高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛竹不同构造中细胞化学成分及热稳定性研究

李欣 钟土华 陈红 李晶晶

李欣, 钟土华, 陈红, 李晶晶. 毛竹不同构造中细胞化学成分及热稳定性研究[J]. 北京林业大学学报, 2023, 45(8): 156-162. doi: 10.12171/j.1000-1522.20230104
引用本文: 李欣, 钟土华, 陈红, 李晶晶. 毛竹不同构造中细胞化学成分及热稳定性研究[J]. 北京林业大学学报, 2023, 45(8): 156-162. doi: 10.12171/j.1000-1522.20230104
Li Xin, Zhong Tuhua, Chen Hong, Li Jingjing. Chemical composition and thermal stability of cells in different structures of Phyllostachys edulis[J]. Journal of Beijing Forestry University, 2023, 45(8): 156-162. doi: 10.12171/j.1000-1522.20230104
Citation: Li Xin, Zhong Tuhua, Chen Hong, Li Jingjing. Chemical composition and thermal stability of cells in different structures of Phyllostachys edulis[J]. Journal of Beijing Forestry University, 2023, 45(8): 156-162. doi: 10.12171/j.1000-1522.20230104

毛竹不同构造中细胞化学成分及热稳定性研究

doi: 10.12171/j.1000-1522.20230104
基金项目: 国际竹藤中心基本科研业务费专项(1632021025)。
详细信息
    作者简介:

    李欣。主要研究方向:绿色竹纤维家居材料。Email:919404857@qq.com 地址:100102 北京市朝阳区国际竹藤中心

    责任作者:

    钟土华,副研究员。主要研究方向:竹基纳米纤维素。Email:zhongth@icbr.ac.cn 地址:同上

  • 中图分类号: S781.9

Chemical composition and thermal stability of cells in different structures of Phyllostachys edulis

  • 摘要:   目的  毛竹节间和节子的宏观构造和生理功能截然不同,通过对比分析毛竹节间和节子主要构成单元纤维和薄壁细胞结构和性能的差异,能够为纤维和薄壁细胞定向分离和高效利用提供理论依据。  方法  通过物理与化学两种分离方法分离获得竹节和节间中纤维和薄壁细胞,采用傅里叶红外光谱、X射线衍射仪、热重分析仪、场发射环境扫描电镜等表征手段研究纤维和薄壁细胞的化学成分、热稳定性及微观结构。  结果  节间与竹节的纤维形态上两端均呈现尖削状且细长,节间薄壁细胞能明确区分长、短细胞,而竹节薄壁细胞则呈现出圆形、椭圆形、方形等形态;节间中纤维素含量高于竹节,节间中木质素含量低于竹节,而两者半纤维素含量相差不大;纤维中纤维素含量高于薄壁细胞中纤维素含量,纤维中木质素含量低于薄壁细胞,纤维中半纤维素含量与薄壁细胞中半纤维素含量相差不大;节间薄壁细胞的最大降解温度(390.32 ℃)最小,而竹节薄壁细胞的最大降解温度(393.54 ℃)最大。  结论  节间与竹节的纤维在形态上的差别不太大,节间薄壁细胞分为长细胞与短细胞,而竹节薄壁细胞长短细胞的区分不明显;不同位置的纤维和薄壁细胞的纤维素和木质素含量不同,而半纤维素含量相差不大;竹节中纤维和薄壁细胞的热稳定性都比节间略高,竹节的热稳定性比节间好。

     

  • 图  1  制备流程

    Figure  1.  Preparation process

    图  2  毛竹不同部位的薄壁细胞和纤维的化学成分(a)、FT-IR图谱(b)、XRD图谱(c)与结晶度(d)

    Figure  2.  Chemical composition (a), FT-IR spectra (b), XRD patterns (c) and crystallinity (d) of different parts in bamboo

    图  3  毛竹竹节、节间中薄壁细胞和纤维的TGA曲线(a)和DTG曲线(b)

    Figure  3.  TGA (a) and DTG (b) curves of parenchyma cells and fibers from different parts in bamboo

    图  4  机械分离法获得的竹材不同位置的薄壁细胞与纤维FESEM形貌

    Figure  4.  FESEM images of parenchyma cells and fiber in different positions of bamboo by mechanical isolation processing

    图  5  化学分离法获得的竹材不同位置的薄壁细胞与纤维FESEM形貌

    Figure  5.  FESEM images of parenchyma cells and fiber from different positions of bamboo by chemical isolation processing

    表  1  竹材不同部位的薄壁细胞和纤维的样品编号

    Table  1.   Sample No. of parenchyma cells and fibers from different positions in bamboo

    试样编号
    Sample No.
    样品信息
    Sample information
    N-PC 竹节薄壁细胞 Bamboo node parenchyma cell
    IN-PC 节间薄壁细胞 Internode parenchyma cell
    N-F 竹节纤维 Bamboo node fiber
    IN-F 节间纤维 Internode fiber
    注:“N”为竹节;“IN”为节间;“PC”为薄壁细胞;“F”为纤维。Notes: “N” means bamboo node, “IN” means internode, “PC” means parenchyma cell, and “F” means fiber.
    下载: 导出CSV

    表  2  竹材不同部位的薄壁细胞和纤维的降解温度

    样品 Sample初始降解温度 Initial degradation temperature/℃最大降解温度 Maximum degradation temperature/℃
    IN-PC288.72 ± 0.91390.32 ± 1.03
    N-PC298.14 ± 0.90393.54 ± 0.58
    IN-F296.31 ± 1.90391.17 ± 1.54
    N-F303.61 ± 1.36392.90 ± 1.53
    下载: 导出CSV
  • [1] 冯鹏飞, 李玉敏. 2021年中国竹资源报告[J]. 世界竹藤通讯, 2023, 21(2): 100−103.

    Feng P F, Li Y M. China’s bamboo resources in 2021[J]. World Bamboo and Rattan, 2023, 21(2): 100−103.
    [2] 甘小洪, 丁雨龙. 竹类结构植物学研究进展[J]. 竹子研究汇刊, 2002, 21(1): 11−17.

    Gan X H, Ding Y L. Advances in the anatomic structure of bamboo[J]. Journal of Bamboo Research, 2002, 21(1): 11−17.
    [3] Ray A K, Mondal S, Das S K, et al. Bamboo: a functionally graded composite-correlation between microstructure and mechanical strength[J]. Journal of Materials Science, 2005, 40(19): 5249−5253. doi: 10.1007/s10853-005-4419-9
    [4] 曾其蕴, 李世红, 鲍贤镕. 竹节对竹材力学强度影响的研究[J]. 林业科学, 1992, 28(3): 247−252.

    Zeng Q Y, Li S H, Bao X R. Effect of bamboo nodal on mechanical properties of bamboo wood[J]. Scientia Silvae Sinicae, 1992, 28(3): 247−252.
    [5] Jin K, Kong L, Liu X, et al. Understanding the xylan content for enhanced enzymatic hydrolysis of individual bamboo fiber and parenchyma cells[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(22): 18603−18611.
    [6] Wang H, Zhang X, Jiang Z, et al. A comparison study on the preparation of nanocellulose fibrils from fibers and parenchymal cells in bamboo (Phyllostachys pubescens)[J]. Industrial Crops and Products, 2015, 71: 80−88. doi: 10.1016/j.indcrop.2015.03.086
    [7] Chen H, Wang G, Chen H T. Properties of single bamboo fibers isolated by different chemical methods[J]. Wood and Fiber Science, 2011, 2: 111−120.
    [8] 李荣荣, 贺楚君, 彭博, 等. 毛竹材不同部位纤维形态及部分物理性能差异[J]. 浙江农林大学学报, 2021, 38(4): 854−860.

    Li R R, He C J, Peng B, et al. Differences in fiber morphology and partial physical properties in different parts of Phyllostachys edulis[J]. Journal of Zhejiang A&F University, 2021, 38(4): 854−860.
    [9] 冯龙, 孙存举, 毕文思, 等. 毛竹薄壁细胞组分分布及取向显微成像研究[J]. 光谱学与光谱分析, 2020, 40(9): 2957−2961.

    Feng L, Sun C J, Bi W S, et al. The distribution and orientation of cell wall components of moso bamboo parenchyma[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2957−2961.
    [10] Segal L, Creely J J, Martin A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786−794. doi: 10.1177/004051755902901003
    [11] Li J J, Lian C P, Wu J Y, et al. Morphology, chemical composition and thermal stability of bamboo parenchyma cells and fibers isolated by different methods[J]. Cellulose, 2023, 30(4): 2007−2021. doi: 10.1007/s10570-022-05030-6
    [12] National Renewable Energy Laboratory. Determination of structural carbohydrates and lignin in biomass: NREL/TP-510-42618[S]. Golden: Laboratory Analytical Procedure, 2008.
    [13] Chen H, Wu J Y, Shi J J, et al. Effect of alkali treatment on microstructure and thermal stability of parenchyma cell compared with bamboo fiber[J]. Industrial Crops and Products, 2021, 29(164): 113380.
    [14] 韩颖, 李凤萍, 樊婷婷, 等. 酸法制备芦苇微晶纤维素工艺的研究[J]. 中国造纸, 2015, 34(1): 71.

    Han Y, Li F P, Fan T T, et al. Study on the process of preparing reed microcrystalline cellulose by acid method[J]. China Pulp & Paper, 2015, 34(1): 71.
    [15] 陈红. 竹纤维细胞壁结构特征研究[D]. 北京: 中国林业科学研究院, 2014.

    Chen H. Study on the structural characteristics of bamboo cell wall[D]. Beijing: Chinese Academy of Forestry, 2014.
    [16] 王喆, 孙柏玲, 柴宇博, 等. 利用红外成像和纳米压痕测试技术研究热处理落叶松管胞性能[J]. 林业工程学报, 2022, 7(3): 67−72.

    Wang Z, Sun B L, Chai Y B, et al. The properties of heat treated Larix tracheids were studied by infrared imaging and nanoindentation testing[J]. Journal of Forestry Engineering, 2022, 7(3): 67−72.
    [17] 楚杰, 张军华, 马莉, 等. XRD与NMR的热处理竹材结晶性能研究[J]. 光谱学与光谱分析, 2017, 37(1): 256−261.

    Chu J, Zhang J H, Ma L, et al. Study of crystallinity performance of pretreated bamboo fibers based on X-ray diffraction and NMR[J]. Spectroscopy and Spectral Analysis, 2017, 37(1): 256−261.
    [18] 郑志锋, 黄元波, 蒋剑春, 等. 2种生物质材料的热解特性及动力学研究[J]. 西南林学院学报, 2010, 30(4): 63−66.

    Zheng Z F, Huang Y B, Jiang J C, et al. Pyrolytic characteristics and kinetics of two types of biomass materials[J]. Journal of Southwest Forestry University (Natural Sciences), 2010, 30(4): 63−66.
    [19] Chen S M, Zhang S C, Gao H L, et al. Mechanically robust bamboo node and its hierarchically fibrous structural design[J]. National Science Review, 2022, 10(2): 195.
    [20] He X Q, Suzuki K, Kitamura S, et al. Toward understanding the different function of two types of parenchyma cells in bamboo culms[J]. Plant and Cell Physiology, 2002, 43(2): 186−195. doi: 10.1093/pcp/pcf027
    [21] 连彩萍. 毛竹材薄壁细胞超微构造研究[D]. 北京: 中国林业科学研究院, 2020.

    Lian C P. Ultrastructure of parenchyma cells in moso bamboo[D]. Beijing: Chinese Academy of Forestry, 2020.
    [22] 丁雨龙, Liese W. 竹节解剖构造的研究[J]. 竹子研究汇刊, 1995, 14(1): 24−32.

    Ding Y L, Liese W. On the nodal structure of bamboo[J]. Journal of Bamboo Research, 1995, 14(1): 24−32.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  17
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-08
  • 修回日期:  2023-07-27
  • 网络出版日期:  2023-07-31
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回