• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

东北胡桃楸次生林生长随林龄和林分密度的变化规律

罗也, 王君, 杨雨春, 何怀江, 刘婷

罗也, 王君, 杨雨春, 何怀江, 刘婷. 东北胡桃楸次生林生长随林龄和林分密度的变化规律[J]. 北京林业大学学报, 2024, 46(6): 10-19. DOI: 10.12171/j.1000-1522.20230171
引用本文: 罗也, 王君, 杨雨春, 何怀江, 刘婷. 东北胡桃楸次生林生长随林龄和林分密度的变化规律[J]. 北京林业大学学报, 2024, 46(6): 10-19. DOI: 10.12171/j.1000-1522.20230171
Luo Ye, Wang Jun, Yang Yuchun, He Huaijiang, Liu Ting. Growth patterns of Juglans mandshurica secondary forest with stand age and stand density in Northeast China[J]. Journal of Beijing Forestry University, 2024, 46(6): 10-19. DOI: 10.12171/j.1000-1522.20230171
Citation: Luo Ye, Wang Jun, Yang Yuchun, He Huaijiang, Liu Ting. Growth patterns of Juglans mandshurica secondary forest with stand age and stand density in Northeast China[J]. Journal of Beijing Forestry University, 2024, 46(6): 10-19. DOI: 10.12171/j.1000-1522.20230171

东北胡桃楸次生林生长随林龄和林分密度的变化规律

基金项目: 吉林省科技厅项目(20230508006RC、YDZJ202301ZYTS343、20210508012RQ),“十三五”国家重点研发计划(2017YFD0600605)。
详细信息
    作者简介:

    罗也,助理研究员。主要研究方向:森林培育。Email:1549348929@qq.com 地址:130033 吉林省长春市临河街3528号

    责任作者:

    杨雨春,博士,研究员。主要研究方向:森林培育和林木遗传育种。Email:yang-yu-chun@163.com 地址:同上。

  • 中图分类号: S792.132

Growth patterns of Juglans mandshurica secondary forest with stand age and stand density in Northeast China

  • 摘要:
    目的 

    通过研究胡桃楸次生林生长随林龄和林分密度的变化规律,探讨胡桃楸不同龄组生长的适宜林分密度,以期为胡桃楸次生林经营提供数据支持。

    方法 

    本研究在东北三省东部张广才岭(ZGCL)、老爷岭(LYL)、长白山(CBS)和哈达岭(HDL)4个调查地区,设置不同的胡桃楸林龄、林分密度调查样地,分析其胸径(DBH)、树高、蓄积等指标与林龄和林分密度的关系。

    结果 

    (1)长白山地区胡桃楸平均胸径、平均树高和蓄积量值均最大,显著大于其他地区(P < 0.05),各指标大小关系为CBS > LYL > ZGCL > HDL。(2)通过模型拟合,林龄与胡桃楸胸径、树高、蓄积以Logistic模型拟合效果最优(R2值分别达到0.983、0.962和0.973),林分密度与胡桃楸胸径、树高、蓄积以二次项模型拟合最优(R2值分别达到0.834、0.666和0.859)。(3)各地区胡桃楸胸径、树高和蓄积大小均随着林龄的增加呈现出逐渐增大的趋势,且前期增速较大,当达到50年之后,增速变缓。(4)各地区胡桃楸胸径、树高和蓄积大小均随着林分密度的增加呈现出逐渐降低的趋势,低密度下降低趋势较小,超过一定密度后,降低速度较快。(5)4个地区胡桃楸胸径、树高和蓄积生长情况表现为:< 40年时,在450 ~ 550株/hm2的中等林分密度下生长最好; > 40年时,在350 ~ 450株/hm2的低林分密度下生长最好,即胡桃楸林龄越大,对于林分密度的要求越高。

    结论 

    初步探明了不同地区胡桃楸不同林龄的适宜控制密度,即可通过人工抚育和疏伐等方式控制不同林龄段林分密度,满足胡桃楸的生长空间。该结果可为胡桃楸次生林经营提供一定支撑。

    Abstract:
    Objective 

    This paper researches the suitable stand density for the growth of secondary forest of Juglans mandshurica in different age groups by understanding the growth patterns of J. mandshurica with stand age and stand density, in order to provide theoretical support for the subsequent management of secondary forests of J. mandshurica.

    Method 

    Survey plots of different stand ages and stand densities for J. mandshurica were set up in Zhangguangcailing (ZGCL), Laoyeling (LYL), Changbai Mountain (CBS) and Hadaling (HDL) of the eastern part of the three northeastern provinces, to analyze the relationship between DBH, tree height and accumulation with stand age and stand density.

    Result 

    (1) The average DBH, average tree height and accumulation of J. mandshurica were the largest in Changbai Mountain, which were significantly larger than those in other areas (P < 0.05), and the relationship between each index was CBS > LYL > ZGCL > HDL. (2) According to the model fitting, logistic model was the best fitting method for stand age with DBH, tree height and accumulation of J. mandshurica (R2 values of 0.983, 0.962, and 0.973, respectively). The quadratic model was the best fitting method for stand density with DBH, tree height and accumulation of J. mandshurica (R2 values of 0.834, 0.666 and 0.859, respectively). (3) The DBH, tree height and accumulation of J. mandshurica were increasing with age in each region, and the increase rate was faster in the early stage. However, the growth rate slowed down after reaching 50 years. (4) The DBH and tree height of J. mandshurica decreased with increasing stand density in each region, and the decreasing trend was smaller at low density, but the decreasing speed was higher when the density exceeded a certain level. (5) In the four regions, the growth of J. mandshurica in terms of DBH, tree height, and volume showed that for trees less than 40 years old, optimal growth occurred at a medium stand density of 450−550 tree/ha. For trees over 40 years old, optimal growth was found at a lower stand density of 350−450 tree/ha.

    Conclusion 

    The results preliminarily reveal the suitable control density for different ages of J. mandshurica stand in varied regions, which can be controlled through artificial nurturing and thinning to meet the growth space of J. mandshurica trees. These findings can serve as a basis for the management of J. mandshurica secondary forests.

  • 毛白杨(Populus tomentosa)是我国特有的白杨派乡土树种,不仅生长迅速、材质优良而且具有树形挺拔美观,适应性强等优点。在我国黄河流域及华北平原地区用材林、农田林网和城乡绿化中发挥了重要作用[1]。自毛白杨良种选育被列入国家科技攻关课题以来,共选育出毛白杨良种12个,为支撑我国生态文明建设以及林业产业发展提供了坚实的良种材料。然而,毛白杨难以通过硬枝扦插进行高质量的规模化繁育,是其良种推广过程中面临的主要技术难题[2]。目前,毛白杨良种推广及新品种繁育主要采用多圃配套系列育苗技术[3],即通过采穗圃、砧木圃、繁殖圃、根繁圃四圃配套育苗,来解决毛白杨无性繁殖材料大规模扩繁的技术难题。但是,该繁殖策略依赖于成熟高效的嫁接技术,环节多且比较复杂[4-5]。随着我国农村经济的迅速发展,农村劳动力转移以及采穗圃占用土地成本逐年提升,导致熟练嫁接工人数量锐减以及采穗圃的大规模弃用[6],从而使毛白杨良种快速繁育过程中显现劳动力匮乏的瓶颈效应,并且导致育苗质量参差不齐,出现位置效应、年龄效应等老态现象[7-8]

    在当前的社会经济条件下,占地面积较大、技术环节复杂、劳动力成本逐年攀升的嫁接育苗技术显然远不能满足生态与绿化工程对高品质种苗培育的需求。植物组织培养技术依据植物细胞全能性,在无菌条件下,将离体器官、组织或原生质体作为外植体培养在人工培养基上,在合适的培养条件下,可以诱导产生愈伤组织、分化形成不定芽、不定根,进而培育成完整植株[9-10]。与传统繁殖方法相比,组织培养繁育技术可以突破外界环境及传统繁殖难生根、年龄效应等限制因素,不仅能够保持品种的优良特性,缩短育种周期,还可以降低生产成本、提高成苗率,以满足林业生产中大批量、高标准的种苗生产要求[11-12]。尽管组织培养用于大规模造林育苗仍然具有较高的生产成本,但是利用组织培养技术生产的幼化种苗配套形成组培−硬枝扦插扩繁体系,不仅可以保持苗木繁育质量,还极大地提高了毛白杨良种扩繁系数,从而显著地削减育苗成本[6]。因此,建立毛白杨良种组织培养快繁体系将成为未来良种繁育及推广应用工作的核心步骤。

    因此,本研究选用高产优质毛白杨良种‘毅杨1号’‘毅杨2号’和‘毅杨3号’为研究材料,建立了高效的毛白杨良种组培扩繁体系,并针对不同类型的培养基优化了激素配比,筛选出了分别适用于3个毛白杨良种快速增殖的培养基配方,为高产优质毛白杨良种的高效繁育以及示范化应用提供理论指导与技术支持。

    ‘毅杨 1 号’ ‘毅杨2号’和‘毅杨3号’是由母本毛新杨(P. tomentosa × P. bolleana)、父本‘截叶毛白杨’(P. tomentosa ‘Truncata’)杂交选育获得的良种。本研究以山东冠县国家毛白杨种质资源库中采集的‘毅杨 1 号’ ‘毅杨2号’ 和 ‘毅杨3号’一年生长势良好的枝条为试验材料,置于北京林业大学温室内水培,每3天换一次水,实验前选取生长良好的叶片及茎段作为外植体材料。

    取外植体新鲜茎段,使用自来水冲洗3遍,冲洗完毕后除去叶片及部分叶柄,茎段按1腋芽/段,1.5 cm长剪开,使用75%酒精和2%次氯酸钠溶液进行不同时间的浸泡消毒灭菌(表1)。消毒完毕用无菌水冲洗3 ~ 5遍,无菌滤纸吸干茎段表面多余水分,剪去外植体暴露于消毒液的剪口面。最后,将消毒后的茎段接种在含0.3 mg/L 6-BA、0.1 mg/L NAA的MS培养基中,附加3%蔗糖、5 g琼脂,pH为5.8 ~ 6.2。培养15 d后统计各处理外植体污染率,选择外植体最适消毒处理时间。

    表  1  外植体消毒处理
    Table  1.  Sterilization treatment of explants
    编号
    No.
    75%乙醇处理时间
    Treating time of 75% ethanol/s
    2%次氯酸钠处理时间
    Treating time of 2% sodium hypochlorite/min
    1 30 3
    2 30 5
    3 30 7
    4 60 3
    5 60 5
    6 60 7
    下载: 导出CSV 
    | 显示表格

    试验中全部均使用MS培养基,加入蔗糖30 g/L,琼脂4.5 g/L,调节pH至5.8 ~ 6.2之间,再通过设计不同质量浓度激素配成不同的不定芽诱导培养基、生根培养基以及叶片再生培养基。

    剪取带1个腋芽的茎段,接入添加6-BA及NAA的MS培养基中。6-BA质量浓度为0.1、0.3、0.5、0.7 mg/L 4个梯度,NAA加入质量浓度为0.1 mg/L,共4个处理(表2),每个处理接种10瓶,每瓶茎段数为3。经30 d培养后统计不定芽增殖情况。

    表  2  不定芽诱导培养基中激素水平
    Table  2.  Hormone levels in adventitious bud induction medium mg·L− 1
    编号 No.6-BANAA
    1 0.1 0.1
    2 0.3 0.1
    3 0.5 0.1
    4 0.7 0.1
    下载: 导出CSV 
    | 显示表格

    剪取带腋芽的茎段,接种于含不同质量浓度IBA的MS培养基,IBA质量浓度设置为0.1、0.3、0.5、0.7 mg/L 4个梯度,4个处理组每组接种10瓶,每瓶3个茎段。在30 d培养时间内统计不同处理组的生根天数及生根率。

    取无菌苗叶片,保留部分叶柄,将叶片剪为小叶片或沿垂直于叶片中脉方向剪至过中脉,每个叶片剪2 ~ 3个口,将叶片接入培养基中,使远轴面接触培养基,叶片正面朝上。叶片再生培养基为MS培养基中加入6-BA及IBA,按6-BA加入的质量浓度分为4个处理组,分别为0.1、0.5、0.7、1.0 mg/L,每个处理组的NAA加入量均为0.1 mg/L,每个处理接种10培养皿。30 d培养后观察记录各处理组中的叶片增殖情况。

    接种30 d后观察与统计不定芽个数、生根率及叶片不定芽个数,使用Origin软件对结果进行统计分析。主要指标包括污染死亡率、增殖系数、生根率、叶片出芽率。污染死亡率:污染及死亡的外植体数与外植体总数的比值;增殖系数:一个培养周期后长出的有效芽数与外植体接种数的比值;生根率:诱导生根的外植体数与接种外植体数的比值;叶片出芽率:不定芽再生的叶片数与接种叶片数的比值。实验数据通过R3.4.2软件进行One-way ANOVA分析,利用Fisher’s Least Significant Difference(LSD)进行多重比较。根据分析结果,筛选出不定芽诱导、生根诱导以及叶片再生快速繁育体系中培养基适合的植物激素质量浓度。

    组织培养中的外植体消毒要杀死材料表面微生物且不伤及材料,在不同的处理时间后接入培养基中培养15 d后记录材料生长情况。通过对表3的统计数据分析发现,在6个试验处理组中,‘毅杨 1 号’ ‘毅杨2号’及‘毅杨3号’的最佳消毒方式组合均为75%乙醇处理30 s和2%次氯酸钠处理5 min,且污染死亡率均显著低于其他处理组,分别为20.7%、23.4%和18.8%。结果表明,75%乙醇处理时间的增加对外植体存在明显的伤害作用。

    表  3  消毒处理时间对毛白杨良种外植体的影响
    Table  3.  Effects of sterilization time treatment on explants of poplar
    编号
    No.
    75%乙醇处理时间
    Treating time of 75%
    ethyl alcohol/s
    2%次氯酸钠处理时间
    Treating time of 2% sodium
    hypochlorite/min
    污染死亡率 Pollution mortality rate/%
    ‘毅杨1号’ ‘Yiyang 1’‘毅杨2号’ ‘Yiyang 2’‘毅杨3号’ ‘Yiyang 3’
    130351.7ab 43.3bc 34.5bc
    230520.7c 23.4c 18.8d
    330746.7bc 49.1abc32.6bc
    460358.3a 53.2ab 38.8b
    560550.4abc48.8abc22.6bc
    660753.3ab 60.1a 47.5a
    注:同一列中不同字母表示差异显著(P < 0. 05)。下同。Notes: different letters indicate significant difference at P < 0. 05 level. The same below.
    下载: 导出CSV 
    | 显示表格

    选择使用合适的培养基是组织培养中成功的关键环节。通过4个6-BA质量浓度水平的处理组中增殖系数的计算及对比分析结果(表4图1)显示,‘毅杨 1 号’及‘毅杨2号’的激素最适质量浓度为0.3 mg/L 6-BA和0.1 mg/L NAA,增殖系数分别达到83.3%和77.4%,而‘毅杨3号’的最适6-BA质量浓度为0.5 mg/L,增殖系数为80.6%。3个毛白杨良种的在6-BA质量浓度为最适质量浓度的培养条件下增殖系数均显著大于其他质量浓度的处理组。

    图  1  高产优质毛白杨良种茎段最适增殖培养基上的生长状况
    Figure  1.  Optimum growth conditions of stem segments of high yield and quality elite of P. tomentosa and their performance
    表  4  激素质量浓度对毛白杨良种不定芽诱导的影响
    Table  4.  Effects of mass concentrations of hormones on adventitious bud induction
    编号
    No.
    6-BA/(mg·L− 1)NAA/(mg·L− 1)增殖系数 Multiplication coefficient/%
    ‘毅杨1号’ ‘Yiyang 1’‘毅杨2号’ ‘Yiyang 2’‘毅杨3号’ ‘Yiyang 3’
    10.10.162.0bc55.6bc31.5c
    20.30.183.3a 77.4a 40.2bc
    30.50.179.1b 60.2b 80.6a
    40.70.154.1c 44.8c 52.9b
    下载: 导出CSV 
    | 显示表格

    实验中使用不同IBA质量浓度配制的培养基对毅杨外植体进行生根诱导(图2),结果如表5表5中数据显示,较低质量浓度的IBA有利于毅杨的生根诱导,‘毅杨 1 号’和3号的IBA最适质量浓度为0.5 mg/L,而‘毅杨2号’在IBA质量浓度为0.3 mg/L的条件下生根率更高,同时作者发现在试验中最适质量浓度的培养条件下,‘毅杨2号’和3号的生根情况要优于‘毅杨 1 号’。

    图  2  高产优质毛白杨树良种茎段在最适生根培养基上的生根状况
    Figure  2.  Optimum growth conditions of rooting medium for high yield and quality elite of P. tomentosa and their performance
    表  5  激素质量浓度对毛白杨良种生根的影响
    Table  5.  Effects of hormone mass concentration on rooting condition of high yield and quality elite of P. tomentosa
    编号
    No.
    IBA/(mg·L− 1)生根率 Rooting percentage/%
    ‘毅杨1号’ ‘Yiyang 1’‘毅杨2号’ ‘Yiyang 2’‘毅杨3号’ ‘Yiyang 3’
    1 0.1 21.67 ± 3.33b 23.33 ± 4.41d 31.67 ± 3.56c
    2 0.3 36.67 ± 3.31b 98.33 ± 5.01a 91.67 ± 4.24a
    3 0.5 85.12 ± 5.77a 86.67 ± 4.41b 97.02 ± 1.51a
    4 0.7 68.33 ± 6.01a 55.00 ± 5.77c 66.67 ± 4.43b
    下载: 导出CSV 
    | 显示表格

    实验以6-BA质量浓度为变量对叶片增殖培养基进行筛选(图3),在30 d培养后统计结果如表6所示。实验结果显示,较高质量浓度的6-BA有利于毅杨的叶片不定芽增殖,在最适的激素质量浓度培养条件下出芽率均可超过90%,但过高的质量浓度也会造成增殖率下降。‘毅杨 1 号’和‘毅杨3号’的最佳植物激素质量浓度组合为1.0 mg/L 6-BA和0.1 mg/L NAA,‘毅杨2号’为0.7 mg/L 6-BA和0.1 mg/L NAA。

    图  3  高产优质毛白杨树良种叶片最适分化培养基上的生长状况
    Figure  3.  Optimum condition of leaf differentiation medium for high yield and quality elite of P. tomentosa and their performance
    表  6  激素质量浓度对毛白杨良种叶片增殖的影响
    Table  6.  Effects of hormone mass concentration on leaf proliferation of P. tomentosa
    编号
    No.
    6-BA/(mg·L− 1)NAA/(mg·L− 1)出芽率 Budding rate/%
    ‘毅杨1号’ ‘Yiyang 1’‘毅杨2号’ ‘Yiyang 2’‘毅杨3号’ ‘Yiyang 3’
    1 0.3 0.1 20.10 ± 3.11d 18.65 ± 2.22d 26.15 ± 3.89d
    2 0.5 0.1 55.45 ± 3.44c 60.23 ± 4.52bc 30.56 ± 6.41c
    3 0.7 0.1 72.3 ± 4.21b 92.10 ± 4.65a 70.39 ± 5.21b
    4 1.0 0.1 95.8 ± 1.02a 65.45 ± 3.78b 90.77 ± 6.12a
    下载: 导出CSV 
    | 显示表格

    在毛白杨组培快繁研究与应用中,多种组织与器官可用作外植体来进行无性系扩繁,如茎尖、茎段、腋芽、叶片等。在实验及生产前应挑选再生能力强、操作相对简便的材料,一般认为通过茎段发育途径形成的植株遗传稳定性好,变异率相较于通过愈伤组织分化的要小[13]。本研究采用带腋芽的茎段,在培养基中均长势良好,而在以叶片为外植体的实验中多使用幼叶。幼叶的芽分化率高而老叶不易分化出芽。此外,接种时外植体的大小也是影响组织培养效果的因素之一,过小的外植体生存能力较弱,在组培工作中不易存活和诱导,且更易发生褐化[14],而外植体过大时容易造成污染,因此实验中应采用中等长度和大小的茎段和叶片作为外植体材料。

    在本研究中,毛白杨良种的外植体消毒适宜使用5%乙醇30 s联合2%次氯酸钠5 min的消毒方法,结果显示乙醇和次氯酸钠的处理时间对外植体的污染和死亡率都有较大影响,而乙醇消毒处理的时间增加对外植体有更大的伤害。在进一步的研究中可以设置更小的时间梯度组合以获得更精确的处理时间组合,在有效降低污染率的同时减少消毒剂对外植体的伤害,达到更好的处理效果。在组织培养工作中,消毒方法的选择应根据具体的实验材料,对药剂的敏感程度及消毒效果来选择和设定消毒剂及处理时间。同样,同种材料不同部位的茎段也存在着一定差异。通常而言,消毒剂的种类及消毒时间被视为外植体褐化的重要原因,但仅以对消毒方法的控制不足以使褐化率显著下降,同时规范化培养条件、外植体的选择可有效减少材料的褐变,另外可加入抗坏血酸、PVP及抗氧化剂等减少外植体的褐化现象[15]

    外源生长调节剂是组培实验中诱导植物形态建成的主要因素[16-17],而细胞分裂素是植物不定芽分化和增殖不可缺少的调节物质,6-BA是实验中广泛应用且有效的细胞分裂素,常与低质量浓度NAA组合诱导不定芽产生[18]。实验结果显示,0.3 mg/L 6-BA和0.1 mg/L NAA为‘毅杨 1 号’和‘毅杨2号’不定芽诱导培养基中加入的植物激素最佳质量浓度,‘毅杨3号’则在0.3 mg/L 6-BA和0.1 mg/L NAA的条件下增殖系数最高,且均显著高于其他质量浓度水平,可在进一步的实验中缩小质量浓度梯度范围,获得更高效的培养基配方。增殖率在一定质量浓度范围内的6-BA条件下呈上升趋势,较低质量浓度的6-BA促进茎段不定芽的增殖,而达到最佳的质量浓度后再增加6-BA的质量浓度则表现为抑制不定芽的诱导,同时外植体玻璃化的趋势加重。通常认为高质量浓度的6-BA有利于外植体芽的分化,且在细胞分裂素与生长素比值较大的条件下诱导芽的分化,但在实际操作中质量浓度不宜过高,否则抑制外植体的整体生长[19]

    相反,在细胞分裂素较高的条件下根的分化和生长则受到抑制,因外植体内源植物激素的存在,在诱导生根的实验中应排除细胞分裂素的使用,使用生长素以便诱导生根。IBA及NAA在组培的生根诱导实验中广泛使用,一般认为较低的生长素质量浓度有利于外植体生根,NAA除了促进生根外还能促进发芽,而IBA多用于诱导生根,作用较强且发根数量较大。实验结果显示,生根诱导中‘毅杨 1 号’与‘毅杨3号’的IBA最适质量浓度为0.5 mg/L,‘毅杨2号’则为0.3 mg/L;随着IBA质量浓度的变化,外植体的生根率也有显著变化,高质量浓度的IBA不利于毅杨良种的生根。

    现有的研究提及在叶片分化培养中,多种激素的混合使用相较于单一激素的使用有更好的效果[20-22]。在实验中较高质量浓度的6-BA配合0.1 mg/L的NAA对叶片增殖的促进效果较好,在‘毅杨2号’中6-BA的质量浓度提升到1.0 mg/L后叶片的出芽率开始下降,说明过高的6-BA质量浓度同样不利于叶片的分化,而在‘毅杨 1 号’与‘毅杨3号’的实验中,叶片的出芽率随6-BA质量浓度的提升而逐步增大,因此可继续增加6-BA的使用量来确定其最适的质量浓度范围。

    本文首次报道了高产优质毛白杨良种‘毅杨 1 号’ ‘毅杨2号’与‘毅杨3号’的高效组织培养体系,对外植体消毒时间、外源植物生长调节剂质量浓度进行优化,最终建立了高效的毛白杨良种组培再生体系。本试验的研究方法可用于毛白杨良种的快速繁殖以及遗传转化研究,并将为毛白杨良种推广应用以及进一步利用基因工程技术在分子水平对现有良种开展精准改良奠定了基础。

  • 图  1   不同地区胡桃楸林龄对其生长的影响

    Figure  1.   Effects of stand age on growth of J. mandshurica in different regions

    图  2   不同地区林分密度对胡桃楸生长的影响

    Figure  2.   Effects of stand density on growth of J. mandshurica in different regions

    表  1   样地基本情况

    Table  1   Basic situation of sample plots

    指标 Index ZGCL LYL CBS HDL
    样方数 Number of quadrat 20 20 20 20
    纬度 Latitude 43°27′10″ ~ 46°03′03″N 42°48′56″ ~ 45°59′41″N 41°19′36″ ~ 43°32′29″N 41°57′11″ ~ 43°08′01″N
    海拔 Altitude/m 235 ~ 570 261 ~ 680 322 ~ 752 381 ~ 711
    坡度 Slope/(°) 0 ~ 21 0 ~ 21 0 ~ 21 0 ~ 21
    坡向 Aspect 阴坡、半阴坡
    Shady slope, semi-
    shady slope
    阴坡、半阴坡
    Shady slope, semi-
    shady slope
    阴坡、半阴坡
    Shady slope, semi-
    shady slope
    阴坡、半阴坡
    Shady slope, semi-
    shady slope
    坡位 Slope position 中下坡 Mid-downhill slope 中下坡 Mid-downhill slope 中下坡 Mid-downhill slope 中下坡 Mid-downhill slope
    土层深度 Soil depth/cm 7.6 ~ 48.2 11.8 ~ 45.6 5.5 ~ 29.6 7.9 ~ 29.8
    腐质层厚度 Humus thickness/cm 5 ~ 31 6 ~ 14 7 ~ 23 7 ~ 15
    注:ZGCL. 张广才岭;LYL. 老爷岭;CBS. 长白山;HDL. 哈达岭。下同。Notes: ZGCL, Zhangguangcailing; LYL, Laoyeling; CBS, Changbai Mountain; HDL, Hadaling. The same below.
    下载: 导出CSV

    表  2   胡桃楸生长情况

    Table  2   Growth situation of J. mandshurica

    区域 Area 胸径 DBH/cm 树高 Tree height/m 蓄积量/(m3·hm−2
    Volume/(m3·ha−1
    张广才岭 ZGCL 19.59 ± 0.87b 16.47 ± 0.52c 78.36 ± 1.23b
    老爷岭 LYL 19.65 ± 0.96b 16.58 ± 0.43b 81.59 ± 0.89b
    长白山 CBS 20.31 ± 0.75a 16.84 ± 0.58a 86.13 ± 1.51a
    哈达岭 HDL 18.96 ± 0.65c 16.41 ± 0.61c 75.55 ± 0.99c
    注:同列不同小写字母表示不同地区差异显著(P < 0.05)。Note: different lowercase letters in the same column indicate significant differences in different regions (P < 0.05).
    下载: 导出CSV

    表  3   模型拟合结果

    Table  3   Results of model fitting

    模型
    Model
    指标
    Item
    林龄/a Stand age/year 林分密度/(株·hm−2
    Stand density/(tree·ha−1)
    公式 Formula R2 MAE 公式 Formula R2 MAE
    线性
    Linear
    胸径 DBH y = 0.487 6x + 10.007 0 0.880 6.591 y = −0.086 9x + 74.537 0 0.826 6.118
    树高 Tree height y = 0.155 4x + 12.296 0 0.723 2.228 y = −0.026 8x + 32.420 0 0.636 2.282
    蓄积
    Volume
    y = 1.962 3x − 19.633 0 0.920 25.233 y = −0.348 9x + 239.610 0 0.858 24.564
    对数
    Logarithm
    胸径 DBH y = 19.681ln x − 41.670 0.959 6.643 y = −43.45ln x + 300.53 0.806 6.018
    树高Tree height y = 6.523 9ln x − 5.0921 0.852 2.155 y = −13.31ln x + 101.51 0.612 2.057
    蓄积
    Volume
    y = 77.366ln x − 220.890 0.956 25.373 y = −175.5ln x + 1153.2 0.848 24.370
    指数
    Exponent
    胸径 DBH y = 13.812exp(0.017 9x) 0.783 6.700 y = 146.14exp(−0.003x) 0.791 6.708
    树高Tree height y = 12.707exp(0.009 1x) 0.672 2.209 y = 40.654exp(−0.002x) 0.618 1.887
    蓄积
    Volume
    y = 8.738 2exp(0.042 4x) 0.694 33.538 y = 2242.7exp(−0.007x) 0.722 33.791
    二次项
    Quadratic
    term
    胸径 DBH y = −0.010 9x2 + 1.428 8x − 7.826 8 0.983 6.140 y = −0.000 1x2 + 0.028 8x + 45.465 0.834 5.258
    树高 Tree height y = −0.005 0x2 + 0.588 5x + 4.089 4 0.959 2.198 y = 0.000 8x2 + 0.050 6x + 12.953 0 0.666 1.843
    蓄积
    Volume
    y = −0.029 3x2 + 4.499 0x − 67.701 0 0.968 24.064 y = −0.000 1x2− 0.242 9x + 212.980 0 0.859 24.203
    Logistic 胸径 DBH y = 39.966 1/[1 + exp(2.144 6 − 0.088 9x)] 0.983 6.070
    树高 Tree height y = 20.962 4/[1 + exp(1.905 3 − 0.122 2x)] 0.962 2.078
    蓄积
    Volume
    y = 102.023 4/[1 + exp(4.110 8 − 0.117 2x)] 0.973 23.936
    Weibull 胸径 DBH y = 53.836 0[1 − exp(−0.061 3x) 0.345 3] 0.949 6.455
    树高 Tree height y = 22.430 5[1 − exp(−0.232 5x) 0.214 3] 0.910 2.140
    蓄积
    Volume
    y = −210.807 8[1 − exp(−0.231 3x) (−0.026 8)] 0.884 28.643
    Richard 胸径 DBH y = 41.624 9[1 − exp(−0.057 4x)]2.484 6 0.979 6.391
    树高 Tree height y = 21.131 8[1 − exp(0.097 1x)]2.997 2 0.950 2.144
    蓄积
    Volume
    y = 109.834 9[1 − exp(−0.068 2x)]7.610 1 0.972 24.032
    下载: 导出CSV

    表  4   龄组和林分密度与胡桃楸生长指标方差分析

    Table  4   Variance analysis of age groups, stand density and growth index of J. mandshurica

    变量 Variable胸径 DBH树高 Tree height蓄积 Volume
    FPFPFP
    龄组 Age group106.368 < 0.0123.363 < 0.0165.873 < 0.01
    林分密度 Stand density6.761 < 0.012.795 < 0.017.151 < 0.01
    龄组 × 林分密度 Age group × stand density5.325 < 0.012.113 < 0.014.368 < 0.01
    下载: 导出CSV

    表  5   不同地区林分密度和林龄对胡桃楸生长影响

    Table  5   Effects of stand density and age on growth of J. mandshurica in different regions

    龄组
    Age group
    林分密度/
    (株·hm−2
    Stand density/
    (tree·ha−1
    张广才岭ZGCL 老爷岭LYL
    胸径 DBH/cm 树高 Tree height/m 蓄积/
    (m3·hm−2
    Volume/
    (m3·ha−1
    胸径 DBH/cm 树高 Tree height/m 蓄积/
    (m3·hm−2
    Volume/
    (m3·ha−1
    L 16.81 ± 0.62aC 14.32 ± 0.35aC 12.36 ± 0.15aD 17.12 ± 0.62aD 14.43 ± 0.52aC 13.65 ± 0.12aD
    M 16.93 ± 0.54aC 14.23 ± 0.25aC 13.55 ± 0.32aD 17.33 ± 0.65aD 14.55 ± 0.31aB 14.94 ± 0.09aD
    H 16.65 ± 0.35aC 13.95 ± 0.38aC 12.54 ± 0.25aC 17.15 ± 0.46aC 14.16 ± 0.24aB 12.55 ± 0.15aD
    L 25.36 ± 0.75aB 18.44 ± 0.24aB 36.25 ± 0.15aC 25.68 ± 0.38aC 18.84 ± 0.26aB 39.64 ± 0.32aC
    M 26.74 ± 0.65aB 18.91 ± 0.65aB 41.64 ± 0.16aC 26.99 ± 0.51aC 19.08 ± 0.35aA 42.51 ± 0.18aC
    H 24.22 ± 0.71aB 17.61 ± 0.45aB 31.08 ± 0.19aB 24.84 ± 0.35aB 18.12 ± 0.12aA 33.75 ± 0.29aC
    L 36.05 ± 0.82aA 20.52 ± 0.42aA 80.05 ± 0.45aB 36.76 ± 0.56aB 20.66 ± 0.34aA 81.24 ± 0.33aB
    M 35.85 ± 0.79aA 20.15 ± 0.35aA 77.56 ± 0.38aB 36.12 ± 0.67aB 20.14 ± 0.24aA 76.64 ± 0.51aB
    H 34.12 ± 0.75aA 19.58 ± 0.54aA 65.38 ± 0.34aA 35.11 ± 0.71aA 19.75 ± 0.26aA 69.88 ± 0.24aB
    L 43.96 ± 0.68aA 21.56 ± 0.35aA 105.64 ± 0.33aA 44.25 ± 0.56aA 21.76 ± 0.35aA 111.05 ± 0.55aA
    M 41.24 ± 1.12aA 20.44 ± 0.54aA 91.87 ± 0.25abA 41.83 ± 0.52aA 20.82 ± 0.24aA 96.37 ± 0.26abA
    H 38.83 ± 0.98aA 19.47 ± 0.53aA 77.58 ± 0.16bA 38.62 ± 0.34bA 19.51 ± 0.22aA 85.85 ± 0.16bA
    龄组
    Age group
    林分密度/
    (株·hm−2
    Stand density/
    (tree·ha−1
    长白山 CBS 哈达岭 HDL
    胸径 DBH/cm 树高 Tree height/m 蓄积/(m3·hm−2
    Volume/
    (m3·ha−1
    胸径 DBH/cm 树高 Tree height/m 蓄积/
    (m3·hm−2
    Volume/
    (m3·ha−1
    L 17.32 ± 0.45aD 14.63 ± 0.46aC 14.87 ± 0.25aD 16.43 ± 0.12aD 14.12 ± 0.21aC 12.58 ± 0.25aD
    M 17.63 ± 0.31aD 14.52 ± 0.17aC 15.22 ± 0.22aC 16.52 ± 0.21aD 14.33 ± 0.25aB 13.69 ± 0.34aC
    H 17.25 ± 0.25aC 14.45 ± 0.28aB 13.66 ± 0.13aC 16.46 ± 0.19aC 14.05 ± 0.11aB 13.56 ± 0.16aC
    L 25.88 ± 0.16aC 19.26 ± 0.13aB 41.28 ± 0.25aC 25.15 ± 0.25aC 18.11 ± 0.09aB 35.46 ± 0.35aC
    M 27.19 ± 0.18aC 19.49 ± 0.35aB 44.95 ± 0.36aB 26.24 ± 0.27aC 18.54 ± 0.31aA 39.87 ± 0.25aB
    H 25.31 ± 0.19aB 18.58 ± 0.39aA 37.56 ± 0.33aB 23.91 ± 0.31aB 17.16 ± 0.25aA 28.59 ± 0.28aB
    L 37.04 ± 0.27aB 20.94 ± 0.34aA 88.89 ± 0.42aB 35.58 ± 0.35aB 19.88 ± 0.16aA 77.71 ± 0.19aB
    M 36.55 ± 0.38aB 20.11 ± 0.28bB 79.52 ± 0.25aA 35.15 ± 0.38aB 19.15 ± 0.24abA 71.89 ± 0.41aA
    H 35.66 ± 0.34aA 19.92 ± 0.18bA 71.43 ± 0.28aA 33.72 ± 0.33aA 18.32 ± 0.28bA 62.35 ± 0.35aA
    L 44.87 ± 0.36aA 22.15 ± 0.27aA 112.58 ± 0.38aA 42.86 ± 0.34aA 21.03 ± 0.31aA 99.08 ± 0.37aA
    M 42.14 ± 0.25aA 21.11 ± 0.18aA 89.66 ± 0.44bA 40.64 ± 0.36aA 19.66 ± 0.29abA 86.38 ± 0.22abA
    H 39.15 ± 0.28aA 19.73 ± 0.19bA 76.31 ± 0.35bA 37.93 ± 0.31bA 18.84 ± 0.24bA 73.16 ± 0.28bA
    注:同列不同小写字母表示相同龄组不同密度下差异显著(P < 0.05);同列不同大写字母表示不同龄组相同密度下差异显著(P < 0.05)。Notes: different lowercase letters in the same column indicate significant differences under varied densities in the same age group (P < 0.05); different capital letters in the same column indicate significant differences under same densities in varied age groups (P < 0.05).
    下载: 导出CSV
  • [1] 周以良. 中国东北植被地理[M]. 北京: 科学出版社, 1997.

    Zhou Y L. Vegetation geography of northeast China[M]. Beijing: Science Press, 1997.

    [2] 罗也, 杨雨春, 王君, 等. 吉林省长白山区胡桃楸天然次生混交林立地指数模型[J]. 应用生态学报, 2019, 30(12): 4049−4058.

    Luo Y, Yang Y C, Wang J, et al. Site index model of Juglans mandshurica natural secondary mixed forest in Changbai Mountain area, Jilin Province, China[J]. Chinese Journal of Applied Ecology, 2019, 30(12): 4049−4058.

    [3] 陈思羽, 杨辉, 韩姣, 等. 长白山区核桃楸结实性状种源变异分析[J]. 北京林业大学学报, 2015, 35(12): 32−40.

    Chen S Y, Yang H, Han J, et al. Provenance variation of seed traits of Juglans mandshurica in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2015, 35(12): 32−40.

    [4] 王斯彤. 辽东地区胡桃楸天然林ISSR分子标记体系的建立和优化[J]. 分子植物育种, 2021, 19(7): 2286−2292.

    Wang S T. Establishment and optimization of ISSR molecular marker system for natural forest of Juglans mandshurica in Eastern Liaoning Area[J]. Molecular Plant Breeding, 2021, 19(7): 2286−2292.

    [5] 及利, 韩姣, 王芳, 等. 干旱胁迫对不同土壤基质下核桃楸幼苗的生理特性的影响[J]. 植物研究, 2019, 39(5): 722−732. doi: 10.7525/j.issn.1673-5102.2019.05.011

    Ji L, Han J, Wang F, et al. Effects of drought stress on photosynthetic and physiological characteristics of Juglans mandshurica seedlings in different soil substrates[J]. Bulletin of Botanical Research, 2019, 39(5): 722−732. doi: 10.7525/j.issn.1673-5102.2019.05.011

    [6]

    Salahuddin, Boris R, Muhammad R, et al. Root order-based traits of Manchurian walnut & larch and their plasticity under interspecific competition[J]. Scientific Reports, 2018, 8: 9815−9829. doi: 10.1038/s41598-018-27832-0

    [7] 刘月, 王君, 杨雨春, 等. 不同林分密度胡桃楸胸径、树高、材积与冠幅关系[J]. 森林工程, 2021, 37(3): 28−35. doi: 10.3969/j.issn.1006-8023.2021.03.004

    Liu Y, Wang J, Yang Y C, et al. Relationship between crown width and DBH, tree height or volume of Juglans mandshurica in stands of different densities[J]. Forest Engineering, 2021, 37(3): 28−35. doi: 10.3969/j.issn.1006-8023.2021.03.004

    [8] 唐丽丽, 张梅, 赵香林, 等. 华北地区胡桃楸林分布规律及群落构建机制分析[J]. 植物生态学报, 2019, 43(10): 1−9. doi: 10.17521/cjpe.2018.0161

    Tang L L, Zhang M, Zhao X L, et al. Species distribution and community assembly rules of Juglans mandshurica in North China[J]. Chinese Journal of Plant Ecology, 2019, 43(10): 1−9. doi: 10.17521/cjpe.2018.0161

    [9]

    Song N Q, Zhang J T, Zhao F G. The PCA index for measuring functional diversity and its appliation to Juglans mandshurica communities in the Beijing Mountains, China[J]. International Journal of Biomathematics, 2017, 10: 127−139.

    [10] 罗也, 及利, 杨雨春, 等. 东北地区胡桃楸次生混交林乔木物种组成和多样性[J]. 生态学杂志, 2020, 39(9): 2887−2895. doi: 10.13292/j.1000-4890.202009.017

    Luo Y, Ji L, Yang Y C, et al. Tree species composition and diversity of secondary mixed forests of Juglans mandshurica in Northeast China[J]. Chinese Journal of Ecology, 2020, 39(9): 2887−2895. doi: 10.13292/j.1000-4890.202009.017

    [11] 李晓燕, 段爱国, 张建国, 等. 杉木幼龄林分断面积生长的良种与密度效应研究[J]. 林业科学研究, 2021, 34(1): 65−70.

    Li X Y, Duan A G, Zhang J G, et al. Effects of improved varieties and densities on stand basal area growth of young Chinese fir (Cunninghamia lanceolata) plantation[J]. Forest Research, 2021, 34(1): 65−70.

    [12] 田新辉, 孙荣喜, 李军, 等. 107杨人工林密度对林木生长的影响[J]. 林业科学, 2011, 47(3): 184−188. doi: 10.11707/j.1001-7488.20110328

    Tian X H, Sun R X, Li J, et al. Effects of stand density on growth of Populus × euramericana ‘Neva’ plantations[J]. Scientia Silvae Sinicae, 2011, 47(3): 184−188. doi: 10.11707/j.1001-7488.20110328

    [13] 李洁, 列志旸, 许松葵, 等. 不同密度的银合欢林生长分析[J]. 中南林业科技大学学报, 2016, 36(6): 70−74. doi: 10.14067/j.cnki.1673-923x.2016.06.014

    Li J, Lie Z Y, Xu S K, et al. Growth analysis of Leucaena leucocephala plantations with different densities[J]. Journal of Central South University of Forestry & Technology, 2016, 36(6): 70−74. doi: 10.14067/j.cnki.1673-923x.2016.06.014

    [14]

    Cicek E, Cicek N, Bilir N. Effects of seedbed density on oneyear-old Fraxinus angustifolia seedling characteristics and outplanting performance[J]. New Forests, 2007, 33: 81−91. doi: 10.1007/s11056-006-9015-6

    [15]

    Woeste K E, Jacobs D F, McKenna J R. Half-sib seed sourceand nursery sowing density affect black walnut (Juglans nigra) growth after 5 years[J]. New Forests, 2011, 41: 235−244. doi: 10.1007/s11056-010-9224-x

    [16] 代林利, 周丽丽, 伍丽华, 等. 不同林分密度杉木林生态系统碳密度及其垂直空间分配特征[J]. 生态学报, 2022, 42(2): 710−719. doi: 10.5846/stxb202011172960

    Dai L L, Zhou L L, Wu L H, et al. Carbon density and vertical spatial distribution characteristics of Cunninghamia lanceolata forest ecosystem with different stand densities[J]. Acta Ecologica Sinica, 2022, 42(2): 710−719. doi: 10.5846/stxb202011172960

    [17]

    Jandl R, Lindner M, Vesterdal L, et al. How strongly can forest management influence soil carbon sequestration?[J]. Geoderma, 2007, 137(3−4): 253−268. doi: 10.1016/j.geoderma.2006.09.003

    [18] 代林利, 陈义堂, 伍丽华, 等. 不同林分密度杉木林养分积累与垂直空间分配[J]. 应用生态学报, 2022, 33(2): 311−320.

    Dai L L, Chen Y T, Wu L H, et al. Characteristics of nutrient accumulation and vertical spatial distribution in Cunninghamia lanceolata plantation with different stand densities[J]. Chinese Journal of Applied Ecology, 2022, 33(2): 311−320.

    [19] 张程, 欧阳林男, 陈少雄. 3种初植密度桉树林分生长、材种出材量及经济效益动态分析[J]. 林业科学研究, 2021, 34(4): 58−65.

    Zhang C, Ouyang L N, Chen S X. Dynamic analysis on economic benefit, growth and production of eucalypt plantations with different initial densities[J]. Forest Research, 2021, 34(4): 58−65.

    [20]

    Wang C S, Tang C, Hein S, et al. Branch development of five-year old Betula alnoides plantations in response to planting density[J]. Forests, 2018, 9(1): 42−55. doi: 10.3390/f9010042

    [21] 刘悦, 谢玲芝, 张彦东, 等. 不同密度水曲柳人工林细根生物量对邻近树木胸径和距离的响应[J]. 林业科学, 2021, 57(10): 15−22. doi: 10.11707/j.1001-7488.20211002

    Liu Y, Xie L Z, Zhang Y D, et al. Responses of fine root biomass to diameters of and distances to the neighboring trees of Fraxinus mandschurica plantation with different stocking densities[J]. Scientia Silvae Sinicae, 2021, 57(10): 15−22. doi: 10.11707/j.1001-7488.20211002

    [22]

    Wertz B, Bembenek M, Karaszewski Z, et al. Impact of stand density and tree social status on above ground biomass allocation of Scots pine (Pinus sylvestris L.)[J]. Forests, 2020, 11(7): 765−779. doi: 10.3390/f11070765

    [23] 郑颖, 冯健, 于世河, 等. 辽东山区不同密度落叶松人工幼龄林林木生长和土壤养分特性[J]. 中南林业科技大学学报, 2022, 42(1): 94−103.

    Zheng Y, Feng J, Yu S H, et al. Study on forest growth and soil nutrient characteristics of Larix spp. plantation with different densities in Liaodong mountainous area[J]. Journal of Central South University of Forestry & Technology, 2022, 42(1): 94−103.

    [24]

    Ali A, Dai D, Akhtar K, et al. Response of understory vegetation, tree regeneration, and soil quality to manipulated stand density in a Pinus massoniana plantation[J]. Global Ecology and Conservation, 2019, 20: 1−15.

    [25]

    Farooq T H, Yan W, Chen X Y, et al. Dynamics of canopy development of Cunninghamia lanceolata mid-age plantation in relation to foliar nitrogen and soil quality influenced by stand density[J]. Global Ecology and Conservation, 2020, 24: 1−11.

    [26]

    Lei J, Du H L, Duan A G, et al. Effect of stand density and soil layeron soil nutrients of a 37-year-old Cunninghamia lanceolate plantation in Naxi, Sichuan Province, China[J]. Sustain Ability, 2019, 11(19): 5410−5439.

    [27] 那萌, 刘婷岩, 张彦东, 等. 林分密度对水曲柳人工林碳储量的影响[J]. 北京林业大学学报, 2017, 39(1): 20−26.

    Na M, Liu T Y, Zhang Y D, et al. Effects of stock density on carbon storage in Fraxinus mandshurica plantations[J]. Journal of Beijing Forestry University, 2017, 39(1): 20−26.

    [28] 黄雪蔓, 尤业明, 蓝嘉川, 等. 不同间伐强度对杉木人工林碳储量及其分配的影响[J]. 生态学报, 2016, 36(1): 156−163.

    Huang X M, You Y M, Lan J C, et al. The effect of carbon storage and its allocation in Cunninghamia lanceolata plantations with different thinning intensities[J]. Acta Ecologica Sinica, 2016, 36(1): 156−163.

    [29] 楚秀丽, 王艺, 金国庆, 等. 不同生境、初植密度及林龄木荷人工林生长、材性变异及林分分化[J]. 林业科学, 2014, 50(6): 152−159.

    Chu X L, Wang Y, Jin G Q, et al. Variation in growth and wood property and the structure differentiation of Schima superba plantation with different sites, stand densities and ages[J]. Scientia Silvae Sinicae, 2014, 50(6): 152−159.

    [30] 王云霓, 高孝威, 苏雅拉巴雅尔, 等. 林分密度和林龄对华北落叶松人工林生长特征的影响[J]. 内蒙古林业科技, 2018, 44(3): 12−16.

    Wang Y N, Gao X W, Suyalabayaer, et al. Effects of different densities and ages on growth of Larix principis-rurechitii plantation in Daqing Mountains of Inner Mongolia[J]. Journal of Inner Mongolia Forestry Science & Technology, 2018, 44(3): 12−16.

    [31] 杨桂娟, 胡海帆, 孙洪刚, 等. 林分林龄、造林密度和林分自然稀疏对杉木人工林个体大小分化和生产力关系的影响[J]. 林业科学, 2019, 55(11): 126−136.

    Yang G J, Hu H F, Sun H G, et al. The influences of stand age, planting density and self-thinning on relationship between size inequality and periodic annual increment in Chinese fir (Cunninghamia lanceolata) plantations[J]. Scientia Silvae Sinicae, 2019, 55(11): 126−136.

    [32] 柏广新, 孙志虎, 高波, 等. 长白山林区天然次生林胡桃楸的适宜生长空间[J]. 林业科学, 2009, 45(12): 8−15. doi: 10.3321/j.issn:1001-7488.2009.12.002

    Bai G X, Sun Z H, Gao B, et al. Optimal growing space for Juglans mandshurica in second growth forests in Changbai Mountains[J]. Scientia Silvae Sinicae, 2009, 45(12): 8−15. doi: 10.3321/j.issn:1001-7488.2009.12.002

    [33] 张闻博, 费本华, 田根林, 等. 不同地区毛竹生长和表型性状的比较[J]. 东北林业大学学报, 2019, 47(1): 1−5. doi: 10.3969/j.issn.1000-5382.2019.01.001

    Zhang B W, Fei B H, Tian G L, et al. Comparative study on growth and phenotypic traits of Phyllostachys edulis in different areas[J]. Journal of Northeast Forestry University, 2019, 47(1): 1−5. doi: 10.3969/j.issn.1000-5382.2019.01.001

    [34] 罗也, 何怀江, 张忠辉, 等. 东北地区天然次生林乔木层物种多样性与树木生长的关系[J]. 中南林业科技大学学报, 2021, 41(11): 152−163.

    Luo Y, He H J, Zhang Z H, et al. Relationship between species diversity of arbor layer and tree growth in natural secondary forests in northeast China[J]. Journal of Central South University of Forestry & Technology, 2021, 41(11): 152−163.

    [35] 田红灯, 申文辉, 谭一波, 等. 不同林龄杉木人工林冠幅与生长因子的关系[J]. 中南林业科技大学学报, 2021, 41(5): 93−101.

    Tian H D, Shen W H, Tan Y B, et al. Relationship between crown width and growth factors in Chinese fir plantation among different stand ages[J]. Journal of Central South University of Forestry & Technology, 2021, 41(5): 93−101.

    [36]

    Luxmoore R J, Tharp M L, Post W M, et al. Simulated biomass and soil carbon of loblolly pine and cottonwood plantations across a thermal gradient in southeastern United States[J]. Forest Ecology & Management, 2008, 254(2): 291−299.

    [37]

    Erasmus J, Wessels C B. The effect of stand density management on Pinus patula lumber properties[J]. European Journal of Forest Research, 2020, 139(2): 1−11.

    [38]

    Boyden S, Dan B. Competition among Eucalyptus trees depends on genetic variation and resource supply[J]. Ecology, 2008, 89(10): 2850−2859. doi: 10.1890/07-1733.1

    [39]

    Pachas A, Shelton H M, Lambrides C J, et al. Effect of tree density on competition between Leucaena leucocephala and Chloris gayana using a Nelder wheel trial(I): aboveground interactions[J]. Crop and Pasture Science, 2018, 69: 419−429. doi: 10.1071/CP17311

    [40]

    Enno U, Peter B, Matthias U, et al. Analysing the effect of stand density and site conditions on structure and growth of oak species using Nelder trials along an environmental gradient: experimental design, evaluation methods, and results[J]. Forest Ecosystems, 2015, 2(1): 243−261.

    [41]

    Xue L, Pan L, Zhang R, et al. Density effects on the growth of self-thinning Eucalyptus urophylla stands[J]. Trees, 2011, 25: 1021−1031. doi: 10.1007/s00468-011-0576-4

    [42] 朱仕明, 肖玲玲, 薛立, 等. 密度对乐昌含笑幼苗的生长和生物量的影响[J]. 中南林业科技大学学报, 2015, 35(8): 77−80.

    Zhu S M, Xiao L L, Xue L, et al. Effects of planting density on growth and biomass of Michelia chapensis seedlings[J]. Journal of Central South University of Forestry & Technology, 2015, 35(8): 77−80.

    [43]

    Neilsen W A, Gerrand A M. Growth and branching habit of Eucalyptus nitens at different spacing and the effect on final crop selection[J]. Forest Ecology & Management, 1999, 123(2−3): 217−229.

    [44] 王翰琛, 张雄清, 张建国, 等. 杉木人工林不同密度间伐林分生长优势的变化规律分析[J]. 林业科学研究, 2021, 34(5): 32−38.

    Wang H C, Zhang X Q, Zhang J G, et al. Variation of growth dominance in thinned Chinese Fir stands with different planting densities[J]. Forest Research, 2021, 34(5): 32−38.

  • 期刊类型引用(11)

    1. 施云凤,李文秀,贺军军,罗萍,张华林,张凤英. 甲基磺酸乙酯诱变对阳春砂仁出苗的影响. 热带农业科学. 2024(10): 47-51 . 百度学术
    2. 崔晓彤,刘婉婷,张恒月,段乌拉,王君. 杨树派间远缘杂种小胡杨(Populus simonii×P.euphratica)组培快繁体系的构建. 分子植物育种. 2023(07): 2337-2343 . 百度学术
    3. 王欢,曾琪瑶,王春胜,郭俊杰,曾杰. 油榄仁种胚高质量组培快繁体系. 中南林业科技大学学报. 2023(09): 53-61+88 . 百度学术
    4. 李春兰. 毛白杨良种繁殖技术研究进展. 安徽农业科学. 2022(10): 22-24+45 . 百度学术
    5. 王雷,李百和,赵培霞,韩鹏. 蒙古莸(Caryopteris mongholica)组培快繁体系的建立和优化. 分子植物育种. 2022(14): 4745-4754 . 百度学术
    6. 陈耀兵,罗凯,李美东,黄秀芳,刘汉蓁,王水清,陈圣林. “鄂选1号”山桐子组培繁育体系构建. 北京林业大学学报. 2022(12): 23-31 . 本站查看
    7. 屈超,叶冬梅,郭欣,崔雁敏,朝勒蒙. 互叶醉鱼草茎段组织培养技术研究. 江苏林业科技. 2022(06): 15-19 . 百度学术
    8. 马秋月,李倩中,李淑顺,朱璐,颜坤元,李淑娴,张斌,闻婧. 元宝枫组织培养及快速繁殖技术研究. 南京林业大学学报(自然科学版). 2021(02): 220-224 . 百度学术
    9. 石进朝,陈博,陈兰芬,李彦侠. 阳光毛白杨带芽茎段再生体系的构建. 江苏农业科学. 2021(14): 50-55 . 百度学术
    10. 梁艳,赵雪莹,白雪,刘德强,张妍,潘朋. PVP处理对黑皮油松外植体酚类物质形成及酶活性的影响. 林业科学. 2021(10): 166-174 . 百度学术
    11. 王建新,吴志茹,冯光惠. 榆林沙区引种波尔卡树莓的组织培养与快速繁殖. 山西农业科学. 2019(12): 2078-2082 . 百度学术

    其他类型引用(2)

图(2)  /  表(5)
计量
  • 文章访问数:  515
  • HTML全文浏览量:  118
  • PDF下载量:  81
  • 被引次数: 13
出版历程
  • 收稿日期:  2023-07-04
  • 修回日期:  2024-01-25
  • 录用日期:  2024-03-04
  • 网络出版日期:  2024-03-07
  • 刊出日期:  2024-06-29

目录

/

返回文章
返回