高级检索

    内蒙古大兴安岭林火驱动因素识别及预测模型

    Identification and prediction models of driving factors for forest fires in Daxing’an Mountains of Inner Mongolia, northern China

    • 摘要:
      目的 选择和验证适合研究区的林火预测模型,明确火灾发生的关键驱动因素并绘制火险区划图,为森林火灾预防和管理工作提供科学依据和决策支持。
      方法 基于1981—2020年历史火灾数据,融合多源(气象条件、地形、植被、人类活动和社会经济)数据,比较4种机器学习方法在内蒙古大兴安岭林火预测中的适用性,同时,基于显著影响火灾发生的驱动因素绘制火灾发生可能性地图和火险区划图。
      结果 (1)增强回归树模型接受者操作特性曲线下的面积值为0.967,随机森林模型的AUC为0.947,均表现出优异的预测性能。Logistic回归模型和Gompit回归模型的预测准确率较上两种略低,AUC分别为0.852、0.851,也满足研究区的基本预测要求。(2)气象因素气温日较差、日最小相对湿度是影响内蒙古大兴安岭林火发生的主导因素;海拔在驱动因素的相对重要性排序中位居前列;人类活动和社会经济因素(如距公路的距离、距火灾瞭望塔的距离、人均GDP等)对林火发生也有一定影响。(3)内蒙古大兴安岭东部和东南部存在大面积火灾中、高风险区,北部中俄边境和西南部中蒙边境也有较高的火灾风险。火灾发生前一年秋季防火期的平均气温、平均地表温度等因素会影响第2年森林火灾的发生。
      结论 与其他3种模型相比,增强回归树模型是最适合内蒙古大兴安岭林火发生的预测模型。气象因子、海拔显著影响内蒙古大兴安岭林火发生,人类活动和社会经济因素对火灾发生也有一定的影响。研究区的中高火险区域主要集中在东部和东南部,北部和西南部也有一定的火灾风险。

       

      Abstract:
      Objective This paper aims to select and validate suitable forest fire prediction models for the study area, identify key driving factors of fire occurrence, and map fire risk zoning, then providing scientific basis and decision support for forest fire prevention and management.
      Method Using historical fire data from 1981 to 2020 and integrating multi-source data (meteorological conditions, topography, vegetation, human activities, and socio-economic factors), the applicability of four machine learning methods in predicting forest fires in the Daxing’an Mountains of Inner Mongolia of northern China was compared. Based on the significant factors influencing fire occurrence, maps of fire occurrence probability and fire risk zoning were generated.
      Result (1) The boosted regression tree model (BRT) showed an area under the curve (AUC) value of 0.967, and the random forest model (RF) achieved an AUC of 0.947, both demonstrating excellent predictive performance. The predictive accuracy of the Logistic regression model (LR) and the Gompit regression model (GR) was slightly lower than former two models, but still met the basic predictive requirements for the study area, with AUC values of 0.852 and 0.851, respectively. (2) Meteorological factors, such as diurnal temperature range and daily minimum relative humidity, were the dominant factors influencing forest fires in the Daxing’an Mountains of Inner Mongolia. Elevation also ranked high in the relative importance of driving factors. Human activities and socio-economic factors, such as distance to roads, distance to fire lookout towers, and per capita GDP, also had some influence on fire occurrence. (3) Large areas of medium to high fire risk were present in the eastern and southeastern parts of the Daxing’an Mountains of Inner Mongolia, while the northern China-Russia border and the southwestern China-Mongolia border also exhibited elevated fire risk. Factors such as average temperature and average surface temperature during fire prevention period in autumn of previous year influenced forest fire occurrences in the following year.
      Conclusion Among the four models compared, the BRT was identified as the most suitable one for predicting forest fire occurrence in the Daxing’an Mountains of Inner Mongolia. Meteorological factors and elevation significantly influence fire occurrence, while human activities and socio-economic factors also have a certain impact on the occurrence of fires. The high and medium fire risk areas are primarily concentrated in the eastern and southeastern parts of the study area, with some fire risks presenting in the northern and southwestern regions.

       

    /

    返回文章
    返回