株的胸径和树高。单株材积计算利用

    V=0.3578×π(D2)2(H+3) (1)

    式中:V代表单株材积(m3),D代表胸径(cm),H代表树高(m) [15]

    利用SPSS 23.0、Excel 2019统计软件进行42个家系胸径、树高、材积性状的方差分析、相关性分析和遗传参数的估算。

    各性状单点方差分析的线性模型[1617]

    Yijk=μ+Bi+Fj+BFij+eijk (2)

    式中:Yijk代表第i区组第j家系第k单株的观测值,μ为群体平均值,Bi代表区组效应,Fj代表家系效应,BFij代表第i区组和第j家系互作效应,eijk代表机误。

    家系遗传力(h2F)为

    h2F=σ2Fσ2ENB+σ2FBB+σ2F (3)

    单株遗传力(h2)为

    h2=4σ2Fσ2E+σ2FB+σ2F (4)

    式中:σ2F为家系遗传方差,σ2FB为家系和区组互作方差,σ2E为机误,B为区组数,N为小区内单株数[16,18]

    表型变异系数(PCV)为

    PCV=σP¯X×100% (5)

    遗传变异系数(GCV)为

    GCV=σg¯X×100% (6)

    式中:σP为性状表型标准差,σg为性状遗传标准差,¯X为性状群体总平均值[1920]

    一般配合力(GCA)为

    GCA=XiX.. (7)

    式中:Xi为家系性状生长量,X..为该性状总平均值[21]

    表型相关系数(rPxy)为

    rPxy=cov(Pxy)σPxσPy (8)

    遗传相关系数(rgxy)为

    rgxy=cov(gxy)σgxσgy (9)

    式中:cov(Pxy)为性状x与性状y的表型协方差, cov(gxy)为性状x与性状y的遗传协方差;σPxσPy分别为性状x和性状y的表型标准差;σgxσgy分别为性状x和性状y的遗传标准差[22]

    利用布雷金多性状综合评价法[23]对家系与单株进行综合评定,具体公式为

    Qi=nj=1xijxjmax (10)

    式中: {{Q}}_{{i}} 为综合评价值,xij为某一性状的平均值,xjmax为某一性状的最大值,n为评价性状的数量。

    家系现实遗传增益(G)为

    G = \frac{{x - X}}{X} \times 100\% (11)

    式中:x为入选家系性状生长量,X为对照家系性状生长量。

    家系预期遗传增益( \Delta {G_{\rm{F}}} [2425]

    \Delta {G_{\rm{F}}} = \frac{{\left( {x - \overline X } \right)h_{\rm{F}}^2}}{{\overline X }} \times 100\% (12)

    单株预期遗传增益( \Delta {G} )为

    \Delta G = \frac{{\left( {{x_i} - \overline X } \right){h^2}}}{{\overline X }} \times 100\% (13)

    式中:xi为单株性状表型值[12]

    对测定林内42个油松半同胞家系的胸径、树高和材积作方差分析发现,胸径、树高和材积在半同胞家系间和家系内均呈极显著差异(P < 0.01,表2)。

    表  2  42个油松半同胞家系生长性状方差分析与遗传力估算
    Table  2.  Variance analysis and heritability estimation of growth traits from 42 half-sib families of P. tabuliformis
    生长性状
    Growth trait
    区组方差
    Block variance
    家系间方差
    Family variance
    家系内方差
    Within-family variance
    家系遗传力
    Family heretability
    单株遗传力
    Individual-tree narrow heretability
    胸径 DBH 1.647 2.082** 2.009** 0.035 0.012
    树高 Tree height 5.291** 3.264** 2.220** 0.320 0.161
    材积 Volume 2.102 2.381** 1.978** 0.169 0.066
    注: **表示差异极显著(P < 0.01)。Note: ** represents extremely significant difference at 0.01 level.
    下载: 导出CSV 
    | 显示表格

    图1可知:42个家系中胸径、树高和材积大于对照(PT43)的分别占83.33%、95.24% 和85.71%,并且有34个家系各性状生长量均超过对照。胸径、树高和材积最大值家系分别为PT1、PT7和PT1,最小值家系分别为PT29、PT13和PT29,各性状最大值依次为最小值的1.9倍、1.5倍和3.3倍。

    图  1  油松42个半同胞家系各性状生长量
    Figure  1.  Growth of each trait from 42 half-sib families of P. tabuliformis

    表2可知:生长性状家系遗传力变化范围为0.035 ~ 0.320,其中树高家系遗传力最高,材积次之,胸径最低;单株遗传力变化范围为0.012 ~ 0.161,其中树高单株遗传力最高,材积次之,胸径最低。这表明树高受遗传因素调控的强度较高,而材积和胸径受到较弱的遗传因素调控。

    油松半同胞家系生长性状均值和变异系数见表3。胸径、树高和材积平均值分别为19.89 cm、8.83 m和0.138 1 m3,变异幅度分别为11.00 ~ 29.00 cm、7.00 ~ 11.60 m和0.037 0 ~ 0.311 8 m3。油松半同胞家系间材积的遗传变异系数(0.724 1)与表型变异系数(16.075 3)分别高出胸径的遗传变异系数(0.15)与表型变异系数(7.44)3.83倍和1.16倍,高出树高的遗传变异系数(0.34)与表型变异系数(4.17)1.13倍和2.84倍,反映了材积性状变异受环境因素的影响程度相对较高。各性状表型变异系数总体均值为9.23%。

    表  3  42个油松半同胞家系生长性状均值与变异系数
    Table  3.  Variation coefficients and mean values of growth traits from 42 half-sib families of P. tabuliformis
    指标 Index 胸径 DBH/cm 树高 Tree height/m 材积 Volume/m3
    均值 Mean value 19.89 8.83 0.138 1
    变异幅度 Variation range 11.00 ~ 29.00 7.00 ~ 11.60 0.037 0 ~ 0.311 8
    遗传标准差 Genetic standard deviation 0.03 0.03 0.001 0
    表型标准差 Phenotypic standard deviation 1.48 0.37 0.022 2
    遗传变异系数 Coefficient of genetic variation (GCV)/% 0.15 0.34 0.724 1
    表型变异系数 Coefficient of phenotypic variation (PCV)/% 7.44 4.17 16.075 3
    下载: 导出CSV 
    | 显示表格

    配合力是在有性繁殖过程中,为获得遗传型更好的子代而提出。一般配合力能反映亲本加性基因的效应,是种子园亲本选择的依据之一[2627]。42个油松半同胞家系生长性状一般配合力及排序见表4。就胸径而言,一般配合力范围为−4.992 ~ 8.108,家系PT1、PT13、PT20、PT11、PT12、PT44、PT30、PT42、PT27和PT24一般配合力较高,位居前10;就树高而言,一般配合力范围为−0.933 ~ 2.634,家系PT7、PT11、PT19、PT2、PT42、PT40、PT28、PT18、PT30和PT31一般配合力较高,位居前10;就材积而言,一般配合力范围为−0.061 ~ 0.113,家系PT1、PT11、PT13、PT20、PT30、PT12、PT42、PT19、PT44和PT31一般配合力较高,位居前10。总体而言,家系PT1、PT12、PT13、PT20和PT44的胸径和材积一般配合力均较高,家系PT11、PT30和PT42的胸径、树高和材积一般配合力均较高。

    表  4  42个油松半同胞家系生长性状一般配合力及排序
    Table  4.  General combining ability of growth traits and ranking from 42 half-sib families of P. tabuliformis
    家系号 Family No. 胸径 DBH 排序 Ranking 树高 Tree height 排序 Ranking 材积 Volume 排序 Ranking
    PT1 8.108 1 −0.433 28 0.113 1
    PT2 −0.925 30 0.967 4 −0.002 27
    PT3 1.508 17 0.367 13 0.019 18
    PT4 −2.467 37 −0.708 37 −0.041 38
    PT6 −3.530 39 −0.483 31 −0.050 39
    PT7 −0.359 28 2.634 1 0.019 16
    PT8 0.975 21 −0.866 40 −0.002 28
    PT9 1.275 18 −0.033 19 0.010 21
    PT10 1.071 20 −0.458 30 0.007 22
    PT11 5.291 4 1.901 2 0.109 2
    PT12 5.208 5 0.242 16 0.076 6
    PT13 6.708 2 −0.933 42 0.079 3
    PT14 1.808 16 −0.483 32 0.025 15
    PT15 −0.092 26 −0.033 20 −0.002 26
    PT16 2.908 11 0.117 18 0.038 11
    PT17 −1.175 31 −0.333 23 −0.023 34
    PT18 0.908 22 0.767 8 0.015 20
    PT19 2.808 12 1.867 3 0.060 8
    PT20 5.308 3 0.267 15 0.078 4
    PT21 −0.192 27 −0.583 33 −0.013 29
    PT22 −4.842 41 0.567 11 −0.059 41
    PT23 −0.542 29 −0.733 38 −0.021 33
    PT24 2.983 10 −0.195 22 0.034 12
    PT25 0.158 25 −0.416 27 0.000 25
    PT26 −1.181 32 −0.405 26 −0.019 32
    PT27 3.108 9 −0.433 29 0.031 14
    PT28 −2.817 38 0.792 7 −0.031 35
    PT29 −4.992 42 0.467 12 −0.061 42
    PT30 4.708 7 0.767 9 0.076 5
    PT31 2.575 14 0.762 10 0.042 10
    PT32 2.808 13 −0.333 24 0.032 13
    PT33 −1.492 35 −0.583 34 −0.031 36
    PT35 0.208 24 −0.333 25 0.004 24
    PT36 −1.392 34 0.307 14 −0.017 31
    PT37 −1.317 33 −0.070 21 −0.016 30
    PT38 0.608 23 0.201 17 0.005 23
    PT39 −3.675 40 −0.583 35 −0.052 40
    PT40 1.108 19 0.867 6 0.019 17
    PT41 2.097 15 −0.611 36 0.016 19
    PT42 3.708 8 0.967 5 0.062 7
    PT43 −1.692 36 −0.900 41 −0.036 37
    PT44 5.108 6 −0.733 39 0.057 9
    下载: 导出CSV 
    | 显示表格

    42个油松半同胞家系生长性状遗传、表型相关分析结果见表5,3个生长性状间在遗传与表型水平上均呈极显著正相关关系。不同生长性状之间的相关性强度存在一定差异,材积与胸径和树高间的遗传相关系数分别为0.986(P < 0.01)和0.785(P < 0.01),树高与胸径间的遗传相关系数为0.828(P < 0.01),表明材积与胸径的遗传相关性最强。同理,材积与胸径间的表型相关性最强,表型相关系数为0.979(P < 0.01)。

    表  5  42个油松半同胞家系生长性状间相关系数
    Table  5.  Correlation coefficients between growth traits from 42 half-sib families of P. tabuliformis
    生长性状 Growth trait 胸径 DBH 树高 Tree height 材积 Volume
    胸径 DBH 1 0.683** 0.979**
    树高 Tree height 0.828** 1 0.720**
    材积 Volume 0.986** 0.785** 1
    注:加粗数据为遗传相关系数,下划线数据为表型相关系数,**表示相关达极显著水平(P < 0.01)。Notes: genetic correlation coefficient is bold, phenotype correlation coefficient is underline, ** represents correlation is extremely significant at 0.01 level.
    下载: 导出CSV 
    | 显示表格

    配合选择策略包括优良家系选择与优良单株选择2个环节。在初级种子园优良无性系自由授粉子代测定林内,首先,基于42个油松半同胞家系间各生长性状均存在极显著的差异,以胸径和树高为指标对家系进行综合评定,并以各家系Qi值高于对照家系PT43(1.158)为选择标准,筛选出30个优良家系(表6),入选率为71.43%。与对照家系PT43相比,入选家系的胸径、树高和材积的现实遗传增益变动范围分别为−6.18% ~ 53.85%、−0.42% ~ 44.54% 和5.06% ~ 146.25%,平均胸径、树高和材积现实遗传增益依次为20.24%、14.16% 和63.82%。与选择群体相比,入选家系的胸径、树高和材积的预期遗传增益变动范围分别为−0.50% ~ 1.43%、−3.38% ~ 9.54% 和−3.79% ~ 13.83%,平均胸径、树高和材积的预期遗传增益依次为 0.35%、0.81% 和3.54%。然后根据单株Qi值的相对大小,于每一优良家系中选择一个最优单株,共筛选出30个优良单株。入选30个优良单株按照Qi值的相对大小分别命名为JD1,JD2,···,JD30,具体信息如表7所示。

    表  6  油松30个优良家系综合评定Qi值与遗传增益估算值
    Table  6.  Qi value and estimated genetic gain from 30 elite families of P. tabuliformis
    家系号
    Family No.
    Qi 现实遗传增益 Realized genetic gain/% 预期遗传增益 Expected genetic gain/%
    胸径 DBH 树高 Tree height 材积 Volume 胸径 DBH 树高 Tree height 材积 Volume
    PT11 1.355 38.37 35.29 142.45 0.93 6.89 13.36
    PT19 1.321 24.73 34.87 94.50 0.49 6.76 7.37
    PT1 1.316 53.85 5.88 146.25 1.43 −1.57 13.83
    PT30 1.310 35.16 21.01 110.08 0.83 2.78 9.32
    PT7 1.303 7.33 44.54 54.43 −0.06 9.54 2.37
    PT42 1.303 29.67 23.53 96.42 0.65 3.50 7.61
    PT20 1.301 38.46 14.71 111.71 0.93 0.97 9.52
    PT12 1.299 37.91 14.39 109.74 0.92 0.88 9.27
    PT31 1.280 23.44 20.94 76.92 0.45 2.76 5.18
    PT13 1.280 46.15 −0.42 112.49 1.18 −3.38 9.62
    PT16 1.263 25.27 12.82 72.50 0.51 0.42 4.63
    PT18 1.257 14.29 21.01 50.19 0.16 2.78 1.84
    PT24 1.253 25.69 8.88 69.21 0.52 −0.71 4.22
    PT3 1.252 17.58 15.97 53.94 0.27 1.33 2.31
    PT27 1.247 26.37 5.88 66.15 0.55 −1.57 3.84
    PT32 1.246 24.73 7.14 66.87 0.49 −1.21 3.92
    PT2 1.238 4.21 23.53 33.19 −0.16 3.50 −0.28
    PT9 1.234 16.30 10.92 45.62 0.22 −0.12 1.27
    PT38 1.233 12.64 13.87 40.41 0.11 0.73 0.62
    PT14 1.226 19.23 5.25 59.56 0.32 −1.75 3.01
    PT41 1.226 20.82 3.64 50.96 0.37 −2.21 1.94
    PT10 1.216 15.18 5.57 42.29 0.19 −1.66 0.86
    PT15 1.214 8.79 10.92 33.57 −0.02 −0.12 −0.23
    PT35 1.208 10.44 7.14 39.64 0.04 −1.21 0.53
    PT36 1.207 1.65 15.21 18.91 −0.24 1.11 −2.06
    PT25 1.204 10.16 6.09 35.49 0.03 −1.51 0.01
    PT28 1.204 −6.18 21.32 5.06 −0.50 2.87 −3.79
    PT8 1.200 14.65 0.42 33.02 0.17 −3.14 −0.30
    PT37 1.195 2.06 10.45 19.77 −0.23 −0.25 −1.95
    PT21 1.193 8.24 3.99 23.13 −0.03 −2.11 −1.53
    下载: 导出CSV 
    | 显示表格
    表  7  配合选择策略筛选的优良单株
    Table  7.  Superior individuals screening by combined selection strategy
    名称
    Name
    编号
    No.
    区组
    Block
    家系号
    Family No.
    胸径
    DBH/cm
    树高
    Tree height/m
    材积
    Volume/m3
    Qi
    JD121PT1129.0010.20.311 81.371
    JD223PT2526.1010.90.266 01.356
    JD324PT3724.5010.60.229 31.326
    JD413PT223.8010.70.218 01.320
    JD514PT722.3011.30.199 71.320
    JD623PT3123.1010.70.205 31.311
    JD712PT1922.7010.70.198 31.306
    JD812PT128.008.40.251 01.300
    JD911PT3024.609.60.214 21.295
    JD1014PT1225.509.20.222 81.293
    JD1121PT1027.008.50.235 51.290
    JD1214PT4223.609.80.200 21.288
    JD1312PT2025.209.10.215 81.286
    JD1414PT3525.209.10.215 81.286
    JD1514PT1524.909.20.212 51.285
    JD1624PT3625.808.70.218 71.280
    JD1714PT3225.708.70.217 11.279
    JD1824PT1624.409.20.204 01.278
    JD1913PT2424.409.10.202 31.275
    JD2012PT1326.607.90.216 61.264
    JD2114PT3823.308.90.181 51.253
    JD2213PT4122.709.10.175 11.252
    JD2342PT2819.6010.10.141 31.244
    JD2414PT1820.809.60.153 11.243
    JD2513PT321.409.20.156 91.237
    JD2614PT2723.008.40.169 41.232
    JD2734PT922.208.50.159 21.224
    JD2813PT2123.008.10.164 91.221
    JD2921PT821.508.50.149 31.214
    JD3011PT1416.707.60.083 01.110
    下载: 导出CSV 
    | 显示表格

    最优单株直接选择策略仅包括优良单株选择一个环节。为保证最优单株直接选择策略与配合选择策略之间具有可比性,在初级种子园优良无性系自由授粉子代测定林内,根据单株Qi值的相对大小,筛选出30个优良单株。入选30个优良单株按照Qi值的相对大小分别命名为D1,D2,···,D30,具体信息如表8所示。

    表  8  最优单株直接选择策略筛选的优良单株
    Table  8.  Superior individuals screening by direct selection strategy of optimal individual
    名称
    Name
    编号
    No.
    区组
    Block
    家系号
    Family No.
    胸径
    DBH/cm
    树高
    Tree height/m
    材积
    Volume/m3
    Qi
    D121PT1129.0010.200.311 81.371
    D211PT1127.0010.600.278 51.358
    D323PT2526.1010.900.266 01.356
    D424PT1124.1010.900.226 81.331
    D534PT1123.8011.000.222 71.330
    D624PT3724.5010.600.229 31.326
    D713PT223.8010.700.218 01.320
    D814PT722.3011.300.199 71.320
    D913PT2523.7010.700.216 11.319
    D1023PT3123.1010.700.205 31.311
    D1112PT1922.7010.700.198 31.306
    D1212PT2622.3010.800.192 81.304
    D1334PT720.1011.600.165 71.301
    D1412PT128.008.400.251 01.300
    D1511PT3024.609.600.214 21.295
    D1614PT1225.509.200.222 81.293
    D1721PT3123.809.800.203 61.291
    D1821PT1027.008.500.235 51.290
    D1914PT4223.609.800.200 21.288
    D2011PT1225.309.100.217 51.287
    D2134PT3126.308.700.227 31.287
    D2212PT2025.209.100.215 81.286
    D2314PT3525.209.100.215 81.286
    D2414PT1524.909.200.212 51.285
    D2524PT3625.808.700.218 71.280
    D2614PT1119.2011.300.148 11.279
    D2714PT3225.708.700.217 11.279
    D2824PT1624.409.200.204 01.278
    D2913PT2424.409.100.202 31.275
    D3024PT3123.809.200.194 11.270
    下载: 导出CSV 
    | 显示表格

    表7表8显示:配合选择策略与最优单株直接选择策略筛选到19个相同的优良单株,并且各自筛选到11个特有的优良单株,分别为JD20、JD21、JD22、JD23、JD24、JD25、JD26、JD27、JD28、JD29、JD30和D2、D4、D5、D9、D12、D13、D17、D20、D21、D26、D30。配合选择策略与最优单株直接选择策略所筛选出的优良单株群体的平均Qi值分别为1.275和1.303。从性状生长量来看,配合选择策略入选单株的胸径、树高和材积变动范围分别为16.70 ~ 29.00 cm、7.60 ~ 11.30 m和0.083 0 ~ 0.311 8 m3,平均值分别为23.89 cm、9.32 m和0.199 6 m3,依次比总平均值高出20.09%、5.55% 和44.53%;最优单株直接选择策略所筛选出的优良单株的胸径、树高和材积变动范围分别为19.20 ~ 29.00 cm、8.40 ~ 11.60 m和0.148 1 ~ 0.311 8 m3,平均值分别为24.51 cm、9.91 m和0.217 7 m3,依次比总平均值高出23.23%、12.23% 和57.64%。最优单株直接选择策略所筛选11个特有优良单株的平均胸径、树高和材积生长量比配合选择策略所筛选的11个特有优良单株分别高出7.72%、18.56% 和31.01%。采用配合选择策略与最优单株直接选择策略筛选出的所有优良单株中, JD1和D1材积生长分别表现最优。

    图2图3显示:配合选择策略所筛选出的30个优良单株的胸径、树高和材积的预期遗传增益分别在−0.19% ~ 0.55%、−2.25% ~ 4.50% 和−2.63% ~ 8.31% 之间,最优单株直接选择策略分别在−0.04% ~ 0.55%、−0.79% ~ 5.04% 和0.48% ~ 8.31% 之间。与配合选择策略所筛选出的优良单株的平均胸径、树高和材积预期遗传增益相比,最优单株直接选择策略分别增加了15.52%、121.78% 和29.38%。采用配合选择策略与最优单株直接选择策略筛选出的所有优良单株中,JD1和D1子代材积的预期增益分别表现最为显著。

    图  2  配合选择策略所筛选 30个优良单株生长性状预期遗传增益
    Figure  2.  Expected genetic gain of growth traits of 30 superior individuals screening by combined selection strategy
    图  3  最优单株直接选择策略所筛选 30个优良单株生长性状预期遗传增益
    Figure  3.  Expected genetic gain of growth traits of 30 superior individuals screening by direct selection strategy of optimal individual

    比较配合选择策略与最优单株直接选择策略筛选出的优良单株的分布情况(表7表8),结果发现:与每一优良家系入选1个优良单株的配合选择策略不同,最优单株直接选择策略筛选出的30个优良单株分属于20个家系,其中有29个优良单株分属于19个优良家系,有1个优良单株D12属于非优良家系PT26,优良单株D12的材积预期遗传增益为2.62%,高于配合选择策略所筛选出的33.33% 的优良单株。此外,优良家系PT25、PT12和PT7内各有2个单株入选,优良家系PT31内有4个单株入选,优良家系PT11内入选了5个单株。

    42个油松半同胞家系的3个生长性状方差分析结果表明,油松半同胞家系间和家系内胸径、树高和材积生长差异均达到极显著水平(P < 0.01),说明油松各生长性状在家系间和家系内变异丰富,这为优良家系和优良单株的评价选择奠定了基础。各生长性状家系遗传力估算值均小于0.5,与王建伟[13]、刘永红等[28]的估算结果相比偏低,表明生长性状在家系水平上受低强度遗传控制,这可能与不同试验群体、不同估算方法有关。

    油松多用于用材林的营建,材积生长量的增长是其遗传改良工作最重要的育种目标之一[13,29]。值得注意的是,材积虽由胸径与树高计算所得,但材积与胸径相关性更强,遗传相关系数高达0.986,二者受遗传因素调控的强度与树高相比均较低。因此,直接以材积为指标进行选择改良的潜力相对较小,在筛选油松第二代种子园亲本材料时,可以通过对胸径与树高的联合选择,实现对材积的间接选择,有效地改进育种目标性状。

    本研究根据家系综合评价结果,筛选出30个优良家系,入选率为71.43%。入选家系的胸径、树高和材积现实遗传增益变动范围分别为−6.18% ~ 53.85%、−0.42% ~ 44.54% 和5.06% ~ 146.25%,预期遗传增益变动范围分别为−0.50% ~ 1.43%、−3.38% ~ 9.54% 和−3.79% ~ 13.83%,其亲本材积一般配合力、平均材积现实遗传增益和平均材积预期遗传增益均相对较高,说明根据表型选择的家系在遗传上是优良的。根据单株综合评价结果,配合选择策略与最优单株直接选择策略分别选出30个优良单株,其中包括19个相同的优良单株和11个不同的优良单株。配合选择策略筛选出的优良单株的胸径、树高和材积生长量变动范围分别为16.70 ~ 29.00 cm、7.60 ~ 11.30 m和0.083 0 ~ 0.311 8 m3。最优单株直接选择策略筛选出的优良单株的胸径、树高和材积生长量变动范围分别为19.20 ~ 29.00 cm、8.40 ~ 11.60 m和0.148 1 ~ 0.311 8 m3。比较所筛选出的11个不同优良单株的平均胸径、树高和材积生长量,结果显示,最优单株直接选择策略比配合选择策略分别高出7.72%、18.56%和31.01%。比较入选优良单株的平均胸径、树高和材积预期遗传增益,结果显示,最优单株直接选择策略比配合选择策略分别增加了15.52%、121.78% 和29.38%。生长量与预期遗传增益的比较结果表明:利用最优单株直接选择策略筛选出的30个优良单株作为油松第二代种子园建园亲本,改良效果将会更优。除此之外,比较入选优良单株的家系分布发现,最优单株直接选择策略筛选出的优良单株几乎均来自于优良家系,那么从获得优良遗传型的繁琐程度上来说,采用最优单株直接选择策略比采用配合选择策略更加简便。最后,与配合选择策略中每个优良家系只筛选出一个优良单株相区别,最优单株直接选择策略结果显示,优良家系PT25、PT12、PT7、PT31和PT11内有多个单株入选,并且非优良家系PT26内有一单株D12入选。结合优良单株的生长量、预期遗传增益和分布情况的对比分析结果发现:采用配合选择策略损失了部分优良单株资源,不利于油松种子园的升级换代。综上所述,最优单株直接选择策略比配合选择策略更适合用于油松第二代种子园建园亲本的筛选。

    42个油松半同胞家系间和家系内胸径、树高和材积生长均达到了极显著差异水平(P < 0.01)。利用布雷金多性状综合评价法进行家系与单株综合评定,配合选择策略与最优单株直接选择策略分别选出30个优良单株,其中包括19个相同的优良单株和11个不同的优良单株。对入选优良单株的生长性状平均生长量、平均预期遗传增益和分布情况对比分析发现:采用配合选择策略会损失部分优良单株资源,最优单株直接选择策略比配合选择策略更适合用于油松高世代种子园亲本材料的筛选。

  • 图  1   试验林不同深度土壤田间持水量实测值与模拟值比较

    Figure  1.   Comparison of measured and simulated field capacity in experimental forest under different depths

    图  2   不同密度和水分管理下细根根长密度的二维空间分布

    Figure  2.   Two-dimensional spatial distribution of root length density (RLD) under different densities and water treatments

    图  3   不同密度和水分管理下土壤含水量的二维空间分布

    *代表该土层深度不同水平距树距离处土壤含水量差异显著(P < 0.05)。* indicates significant differences (P < 0.05) in soil water content at different horizontal distances from tree base in the same soil layer.

    Figure  3.   Two dimensional spatial distribution of soil water content under different densities and water treatments

    图  4   不同密度和水分管理中各土层的平均土壤含水量

    不同小写字母代表不同土层SWC差异显著(P < 0.05),不同大写字母代表不同处理SWC差异显著(P < 0.05)。Different lowercase letters indicate significant differences in SWC among soil layers(P < 0.05), and uppercase letters indicate significant differences in SWC among treatments (P < 0.05).

    Figure  4.   Average soil water content in each soil layer under different densities and water treatments

    图  5   2021年5—10月不同密度和水分管理各土层土壤含水量时间动态变化

    Figure  5.   Temporal dynamics of soil water content in each soil layer under different densities and water treatments from May to October in 2021

    图  6   不同密度和水分管理土壤储水量

    不同小写字母代表不同处理土壤储水量差异显著(P < 0.05)。Different lowercase letters indicate significant differences in soil water storage among treatments (P < 0.05).

    Figure  6.   Soil water storage under different densities and water treatments

    图  7   2021年5—10月不同密度和水分管理下土壤储水量变化量

    土层深度0 ~ 6 m每20 cm采集一组数据。Data were collected every 20 cm at soil 0 to 6 m depth.

    Figure  7.   Variations of soil water storage variation under different densities and water treatments from May to October in 2021

    图  8   不同密度和水分管理下不同土层深度内土壤干层现象

    Figure  8.   Phenomenon of dry soil layer (DSL) in different soil depths under different densities and water treatments

    表  1   2021年不同密度和水分处理林分基本情况

    Table  1   Basic information of stands under different densities and water treatments in 2021

    处理
    Treatment
    平均胸径
    Average DBH/cm
    平均树高
    Average tree height/m
    林分蓄积量/(m3·hm−2
    Stand volume /(m3·ha−1
    林地生产力/(m3·hm−2·a−1
    Forest land productivity /(m3·ha−1·year−1
    FI 14.57 ± 0.55ab 15.65 ± 0.44a 119.1 ± 11.12a 36.61 ± 3.60a
    FI 15.49 ± 0.50a 12.55 ± 0.15b 15.28 ± 1.15b 6.94 ± 0.30c
    NI 12.92 ± 0.87b 15.33 ± 0.40a 92.32 ± 13.25b 25.58 ± 4.64b
    NI 14.79 ± 0.81ab 14.78 ± 0.79a 58.74 ± 8.10c 21.20 ± 4.12b
    NI 14.48 ± 0.74ab 12.47 ± 1.04b 13.38 ± 2.21c 5.76 ± 1.30c
    注:NI.雨养;FI.滴灌。不同小写字母表示同列不同处理间差异显著(P < 0.05)。Notes: NI, rainfed; FI, drip irrigation. Different lowercase letters in the same column indicate significant differences among different treatments (P < 0.05).
    下载: 导出CSV

    表  2   试验地的土壤物理性质

    Table  2   Soil physical characteristic of the experimental site

    土层
    Soil layer/cm
    颗粒组成 Soil particle size distribution/%质地
    Soil texture
    土壤密度
    Bulk density/(g·cm−3
    砂粒 Sand粉粒 Silt黏粒 Clay
    0 ~ 4051.9642.185.85砂壤土 Sand loam1.37
    40 ~ 46024.2767.907.83粉壤土 Silt loam1.49
    460 ~ 60056.8237.755.43砂壤土 Sand loam1.63
    下载: 导出CSV

    表  3   不同密度和水分管理下各土层的平均细根根长密度

    Table  3   Average RLD in each soil layer under different densities and water treatments m/m3

    处理 Treatment 土层 Soil layer/cm
    0 ~ 30 30 ~ 100 100 ~ 200 200 ~ 400 400 ~ 600
    FI 1 971.67 ± 456.97Aa 1 264.15 ± 447.82Aab 451.71 ± 176.84Bb 346.52 ± 118.01Ab 121.12 ± 16.11Ab
    FI 6 997.50 ± 866.28Aa 836.25 ± 165.36Ab 171.17 ± 46.57Bb 270.52 ± 26.22Ab 298.40 ± 70.30Ab
    NI 4 686.82 ± 331.50Aa 3 119.27 ± 2 065.69Aa 1 223.86 ± 94.34Aa 404.95 ± 47.77Aa 415.24 ± 45.14Aa
    NI 5 828.61 ± 723.29Aa 1 199.00 ± 199.47Ab 673.68 ± 51.98ABb 422.52 ± 75.87Ab 410.43 ± 93.22Ab
    NI 4 452.10 ± 3 850.95Aa 1 365.34 ± 580.03Aa 473.06 ± 191.01Ba 398.97 ± 124.32Aa 188.02 ± 17.11Aa
    注:不同大写字母表示同列不同处理间差异显著(P < 0.05),不同小写字母表示同行不同土层间差异显著(P < 0.05)。Notes: different uppercase letters in the same column indicate significant differences among different treatments (P < 0.05), and different lowercase letters in the same row indicate significant differences among varied soil layers (P < 0.05).
    下载: 导出CSV
  • [1]

    Wilske B, Lu N, Wei L, et al. Poplar plantation has the potential to alter the water balance in semiarid Inner Mongolia[J]. Journal of Environmental Management, 2009, 90(8): 2762−2770.

    [2]

    Wang Y, Yang J, Chen Y, et al. The spatiotemporal response of soil moisture to precipitation and temperature changes in an arid region, China[J/OL]. Remote Sensing, 2018, 10(3): 468[2023−12−08]. https://www.mdpi.com/2072-4292/10/3/468.

    [3]

    Zhang C, Wang Y, Jia X, et al. Variations in capacity and storage of plant-available water in deep profiles along a revegetation and precipitation gradient[J/OL]. Journal of Hydrology, 2020, 581: 124401[2023−12−08]. https://www.sciencedirect.com/science/article/abs/pii/S0022169419311369.

    [4]

    Zhang P, Jeong J H, Yoon J H, et al. Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point[J]. Science, 2020, 370: 1095−1099. doi: 10.1126/science.abb3368

    [5]

    Qiao L, Zuo Z, Xiao D, et al. Detection, attribution, and future response of global soil moisture in summer[J/OL]. Frontiers in Earth Science, 2021, 9: 745185[2023−12−08]. https://www.frontiersin.org/articles/10.3389/feart.2021.745185/full.

    [6]

    Anderegg L D L, Anderegg W R L, Abatzoglou J, et al. Drought characteristics role in widespread aspen forest mortality across Colorado, USA[J]. Global Change Biology, 2013, 19(5): 1526−1537. doi: 10.1111/gcb.12146

    [7]

    Yang F, Feng Z, Wang H, et al. Deep soil water extraction helps to drought avoidance but shallow soil water uptake during dry season controls the inter-annual variation in tree growth in four subtropical plantations[J]. Agricultural and Forest Meteorology, 2017, 234−235: 106−114. doi: 10.1016/j.agrformet.2016.12.020

    [8]

    Jian S, Zhao C, Fang S, et al. Effects of different vegetation restoration on soil water storage and water balance in the Chinese Loess Plateau[J]. Agricultural and Forest Meteorology, 2015, 206: 85−96. doi: 10.1016/j.agrformet.2015.03.009

    [9]

    Di N, Xi B, Clothier B, et al. Diurnal and nocturnal transpiration behaviors and their responses to groundwater-table fluctuations and meteorological factors of Populus tomentosa in the North China Plain[J]. Forest Ecology and Management, 2019, 448: 445−456. doi: 10.1016/j.foreco.2019.06.009

    [10]

    Yu B, Liu G, Liu Q, et al. Seasonal variation of deep soil moisture under different land uses on the semi-arid Loess Plateau of China[J]. Journal of Soils and Sediments, 2019, 19(3): 1179−1189. doi: 10.1007/s11368-018-2119-8

    [11] 邱德勋, 赵佰礼, 尹殿胜, 等. 黄土丘陵沟壑区土壤水分垂直变异及影响因素[J]. 中国水土保持科学(中英文), 2021, 19(3): 72−80.

    Qiu D X, Zhao B L, Yin D S, et al. Vertical variation of soil moisture in the loess hilly and gully region and its influence factors[J]. Science of Soil and Water Conservation, 2021, 19(3): 72−80.

    [12]

    Gao Z, Hu X, Li X. Changes in soil water retention and content during shrub encroachment process in Inner Mongolia, northern China[J/OL]. Catena, 2021, 206: 105528[2023−12−08]. https://www.sciencedirect.com/science/article/abs/pii/S0341816221003866.

    [13] 孔凌霄, 毕华兴, 周巧稚, 等. 晋西黄土区不同立地刺槐林土壤水分动态特征[J]. 水土保持学报, 2018, 32(5): 163−169.

    Kong L X, Bi H X, Zhou Q Z, et al. Dynamics of soil moisture in different stand sites of Robinia pseudoacacia forestland in loess region of western Shanxi Province[J]. Journal of Soil and Water Conservation, 2018, 32(5): 163−169.

    [14]

    Liang H, Xue Y, Shi J, et al. Soil moisture dynamics under Caragana korshinskii shrubs of different ages in Wuzhai County on the Loess Plateau, China[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2018, 109(3−4): 387−396. doi: 10.1017/S1755691018000622

    [15]

    Andrews C M, D’Amato A W, Fraver S, et al. Low stand density moderates growth declines during hot droughts in semi-arid forests[J]. Journal of Applied Ecology, 2020, 57(6): 1089−1102. doi: 10.1111/1365-2664.13615

    [16]

    Liu J, Li D, Fernández J, et al. Variations in water-balance components and carbon stocks in poplar plantations with differing water inputs over a whole rotation: implications for sustainable forest management under climate change[J/OL]. Agricultural and Forest Meteorology, 2022, 320: 108958[2023−12−08]. https://www.sciencedirect.com/science/article/abs/pii/S0168192322001484.

    [17] 张建龙. 中国森林资源报告[M]. 北京: 中国林业出版社, 2019.

    Zhang J L. National forestry and grassland administration[M]. Beijing: China Forestry Publishing House, 2019.

    [18] 郭彪, 王尚义, 牛俊杰, 等. 晋西北不同植被类型土壤水分时空变化特征[J]. 水土保持通报, 2015, 35(1): 267−273.

    Guo B, Wang S Y, Niu J J, et al. Characteristics of soil moisture variation under different vegetation types in northwestern shanxi province[J]. Bulletin of Soil and Water Conservation, 2015, 35(1): 267−273.

    [19] 朱炜歆, 牛俊杰, 刘庚, 等. 植被类型对生长季黄土区土壤含水量的影响[J]. 干旱区资源与环境, 2016, 30(1): 152−156.

    Zhu W X, Niu J J, Liu G, et al. The influence of vegetation types on the soil moistures during growing seasons in loess area[J]. Journal of Arid Land Resources and Environment, 2016, 30(1): 152−156.

    [20]

    Wang Y, Shao M A, Zhu Y, et al. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China[J]. Agricultural and Forest Meteorology, 2011, 151(4): 437−448. doi: 10.1016/j.agrformet.2010.11.016

    [21]

    Shao M, Wang Y, Xia Y, et al. Soil drought and water carrying capacity for vegetation in the critical zone of the Loess Plateau: a review[J/OL]. Vadose Zone Journal, 2018, 17: 170077[2022−02−12]. https://doi.org/10.2136/vzj2017.04.0077.

    [22]

    Ji Y, Zhou G, Li Z, et al. Triggers of widespread dieback and mortality of poplar (Populus spp.) plantations across northern China[J/OL]. Journal of Arid Environments, 2020, 174: 104076[2023−12−08]. https://www.sciencedirect.com/science/article/abs/pii/S0140196319301466.

    [23]

    Liu Z, Jia G, Yu X, et al. Morphological trait as a determining factor for Populus simonii Carr. to survive from drought in semi-arid region[J/OL]. Agricultural Water Management, 2021, 253: 106943[2023−12−08]. https://www.sciencedirect.com/science/article/abs/pii/S0378377421002080.

    [24]

    Jia G, Chen L, Yu X, et al. Soil water stress overrides the benefit of water-use efficiency from rising CO2 and temperature in a cold semi-arid poplar plantation[J]. Plant, Cell & Environment, 2022, 45(4): 1172−1186.

    [25] 邹松言, 李豆豆, 汪金松, 等. 毛白杨幼林细根对梯度土壤水分的响应[J]. 林业科学, 2019, 55(10): 124−137.

    Zou S Y, Li D D, Wang J S, et al. Response of fine roots to soil moisture of different gradients in young Populus tomentosa plantation[J]. Scientia Silvae Sinicae, 2019, 55(10): 124−137.

    [26] 祝维, 周欧, 孙一鸣, 等. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389−403. doi: 10.17521/cjpe.2022.0197

    Zhu W, Zhou O, Sun Y M, et al. Dynamic niche partitioning in root water uptake of Populus tomentosa and Robinia pseudoacacia in mixed forest[J]. Chinese Journal of Plant Ecology, 2023, 47(3): 389−403. doi: 10.17521/cjpe.2022.0197

    [27]

    Hillel D. Introduction to environmental soil physic [M]. San Diego: Elsevier Academic Press, 2004.

    [28]

    Pierret A, Maeght J, Clément C, et al. Understanding deep roots and their functions in ecosystems: an advocacy for more unconventional research.[J]. Annals of Botany, 2016, 118(4): 621−635. doi: 10.1093/aob/mcw130

    [29]

    Maeght J, Rewald B, Pierret A. How to study deep roots-and why it matters[J/OL]. Frontiers in Plant Science, 2013, 4: 299[2023−12−08]. https://www.frontiersin.org/articles/10.3389/fpls.2013.00299/full.

    [30] 席本野. 杨树根系形态、分布、动态特征及其吸水特性[J]. 北京林业大学学报, 2019, 41(12): 37−49.

    Xi B Y. Morphology, distribution, dynamic characteristics of poplar roots and its water uptake habits[J]. Journal of Beijing Forestry University, 2019, 41(12): 37−49.

    [31] 贺曰林. 毛白杨S86人工林根区滴灌施肥及水氮调控机制研究[D]. 北京: 北京林业大学, 2021.

    He Y L. Research on the drip irrigation-nitrogen fertigation and mechanism of water-nitrogen regulation in root zone for Populus tomentosa S86 plantation[D]. Beijing: Beijing Forestry University, 2021.

    [32] 陈洪松, 邵明安, 王克林. 黄土区荒草地和裸地土壤水分的循环特征[J]. 应用生态学报, 2005, 16(10): 1853−1857.

    Chen H S, Shao M A, Wang K L. Water cycling characteristics of grassland and bare land soils on Loess Plateau[J]. Chinese Journal of Applied Ecology, 2005, 16(10): 1853−1857.

    [33]

    Postma J A, Hecht V L, Hikosaka K, et al. Dividing the pie: a quantitative review on plant density responses[J]. Plant, Cell & Environment, 2020, 44(4): 1072−1094.

    [34]

    Wang D, Wang L. Soil water dynamics in apple orchards of different ages on the Loess Plateau of China[J/OL]. Vadose Zone Journal, 2018, 17:180049[2022−02−12]. https://doi.org/10.2136/vzj2018.03.0049.

    [35]

    Nan W, Ta F, Meng X, et al. Effects of age and density of Pinus sylvestris var. mongolica on soil moisture in the semiarid Mu Us Dunefield, northern China[J/OL]. Forest Ecology and Management, 2020, 473: 118313[2023−12−08]. https://www.sciencedirect.com/science/article/abs/pii/S0378112720310823.

    [36]

    Nan W, Liu S, Yang S, et al. Changes of Sabina vulgaris growth and of soil moisture in natural stands and plantations in semi-arid northern China[J/OL]. Global Ecology and Conservation, 2020, 21: e859[2023−12−08]. https://www.sciencedirect.com/science/article/pii/S2351989419304299.

    [37] 杜满义, 封焕英, 裴顺祥, 等. 晋南不同密度油松人工林土壤水分的物理特性[J]. 东北林业大学学报, 2021, 49(9): 72−76.

    Du M Y, Feng H Y, Pei S X, et al. Soil hydro-physical properties in Pinus tabuliformis plantations with different stand densities in southern Shanxi[J]. Journal of Northeast Forestry University, 2021, 49(9): 72−76.

    [38]

    Zou S, Li D, Di N, et al. Stand development modifies effects of soil water availability on poplar fine-root traits: evidence from a six-year experiment[J]. Plant and Soil, 2022, 480(1−2): 165−184. doi: 10.1007/s11104-022-05568-1

    [39]

    Good S P, Noone D, Bowen G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes[J]. Science, 2015, 349: 175−177. doi: 10.1126/science.aaa5931

    [40]

    Huang Z, Liu Y, Qiu K, et al. Soil-water deficit in deep soil layers results from the planted forest in a semi-arid sandy land: implications for sustainable agroforestry water management[J/OL]. Agricultural Water Management. 2021, 254: 106985[2023−12−08]. https://www.sciencedirect.com/science/article/abs/pii/S037837742100250X.

    [41] 王利宝, 张志毅, 康向阳, 等. 造林密度对白杨杂种无性系初期生长性状的影响[J]. 北京林业大学学报, 2012, 34(5): 25−30.

    Wang L B, Zhang Z Y, Kang X Y, et al. Effects of planting density on the early growth traits of white poplar hybrid clones[J]. Journal of Beijing Forestry University, 2012, 34(5): 25−30.

    [42]

    von Arx G, Pannatier E G, Thimonier A, et al. Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate[J]. The Journal of Ecology, 2013, 101(5): 1201−1213. doi: 10.1111/1365-2745.12121

    [43]

    Bayala J, Prieto I. Water acquisition, sharing and redistribution by roots: applications to agroforestry systems[J]. Plant and Soil, 2020, 453(1−2): 17−28.

    [44]

    Hakamada R E, Hubbard R M, Moreira G G, et al. Influence of stand density on growth and water use efficiency in Eucalyptus clones[J/OL]. Forest Ecology and Management, 2020, 466: 118125[2023−12−08]. https://www.sciencedirect.com/science/article/abs/pii/S0378112720301109.

  • 期刊类型引用(1)

    1. 李凤春,宋大北,孟兆民,谭瑞虹,刘志君,张继敏,郭丽明,王文杰,焦志远. 油松轻基质网袋育苗技术集成. 现代农业研究. 2025(01): 98-102 . 百度学术

    其他类型引用(0)

图(8)  /  表(3)
计量
  • 文章访问数:  441
  • HTML全文浏览量:  57
  • PDF下载量:  44
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-04-23
  • 修回日期:  2023-06-18
  • 网络出版日期:  2024-01-04
  • 刊出日期:  2024-01-24

目录

/

返回文章
返回