• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

热解自活化法制备竹箨活性炭及其砷吸附性能

姚尧, 刘志佳, 陈瑶, 何林韩, 高建民

姚尧, 刘志佳, 陈瑶, 何林韩, 高建民. 热解自活化法制备竹箨活性炭及其砷吸附性能[J]. 北京林业大学学报, 2023, 45(10): 149-158. DOI: 10.12171/j.1000-1522.20230162
引用本文: 姚尧, 刘志佳, 陈瑶, 何林韩, 高建民. 热解自活化法制备竹箨活性炭及其砷吸附性能[J]. 北京林业大学学报, 2023, 45(10): 149-158. DOI: 10.12171/j.1000-1522.20230162
Yao Yao, Liu Zhijia, Chen Yao, He Linhan, Gao Jianmin. Preparation of activated carbon from bamboo shoot shell by pyrolysis self-activation method and its arsenic adsorption performance[J]. Journal of Beijing Forestry University, 2023, 45(10): 149-158. DOI: 10.12171/j.1000-1522.20230162
Citation: Yao Yao, Liu Zhijia, Chen Yao, He Linhan, Gao Jianmin. Preparation of activated carbon from bamboo shoot shell by pyrolysis self-activation method and its arsenic adsorption performance[J]. Journal of Beijing Forestry University, 2023, 45(10): 149-158. DOI: 10.12171/j.1000-1522.20230162

热解自活化法制备竹箨活性炭及其砷吸附性能

基金项目: 国家自然科学基金项目(31971742)。
详细信息
    作者简介:

    姚尧。主要研究方向:生物质基吸附材料。Email:yaoyao4196@foxmail.com 地址:100083北京市海淀区清华东路35号北京林业大学材料科学与技术学院

    责任作者:

    陈瑶,博士,副教授。主要研究方向:碳材料及功能性改良、生物质资源综合利用。Email:ychen@bjfu.edu.cn 地址:同上。

  • 中图分类号: S644.2;TQ424.1;X523

Preparation of activated carbon from bamboo shoot shell by pyrolysis self-activation method and its arsenic adsorption performance

  • 摘要:
    目的 

    利用竹材加工剩余物竹箨探索一种高效除砷活性炭材料。

    方法 

    以竹箨为原材料,以微波加热为热源,利用高温热解自活化技术在不同的活化温度和时间下制备竹箨活性炭,通过表征竹箨活性炭的微观形貌、比表面积、孔隙结构、石墨化程度、表面元素和官能团,揭示活化时间和温度等对其微观结构的影响,探讨竹箨活性炭的砷吸附性能,比较不同制备方法下活性炭的比表面积和砷吸附容量的差异。

    结果 

    活化温度1 050 ℃、活化时间30 min时,竹箨活性炭孔隙结构排列整齐致密,比表面积达到1 251.7 m2/g,孔容为0.697 cm3/g,微孔比表面积比率和微孔孔容比率分别为60.9%和64.0%,平均孔径为0.448 nm,主要由微孔和少量介孔组成,孔径远大于砷酸根离子(AsO4 3−)和亚砷酸分子(H3AsO3)的空间构型尺寸,有利于对As(Ⅲ)和As(Ⅴ)的吸附。反映石墨化程度的R 值为1.340,表面具有丰富的含氧官能团,对As(Ⅲ)的最大吸附量为3.87 mg/g,对As(Ⅴ)的最大吸附量为3.17 mg/g。对比文献中不同活性炭的比表面积和砷吸附容量,竹箨活性炭表现出一定优势。

    结论 

    适当提高活化温度、延长活化时间有利于表面微孔的形成,从而提高砷吸附容量;但过高的活化温度和过长的活化时间会导致孔隙结构坍塌,减小比表面积和微孔比率,降低砷吸附容量。本研究为高效治理水体砷污染活性炭材料的制备提供了一种简单环保的方法,具有良好的除砷性能。

    Abstract:
    Objective 

    This paper aims to explore an efficient arsenic removal activated carbon material using bamboo shoot shell residue from bamboo processing.

    Method 

    Bamboo shoot shell was used as the raw material, while microwave heating was employed as the heat source. Activated carbon from bamboo shoot shell was prepared through catalytic pyrolysis self-activation technique at different activation temperatures and times. The microstructure, specific surface area, pore structure, graphitization degree, surface elements, and functional groups of the activated carbon were characterized to reveal the influence of activation time and temperature on its microstructure. The arsenic adsorption performance of the activated carbon was investigated, and the differences in specific surface area and arsenic adsorption capacity were compared among different preparation methods.

    Result 

    At an activation temperature of 1 050 ℃ and activation time of 30 min, the activated carbon exhibited an orderly and dense pore structure. The specific surface area reached 1 251.7 m2/g, with a pore volume of 0.697 cm3/g. The ratio of micropore specific surface area and the ratio of pore volume were 60.9% and 64.0%, respectively. The average pore diameter was 0.448 nm, primarily composed of micropores and a small amount of mesopores. The pore size was much larger than the spatial configuration dimensions of arsenate ions (AsO4 3−) and arsenous acid molecules (H3AsO3), which facilitated the adsorption of As(Ⅲ) and As(V). The graphitization degree (R) was 1.340, and the surface contained abundant oxygen-containing functional groups. The maximum adsorption capacity for As(Ⅲ) was 3.87 mg/g, while for As(V), it was 3.17 mg/g. Compared with the specific surface area and arsenic adsorption capacity of activated carbon in previous literature, the bamboo strip activated carbon demonstrated certain advantages.

    Conclusion 

    Properly increasing the activation temperature and extending the activation time are beneficial for the formation of surface micropores, thereby enhancing the arsenic adsorption capacity. However, excessively high activation temperature and prolonged activation time can cause the collapse of pore structure, resulting in reduced specific surface area, micropore ratio, and reduce arsenic adsorption capacity. This research provides a simple and environmentally friendly method for the preparation of efficient arsenic removal activated carbon materials, offering promising arsenic treatment performance in water bodies.

  • 图  1   不同工艺条件下竹箨活性炭的SEM图

    a. 950 ℃, 15 min; b. 950 ℃, 30 min; c. 950 ℃, 45 min; d. 950 ℃, 60 min; e. 1 000 ℃, 15 min; f. 1 000 ℃, 30 min; g. 1 000 ℃, 45 min; h. 1 000 ℃, 60 min; i. 1 050 ℃, 15 min; j. 1050 ℃, 30 min; k. 1 050 ℃, 45 min; l. 1 050 ℃, 60 min; m. 1 100 ℃, 15 min; n. 1 100 ℃, 30 min; o. 1 100 ℃, 45 min; p. 1 100 ℃, 60 min.

    Figure  1.   SEM images of activated carbon from bamboo shoot shell under different process conditions

    图  2   不同加热温度对竹箨活性炭比表面积(a)和孔容(b)的影响

    Figure  2.   Effects of different heating temperatures on the specific surface area (a) and pore volume (b) of activated carbon frombamboo shoot shell

    图  3   不同加热温度下竹箨活性炭的N2吸附–脱附等温线(a)和孔径分布(b)图

    Figure  3.   N2 adsorption-desorption isotherms (a) and pore size distribution (b) of activated carbon from bamboo shoot shell at different heating temperatures

    图  4   不同加热时间对竹箨活性炭比表面积(a)和孔容(b)的影响

    Figure  4.   Effects of different heating times on the specific surface area (a) and pore volume (b) of activated carbon from bamboo shoot shell

    图  5   不同加热时间竹箨活性炭的N2吸附–脱附等温线(a)和孔径分布(b)图

    Figure  5.   N2 adsorption-desorption isotherms (a) and pore size distribution (b) of activated carbon from bamboo shoot shell at different heating times

    图  6   不同加热温度(a)和加热时间(b)的竹箨活性炭的拉曼光谱图

    Figure  6.   Raman spectra of activated carbon from bamboo shoot shell at different heating temperatures (a) and heating times (b)

    图  7   竹箨活性炭的XPS谱图

    Figure  7.   XPS spectra of activated carbon from bamboo shoot shell

    图  8   不同活化条件下竹箨活性炭对As(Ⅲ)(a)和As(Ⅴ)(b)的吸附量

    Figure  8.   Adsorption capacity of activated carbon from bamboo shoot shell on As (Ⅲ) (a) and As (V) (b) under different activation conditions

    表  1   不同加热温度下竹箨活性炭的比表面积和孔隙结构参数

    Table  1   Specific surface area and pore structure of activated carbon from bamboo shoot shell at different heating temperatures

    加热条件
    Heating condition
    比表面积
    Specific surface area/(m2·g−1
    微孔比表面积比率
    Ratio of micropore
    specific surface area/%
    孔容
    Pore volume/(cm3·g−1
    微孔孔容比率
    Ratio of micropore
    volume/%
    平均孔径
    Average pore
    size/nm
    微孔
    Micropore
    介孔
    Mesoporous
    总和
    Total
    微孔
    Micropore
    介孔
    Mesoporous
    总和
    Total
    950 ℃,30 min 772.2 177.6 949.8 81.3 0.379 0.144 0.523 72.5 0.427
    1 000 ℃,30 min 843.8 135.1 978.9 86.2 0.416 0.143 0.559 83.2 0.413
    1 050 ℃,30 min 762.6 489.1 1 251.7 60.9 0.446 0.251 0.697 64.0 0.448
    1 100 ℃,30 min 605.7 656.1 1 261.8 48.0 0.449 0.268 0.717 62.6 0.457
    下载: 导出CSV

    表  2   不同加热时间竹箨活性炭的比表面积和孔隙结构参数

    Table  2   Specific surface area and pore structure of activated carbon from bamboo shoot shell at different heating times

    样品
    Sample
    比表面积
    Specific surface area/(m2·g−1
    微孔比表面积比率
    Ratio of micropore
    specific surface are/%
    孔容
    Pore volume/(cm3·g−1
    微孔孔容比率
    Ratio of
    micropore volume/%
    平均孔径
    Average pore
    size/nm
    合计
    Total
    微孔
    Micropore
    介孔
    Mesoporous
    合计
    Total
    微孔
    Micropore
    介孔
    Mesoporous
    1 050 ℃,15 min 1 136.3 711.3 245.0 62.6 0.638 0.415 0.223 65.0 0.438
    1 050 ℃,30 min 1 251.7 762.6 489.1 60.9 0.697 0.446 0.251 64.0 0.448
    1 050 ℃,45 min 1 517.8 572.9 944.9 37.7 0.859 0.486 0.373 56.6 0.463
    1 050 ℃,60 min 1 571.4 375.5 1 195.9 23.9 0.947 0.488 0.461 51.5 0.471
    下载: 导出CSV

    表  3   活性炭砷吸附量对比研究

    Table  3   Comparative study on arsenic adsorption capacity of activated carbon

    样品
    Sample
    比表面积
    Specific surface
    area/(m2·g−1
    砷吸附量
    Arsenic adsorption capacity/(mg·g−1
    制备方法
    Preparation method
    数据来源
    Data source
    As(Ⅲ) As(Ⅴ)
    黄麻活性炭 Jute stick activated carbon 1 624 4.50 H2O Asadullah等,2014[21]
    Asadullah et al, 2014
    黄麻活性炭 Jute stick activated carbon 750 5.50 H3PO4
    载铁黄麻活性炭
    Iron-loaded activated carbon
    1 266 9.70 FeSO4 + H3PO4
    颗粒活性炭
    Granular activated carbon
    2.87 2.30 Fe + Mn Nikic等,2019[22]
    Nikic et al, 2019
    竹箨活性炭
    Activated carbon from bamboo shoot shell
    1 251.7 3.87 3.17 热解自活化
    Pyrolysis self-activation
    本研究 Our research
    下载: 导出CSV
  • [1]

    Hong H J, Farooq W, Yang J S, et al. Preparation and evaluation of Fe-Al binary oxide for arsenic removal: comparative study with single metal oxides[J]. Separation Science and Technology, 2010, 45(12−13): 1975−1981. doi: 10.1080/01496395.2010.493790

    [2]

    Marino T, Figoli A. Arsenic removal by liquid membranes[J]. Membranes (Basel), 2015, 5(2): 150−167. doi: 10.3390/membranes5020150

    [3]

    Banerji T, Chaudhari S. A cost-effective technology for arsenic removal: case study of zerovalent iron-based IIT Bombay arsenic filter in West Bengal[M]//Nath K J, Sharma V P. Water and Sanitation in the New Millennium. New Delhi: Springer, 2017: 127−137.

    [4]

    Hansen H K, Nuñez P, Raboy D, et al. Electrocoagulation in wastewater containing arsenic: comparing different process designs[J]. Electrochimica Acta, 2007, 52(10): 3464−3470. doi: 10.1016/j.electacta.2006.01.090

    [5]

    Rathi B S, Kumar P S, Ponprasath R, et al. An effective separation of toxic arsenic from aquatic environment using electrochemical ion exchange process[J]. Journal of Hazardous Materials, 2021, 412: 125240. doi: 10.1016/j.jhazmat.2021.125240

    [6]

    Liu C H, Chuang Y H, Chen T Y, et al. Mechanism of arsenic adsorption on magnetite nanoparticles from water: thermodynamic and spectroscopic studies[J]. Environmental Science & Technology, 2015, 49(13): 7726−7734.

    [7]

    Li W G, Gong X J, Wang K, et al. Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon[J]. Bioresource Technology, 2014, 165: 166−173. doi: 10.1016/j.biortech.2014.02.069

    [8] 陈延兴, 李建强, 严娜娜, 等. 竹笋壳纤维的提取与其基本结构特性[J]. 天津工业大学学报, 2009, 28(6): 32−34. doi: 10.3969/j.issn.1671-024X.2009.06.008

    Chen Y X, Li J Q, Yan N N, et al. Extraction of bamboo shoot shell fiber and its basic structural characteristics[J]. Journal of Tianjin University of Technology, 2009, 28(6): 32−34. doi: 10.3969/j.issn.1671-024X.2009.06.008

    [9]

    Hu H, Gao Y, Wang T, et al. Removal of hexavalent chromium, an analogue of pertechnetate, from aqueous solution using bamboo ( Acidosasa edulis) shoot shell[J]. Journal of Radioanalytical and Nuclear Chemistry, 2019, 321(2): 427−437. doi: 10.1007/s10967-019-06606-6

    [10]

    Budinova T, Savova D, Tsyntsarski B, et al. Biomass waste-derived activated carbon for the removal of arsenic and manganese ions from aqueous solutions[J]. Applied Surface Science, 2009, 255(8): 4650−4657. doi: 10.1016/j.apsusc.2008.12.013

    [11]

    Pallarés J, González-Cencerrado A, Arauzo I. Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam[J]. Biomass and Bioenergy, 2018, 115: 64−73. doi: 10.1016/j.biombioe.2018.04.015

    [12]

    Mojitaba Z, Maryam O, Alireza M, et al. Competitive adsorption of arsenic and mercury on nano-magnetic activated carbons derived from hazelnut shell[J]. Korean Journal of Chemical Engineering, 2022, 39(2): 367−376. doi: 10.1007/s11814-021-0903-4

    [13]

    Haghbin M R, Shahrak M N. Process conditions optimization for the fabrication of highly porous activated carbon from date palm bark wastes for removing pollutants from water[J]. Powder Technology, 2021, 377: 890−899. doi: 10.1016/j.powtec.2020.09.051

    [14]

    Wu Y, Xia C, Cai L, et al. Controlling pore size of activated carbon through self-activation process for removing contaminants of different molecular sizes[J]. Journal of Colloid and Interface Science, 2018, 518: 41−47. doi: 10.1016/j.jcis.2018.02.017

    [15]

    Xia C, Shi S Q. Self-Activatin process to fabricate activated carbon from kenaf[J]. Wood and Fiber Science, 2016, 48: 62−69.

    [16]

    Sun K, Leng C Y, Jiang J C, et al. Microporous activated carbons from coconut shells produced by self-activation using the pyrolysis gases produced from them, that have an excellent electric double layer performance[J]. New Carbon Materials, 2017, 32(5): 451−459. doi: 10.1016/S1872-5805(17)60134-3

    [17]

    Xia C, Shi S Q. Self-activation for activated carbon from biomass: Theory and parameters[J]. Green Chemistry, 2016, 18: 2063−2071. doi: 10.1039/C5GC02152A

    [18]

    Rouquerol J, Avnir D, Fairbridge C W, et al. Recommendations for the characterization of porous solids[J]. Pure and Applied Chemistry, 1994, 66(8): 1739−1758. doi: 10.1351/pac199466081739

    [19]

    Jayaramulu K, Dubal D P, Nagar B, et al. Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage[J]. Advanced Materials, 2018, 30(15): 1705789. doi: 10.1002/adma.201705789

    [20]

    Zou K, Deng Y, Chen J, et al. Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors[J]. Journal of Power Sources, 2018, 378: 579−588. doi: 10.1016/j.jpowsour.2017.12.081

    [21]

    Asadullah M, Jahan I, Ahmed M B, et al. Preparation of microporous activated carbon and its modification for arsenic removal from water[J]. Journal of Industrial & Engineering Chemistry, 2014, 20(3): 887−896.

    [22]

    Nikic J, Agbaba J, Watson M A, et al. Arsenic adsorption on Fe-Mn modified granular activated carbon (GAC-FeMn): batch and fixed-bed column studies[J]. Journal of Environmental Science and Health, Part A, 2019, 54(3): 168−178. doi: 10.1080/10934529.2018.1541375

  • 期刊类型引用(1)

    1. 徐媛,陈锦玲,陈玉梅,李璐璐,李惠敏,秦新民. 干旱胁迫下花生转录组与miRNA测序及相关基因的表达. 贵州农业科学. 2021(01): 1-9 . 百度学术

    其他类型引用(3)

图(8)  /  表(3)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  89
  • PDF下载量:  38
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-06-27
  • 修回日期:  2023-09-14
  • 录用日期:  2023-09-17
  • 网络出版日期:  2023-09-21
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回