• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

长白山园池湖岸湿地生态系统碳氮储量沿环境梯度空间分异规律

孙梓淇, 牟长城, 王婷, 李美霖, 王文婧

孙梓淇, 牟长城, 王婷, 李美霖, 王文婧. 长白山园池湖岸湿地生态系统碳氮储量沿环境梯度空间分异规律[J]. 北京林业大学学报, 2024, 46(8): 34-46. DOI: 10.12171/j.1000-1522.20230185
引用本文: 孙梓淇, 牟长城, 王婷, 李美霖, 王文婧. 长白山园池湖岸湿地生态系统碳氮储量沿环境梯度空间分异规律[J]. 北京林业大学学报, 2024, 46(8): 34-46. DOI: 10.12171/j.1000-1522.20230185
Sun Ziqi, Mu Changcheng, Wang Ting, Li Meilin, Wang Wenjing. Spatial differentiation law of carbon and nitrogen storage along the environmental gradient of Yuanchi lakeshore wetland ecosystems in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2024, 46(8): 34-46. DOI: 10.12171/j.1000-1522.20230185
Citation: Sun Ziqi, Mu Changcheng, Wang Ting, Li Meilin, Wang Wenjing. Spatial differentiation law of carbon and nitrogen storage along the environmental gradient of Yuanchi lakeshore wetland ecosystems in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2024, 46(8): 34-46. DOI: 10.12171/j.1000-1522.20230185

长白山园池湖岸湿地生态系统碳氮储量沿环境梯度空间分异规律

基金项目: 国家自然科学基金项目(31370461)。
详细信息
    作者简介:

    孙梓淇。主要研究方向:湿地生态学。Email:2290593435@qq.com 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学生态研究中心

    责任作者:

    牟长城,教授,博士生导师。主要研究方向:湿地生态学。Email:muccjs@163.com 地址:同上。

  • 中图分类号: S718.51;X143

Spatial differentiation law of carbon and nitrogen storage along the environmental gradient of Yuanchi lakeshore wetland ecosystems in Changbai Mountain of northeastern China

  • 摘要:
    目的 

    探究湖泊沿岸湿地生态系统碳氮储量沿湖岸至高地的空间分异规律及形成机制,将有助于减少湿地碳储量估算的不确定性。

    方法 

    采用相对生长方程、碳/氮分析仪,同步测定长白山园池沿湖岸至高地环境梯度依次分布的6种沼泽类型(芦苇沼泽L、草丛沼泽C、杜香沼泽D、落叶松泥炭藓沼泽LN、落叶松藓类沼泽LX、落叶松苔草沼泽LT)的生态系统碳、氮储量(植被和土壤)及其相关环境因子(水位、水位波动幅度、土壤有机质、全氮和全磷等),揭示其空间分异规律及其形成机制。

    结果 

    (1)植被碳、氮储量(2.17 ~ 69.98 t/hm2和0.058 ~ 0.940 t/hm2)沿湖岸至高地环境梯度均呈递增规律(LT ≈ LX > LN > D > C > L),且均以优势植被层占主体地位(73.72% ~ 93.37%和71.57% ~ 85.24%);(2)土壤碳、氮储量(67.45 ~ 243.21 t/hm2和2.44 ~ 13.53 t/hm2)沿该环境梯度呈阶梯式递减规律(L > C > D ≈ LN > LX ≈ LT)且其碳储量垂直空间分异存在先恒定后递减(L)、先增后降(C、D和LN)和递减(LX和LT))3种类型,其氮储量垂直空间分异与碳储量基本一致(仅C和LX略有不同);(3)生态系统碳、氮储量(122.20 ~ 245.38 t/hm2和3.31 ~ 13.58 t/hm2)沿该环境梯度分别呈先降低后恒定型或阶梯式递减型变化规律,且其土壤碳、氮储量占比呈递减趋势(50.27% ~ 99.11%和73.48% ~ 99.57%),而植被碳、氮储量占比却呈递增趋势(0.89% ~ 49.73%和0.43% ~ 26.52%);(4)生态系统碳储量在湖岸至高地水分环境梯度的下、中、上部生境地段依次受水位促进、水位抑制和水位波动幅度抑制,而氮储量在相应生境地段上依次受水位促进、水位波动幅度抑制和土壤全氮促进。

    结论 

    园池沿岸湿地生态系统碳氮储量沿湖岸至高地水分环境梯度存在明显的空间分异规律,且其形成机制为微地形引起的水位梯度和植被类型分布决定着各沼泽类型的碳氮储存能力,故准确测定湖岸带各沼泽类型碳氮储量将有助于减少集水区尺度上碳氮储量估算的不确定性。

    Abstract:
    Objective 

    Exploring the spatial differentiation and formation mechanism of carbon and nitrogen storage in wetland ecosystem along the lakeshore to the highlands will help to reduce the uncertainty of wetland carbon storage estimation.

    Method 

    The ecosystem carbon and nitrogen storage (vegetation and soil), and related environmental factors (water level, water level fluctuation amplitude, soil organic matter, total nitrogen and total phosphorus, etc.) of six plant communities (L-Phragmites australis swamp, C-tussock swamp, D-Ledum palustre swamp, LN-Larix olgensis-Sphagnum magellanicum swamp, LX-Larix olgensis-moss swamp and LT-Larix olgensis-Carex schmidtii swamp) distributing along the lakeshore to the highland environmental gradient were simultaneously determined by relative growth equation and carbon/nitrogen analyzer method, to reveal its spatial differentiation law and its formation mechanism.

    Result 

    (1) The carbon and nitrogen storage (2.17−69.98 t/ha and 0.058−0.940 t/ha) of the vegetation increased progressively along the environmental gradient from lakeshore to upland (LT ≈ LX > LN > D > C > L), in which the dominant vegetation layer accounted for main position (73.72%−93.37% and 71.57%−85.24%). (2) The soil carbon and nitrogen storage (67.45−243.21 t/ha and 2.44−13.53 t/ha) decreased along the environmental gradient in a step-by-step manner (L > C > D ≈ LN > LX ≈ LT), there were three types of vertical spatial differentiation of carbon stock: first constant and then decreasing (L), first increasing and then decreasing (C, D and LN), and decreasing (LX and LT), and those of nitrogen storage were basically the same as that of carbon stock (only C and LX were slightly different). (3) The carbon and nitrogen storage (122.20−245.38 t/ha and 3.31−13.58 t/ha) of the ecosystem decreased first and then steadily or decreased in a step-by-step manner along the environmental gradient, respectively, the proportion of carbon and nitrogen in soil decreased (50.27%−99.11% and 73.48%−99.57%), but that of vegetation increased (0.89%−49.73% and 0.43%−26.52%). (4) The carbon storage of ecosystems at the lower, middle and upper habitats of the water environmental gradient from lakeshore to upland was promoted by water level, restrained by water level and restrained by water level fluctuation amplitude in turn, while the nitrogen storage was promoted by water level, restrained by water level fluctuation amplitude and promoted by soil total nitrogen in the corresponding habitat.

    Conclusion 

    The carbon and nitrogen storage of wetland ecosystem in lakeshore of Yuanchi Lake has obvious spatial differentiation law along the water environmental gradient from lakeshore to upland, and its formation mechanism is that the water level gradient and distribution of vegetation types caused by microtopography determine the carbon and nitrogen storage capacity of each marsh type. Therefore, accurate determination of carbon and nitrogen storage of each marsh type in the lakeshore zone will help to reduce the uncertainty of carbon and nitrogen storage estimation at catchment scale.

  • 图  1   长白山园池沿岸6种湿地类型的水位变化情况

    Figure  1.   Water level changes of six wetland types along lakeshore in Yuanchi, Changbai Mountain

    图  2   长白山园池沿湖岸至高地环境梯度生态系统碳、氮储量及其分配

    不同大写字母表示不同湿地生态系统碳氮储量差异显著(P < 0.05)。Different capital letters mean significant difference between wetland types of environmental carbon and nitrogen storage (P < 0.05).

    Figure  2.   Carbon and nitrogen storage and distribution along the environmental gradient from lakeshore to upland inYuanchi, Changbai Mountain

    表  1   长白山园池沿岸3种森林湿地类型林分特征

    Table  1   Stand characteristics of three forest wetland types along lakeshore in Yuanchi, Changbai Mountain

    湿地类型
    Wetland type
    树种
    Tree species
    胸高断面积/(m2·hm−2
    Basal area/(m2·ha−1)
    平均胸径
    Mean DBH/cm
    密度/(株·hm−2
    Density/(plant·ha−1)
    胸径范围
    DBH range/cm
    LN 落叶松 Larix olgensis 14.90 9.25 1 933 4 ~ 18
    LX 落叶松 Larix olgensis 26.28 11.08 2 094 4 ~ 26
    LT 落叶松 Larix olgensis 22.75 12.59 1 522 4 ~ 26
    注:LN.落叶松泥炭藓沼泽;LX.落叶松藓类沼泽;LT.落叶松苔草沼泽。下同。Notes: LN, Larix olgensis-Sphagnum magellanicum swamp; LX, Larix olgensis-moss swamp; LT, Larix olgensis-Carex schmidtii swamp. The same below.
    下载: 导出CSV

    表  2   长白山园池沿岸6种湿地土壤理化性质

    Table  2   Soil physical and chemical properties of six wetland types along lakeshore in Yuanchi, Changbai Mountain

    湿地类型
    Wetland type
    水位
    Water level/cm
    水位波动幅度
    Water level fluctuation
    amplitude/cm
    土壤温度
    Soil
    temperature/℃
    有机质
    Organic
    matter/(g·kg−1)
    全氮
    Total
    nitrogen/(g·kg−1)
    全磷
    Total
    phosphorus/(g·kg−1)
    L 13.50 ± 1.94A 31.50± 1.00D 6.35± 0.25A 302.11 ± 22.13A 10.33 ± 0.49A 0.44 ± 0.01B
    C 3.13 ± 1.82B 28.83± 0.57D 6.10 ± 0.14A 263.94 ± 8.68B 10.00 ± 0.37A 0.49 ± 0.06B
    D −18.67 ± 1.53C 45.33 ± 4.37BC 4.24 ± 0.11B 228.34 ± 14.46C 5.24 ± 0.26B 0.61 ± 0.10A
    LN −32.80 ± 2.73D 42.63 ± 2.97C 3.94 ± 0.26C 208.65 ± 14.42C 4.93 ± 0.97B 0.41 ± 0.03B
    LX −58.67 ± 1.52E 60.17 ± 5.11A 3.92 ± 0.06C 47.78 ± 5.89D 1.00 ± 0.08C 0.18 ± 0.04C
    LT −69.33 ± 1.39F 48.33 ± 5.61B 3.96 ± 0.09BC 55.81 ± 4.65D 1.17 ± 0.14C 0.21 ± 0.02C
    注:表中数据为平均值 ± 标准差;L.芦苇沼泽;C.草丛沼泽;D.杜香沼泽。不同大写字母表示不同湿地类型之间差异显著(P < 0.05)。下同。Notes: data in the table are mean ± SD. L, Phragmites australis swamp; C, tussock swamp; D, Ledum palustre swamp. Different capital letters mean significant difference among different wetland types (P < 0.05). The same below.
    下载: 导出CSV

    表  3   长白山园池沿湖岸至高地分布的6种湿地类型的植被碳氮储量

    Table  3   Vegetation carbon and nitrogen storage of six wetland types along the environmental gradient from lakeshore to upland in Yuanchi, Changbai Mountain

    指标
    Index
    层次
    Layer
    湿地类型 Wetland type
    L C D LN LX LT
    生物量/(t·hm−2
    Biomass/(t·ha−1)
    乔木层 Tree layer 71.49 ± 28.71B 135.28 ± 14.98A 141.72 ± 13.01A
    灌木层 Shrub layer 11.41 ± 2.00A 4.58 ± 1.61B 3.96 ± 1.17B 4.08 ± 1.46B
    草本层 Herb layer 4.14 ± 0.35A 5.57 ± 0.87A 2.35 ± 0.44B 3.46 ± 0.97B 3.40 ± 0.57B 3.28 ± 0.50B
    凋落物层 Litter layrt 1.09 ± 0.27C 1.62 ± 0.54B 1.71 ± 0.53B 2.89 ± 0.60A 2.61 ± 0.59A 2.98 ± 0.57A
    植被 Vegetation 5.24 ± 0.39E 7.18 ± 0.08D 15.47 ± 1.42C 82.42 ± 12.53B 145.24 ± 14.04A 152.05 ± 13.67A
    碳含量 Carbon
    content/(g·kg−1)
    乔木层 Tree layer 462.37 ± 4.16B 472.64 ± 7.78AB 479.51 ± 0.81A
    灌木层 Shrub layer 476.97 ± 5.59A 477.18 ± 6.10A 466.81 ± 6.65AB 463.56 ± 7.04B
    草本层 Herb layer 421.34 ± 3.00C 422.80 ± 5.84C 465.55 ± 15.65A 455.63 ± 6.48AB 457.46 ± 13.17A 445.52 ± 8.19B
    凋落物层 Litter layer 377.07 ± 6.32B 403.13 ± 8.41B 461.55 ± 11.49A 448.95 ± 16.30A 461.56 ± 34.09A 411.41 ± 37.01B
    植被 Vegetation 399.20 ± 1.83D 412.97 ± 6.92C 468.02 ± 0.19A 461.03 ± 3.31AB 464.62 ± 7.73A 450.00 ± 8.52B
    碳储量/(t·hm−2
    Carbon storage/
    (t·ha−1)
    乔木层 Tree layer 32.92 ± 7.73B 62.22 ± 6.75A 65.35 ± 5.95A
    灌木层 Shrubd layer 5.40 ± 0.87A 2.35 ± 1.01B 1.86 ± 0.55B 1.92 ± 0.70B
    草本层 Herb layer 1.75 ± 0.14B 2.36 ± 0.38A 1.11 ± 0.16C 1.74 ± 0.84B 1.56 ± 0.28BC 1.48 ± 0.24BC
    凋落物层 Litter layer 0.41 ± 0.06C 0.64 ± 0.19B 0.79 ± 0.22B 1.33 ± 0.09A 1.20 ± 0.31A 1.23 ± 0.30A
    植被 Vegetation 2.17 ± 0.16E 3.00 ± 0.04D 7.30 ± 0.62C 38.34 ± 5.92B 66.85 ± 2.37A 69.98 ± 7.63A
    碳储量分配比
    Carbon storage
    allocation/%
    乔木层 Tree layer 85.10 ± 7.61 93.00 ± 1.27 93.37 ± 0.20
    灌木层 Shrub layer 73.72 ± 5.49 6.53 ± 3.91 2.83 ± 0.65 2.74 ± 0.27
    草本层 Herb layer 81.03 ± 1.08 78.51 ± 4.44 15.33 ± 3.42 4.85 ± 3.18 2.37 ± 0.60 2.10 ± 0.20
    凋落物层 Litter layer 18.97 ± 1.08 21.49 ± 4.44 10.95 ± 2.09 3.52 ± 0.59 1.80 ± 0.13 1.78 ± 0.45
    氮含量
    Nitrogen content/
    (g·kg−1)
    乔木层 Tree layer 11.12 ± 0.47A 12.07 ± 0.26A 11.95 ± 0.76A
    灌木层 Shrub layer 12.63 ± 0.35B 14.33 ± 1.69B 17.60 ± 2.28A 15.55 ± 0.58AB
    草本层 Herb layer 9.71 ± 0.38BC 13.62 ± 0.09A 7.83 ± 0.28C 11.14 ± 2.55B 15.03 ± 1.37A 14.44 ± 0.46A
    凋落物层 Litter layer 12.62 ± 0.89B 15.78 ± 1.29A 17.52 ± 5.15A 10.84 ± 1.12B 10.73 ± 1.62B 13.72 ± 1.87AB
    植被 Vegetation 11.16 ± 0.26B 14.70 ± 0.67A 12.66 ± 1.57B 11.86 ± 0.83B 13.86 ± 1.23AB 13.91 ± 0.46AB
    氮储量/(t·hm−2
    Nitrogen storage/
    (t·ha−1)
    乔木层 Tree layer 0.340 ± 0.093B 0.735 ± 0.09A 0.802 ± 0.10A
    灌木层 Shrub layer 0.121 ± 0.02A 0.052 ± 0.02B 0.053 ± 0.02B 0.050 ± 0.02B
    草本层 Herb layer 0.044 ± 0.01B 0.081 ± 0.01A 0.018 ± 0.00C 0.044 ± 0.02B 0.049 ± 0.01B 0.047 ± 0.01B
    凋落物层 Litter layer 0.014 ± 0.01C 0.025 ± 0.01B 0.030 ± 0.01B 0.032 ± 0.00B 0.028 ± 0.01B 0.041 ± 0.01A
    植被 Vegetation 0.058 ± 0.01E 0.107 ± 0.00D 0.169 ± 0.01C 0.467 ± 0.06B 0.865 ± 0.08A 0.940 ± 0.11A
    氮储量分配比
    Nitrogen storage
    allocation/%
    乔木层 Tree layer 71.75 ± 12.28 84.80 ± 2.51 85.24 ± 1.34
    灌木层 Shrub layer 71.57 ± 4.72 11.43 ± 5.30 6.19 ± 1.44 5.31 ± 0.28
    草本层 Herb layer 76.01 ± 0.86 76.26 ± 6.20 10.59 ± 2.00 9.95 ± 5.93 5.73 ± 1.40 5.05 ± 0.74
    凋落物层 Litter layer 23.99 ± 0.86 23.74 ± 6.20 17.84 ± 2.78 6.88 ± 1.06 3.27 ± 0.28 4.40 ± 1.10
    下载: 导出CSV

    表  4   长白山园池沿湖岸至高地分布的6种湿地类型的土壤碳氮储量

    Table  4   Soil carbon and nitrogen storage of six wetland types along the environmental gradient from lakeshore to upland in Yuanchi, Changbai Mountain

    指标
    Index
    土层深度
    Soil depth/cm
    湿地类型 Wetland type
    L C D LN LX LT
    土壤密度
    Bulk density/
    (g·cm−3
    0 ~ 10 0.14 ± 0.01Bd 0.14 ± 0.01Bd 0.10 ± 0.01Cd 0.14 ± 0.02Bc 0.74 ± 0.07Aa 0.66 ± 0.08Aa
    10 ~ 20 0.14 ± 0.01Dde 0.15 ± 0.01Dd 0.33 ± 0.03Cc 0.40 ± 0.06Bb 0.75 ± 0.08Aa 0.78 ± 0.06Aa
    20 ~ 30 0.14 ± 0.04De 0.32 ± 0.05Cc 0.66 ± 0.06Ba 0.60 ± 0.03Ba 0.72 ± 0.03ABa 0.78 ± 0.07Aa
    30 ~ 40 0.49 ± 0.04Bc 0.55 ± 0.10ABb 0.52 ± 0.04Bb 0.47 ± 0.12Bab 0.69 ± 0.05Aa 0.67 ± 0.11Aa
    40 ~ 50 0.91 ± 0.04Aa 0.78 ± 0.03Ba
    50 ~ 60 0.58 ± 0.03Ab 0.60 ± 0.03Ab
    60 ~ 70 0.49 ± 0.02c
    平均值
    Mean
    0.41 ± 0.01B 0.42 ± 0.01B 0.40 ± 0.01B 0.40 ± 0.01B 0.72 ± 0.01A 0.72 ± 0.01A
    碳含量
    Carbon content/
    (g·kg−1
    0 ~ 10 344.50 ± 47.70ABa 350.70 ± 11.42Ab 319.80 ± 14.35ABa 310.15 ± 23.15Ba 60.86 ± 6.39Ca 78.09 ± 7.42Ca
    10 ~ 20 346.38 ± 21.23Ba 386.70 ± 4.94Aa 158.94 ± 20.96Cb 143.29 ± 23.10Cb 25.24 ± 4.15Db 23.03 ± 4.37Db
    20 ~ 30 349.60 ± 11.96Aa 125.43 ± 19.16Bc 41.73 ± 9.89Cc 22.15 ± 2.24Cc 14.34 ± 4.80Cc 18.42 ± 2.21Cb
    30 ~ 40 112.59 ± 13.90Ab 25.47 ± 4.33Bd 9.33 ± 1.61Cd 8.52 ± 1.83Cc 10.43 ± 1.69Cc 9.95 ± 1.36Cc
    40 ~ 50 38.55 ± 12.56Ac 17.45 ± 5.46Bde
    50 ~ 60 21.07 ± 2.68Ad 12.86 ± 1.48Be
    60 ~ 70 13.97 ± 2.92e
    平均值 175.24 ± 12.84A 153.10 ± 5.04A 132.45 ± 8.38B 121.03 ± 8.36C 27.72 ± 3.41D 32.37 ± 2.69D
    Mean
    碳储量/(t·hm−2
    Carbon storage/
    (t·ha−1
    0 ~ 10 46.07 ± 3.09ABa 46.89 ± 0.37ABb 32.92 ± 3.67Cb 40.71 ± 4.55Bb 37.15 ± 2.54BCa 48.10 ± 2.85Aa
    10 ~ 20 46.97 ± 7.27Ba 54.75 ± 2.62Aa 53.75 ± 7.95Aa 53.92 ± 1.03Aa 16.52 ± 5.22Cb 11.53 ± 0.93Cb
    20 ~ 30 49.09 ± 2.95Aa 39.44 ± 6.36Ac 25.25 ± 8.05Bc 10.80 ± 1.46Cc 8.13 ± 2.37Dc 9.62 ± 1.01Cb
    30 ~ 40 54.39 ± 7.67Aa 13.40 ± 1.57Bd 2.98 ± 0.80Dd 2.61 ± 0.35Dd 5.64 ± 1.69Cd 4.84 ± 1.38Cc
    40 ~ 50 31.97 ± 9.48Ab 11.80 ± 3.41Bd
    50 ~ 60 10.59 ± 0.82Ac 5.11 ± 0.75Be
    60 ~ 70 4.14 ± 0.81Ad
    总计
    Total
    243.21 ± 24.43A 171.39 ± 9.93B 114.90 ± 4.60C 108.03 ± 3.71C 67.45 ± 5.28D 74.08 ± 2.62D
    氮含量
    Nitrogen content/
    (g·kg−1
    0 ~ 10 22.92 ± 0.64Aa 23.45 ± 1.37Aa 12.78 ± 0.69Ba 12.73 ± 1.47Ba 2.59 ± 0.06Ca 3.30 ± 0.67Ca
    10 ~ 20 19.82 ± 1.17Ba 25.12 ± 1.37Aa 5.82 ± 1.42Cb 5.11 ± 0.78Cb 0.59 ± 0.12Eb 0.70 ± 0.07Db
    20 ~ 30 20.92 ± 0.79Aa 6.79 ± 0.77Bb 1.09 ± 0.03Cc 1.32 ± 0.19Cc 0.41 ± 0.10Db 0.36 ± 0.05Dc
    30 ~ 40 5.75 ± 0.54Ab 2.50 ± 1.94Bc 0.93 ± 0.26Cc 0.55 ± 0.14Dc 0.38 ± 0.09Db 0.33 ± 0.03Dc
    40 ~ 50 1.52 ± 0.01Ac 1.33 ± 0.53Ac
    50 ~ 60 1.05 ± 0.14Ad 0.85 ± 0.21Bc
    60 ~ 70 0.88 ± 0.16e
    平均值
    Mean
    10.41 ± 0.31A 10.01 ± 0.37A 5.16 ± 0.49B 4.93 ± 0.49B 1.00 ± 0.02C 1.17 ± 0.14C
    氮储量/(t·hm−2
    Nitrogen storage/
    (t·ha−1
    0 ~ 10 3.07 ± 0.05Aa 3.13 ± 0.12Aa 1.31 ± 0.22Cb 1.66 ± 0.11Cb 1.60 ± 0.28Ca 2.04 ± 0.41Ba
    10 ~ 20 2.69 ± 0.29Ba 3.56 ± 0.30Aa 1.94 ± 0.34Ca 1.93 ± 0.22Ca 0.39 ± 0.13Db 0.35 ± 0.03Db
    20 ~ 30 2.94 ± 0.16Aa 2.14 ± 0.27Bb 0.65 ± 0.06Cc 0.64 ± 0.11Cc 0.24 ± 0.06Db 0.19 ± 0.02Dc
    30 ~ 40 2.77 ± 0.07Aa 1.27 ± 0.82Bc 0.29 ± 0.08Cd 0.18 ± 0.09Cd 0.20 ± 0.20Cb 0.16 ± 0.04Cc
    40 ~ 50 1.27 ± 0.07Ab 0.90 ± 0.34Acd
    50 ~ 60 0.53 ± 0.05Ac 0.34 ± 0.08Bd
    60 ~ 70 0.26 ± 0.06d
    总计
    Total
    13.53 ± 0.28A 11.33 ± 1.17B 4.20 ± 0.34C 4.42 ± 0.08C 2.44 ± 0.20D 2.74 ± 0.46D
    注:不同小写字母表示相同湿地类型内各土层间差异显著(P < 0.05)。Note: different lowercase letters indicate significant differences among soil layers within the same wetland types (P < 0.05).
    下载: 导出CSV

    表  5   不同生境下湿地碳氮储量与环境因子的逐步多元线性回归分析

    Table  5   Stepwise multiple linear regression analysis of carbon and nitrogen storage and environment factors of wetlands in different habitats

    生境类型
    Habitat type
    指标
    Index
    水位
    Water level
    水位波动幅度
    Water level
    fluctuation
    amplitude
    有机质
    Organic
    matter
    全氮
    Total N
    全磷
    Total P
    截距
    Intercept
    R2 P F
    下部生境
    (长期水淹生境,L和C)
    Lower habitat (permanently
    flooded habitat, L and C)
    植被碳储量
    Vegetation carbon storage
    −0.075** 3.205*** 0.869 < 0.01 34.033
    土壤碳储量
    Soil carbon storage
    6.975** 149.304*** 0.920 < 0.01 58.127
    生态系统碳储量
    Ecosystem carbon storage
    6.900** 152.509*** 0.917 < 0.01 56.017
    中部生境
    (季节性水淹生境,D和LN)
    Intermediate habitat
    (seasonally flooded
    habitat, D and LN)
    植被碳储量
    Vegetation carbon storage
    −2.010** −28.899 + 0.813 < 0.01 22.743
    土壤碳储量
    Soil carbon storage
    38.798** 91.644*** 0.847 < 0.01 28.616
    生态系统碳储量
    Ecosystem carbon storage
    −1.616** 92.705*** 0.882 < 0.01 38.400
    上部生境
    (无积水生境,LX和LT)
    Upper habitat (no standing
    water habitat, LX and LT)
    植被碳储量
    Vegetation carbon storage
    135.469* 41.533* 0.804 < 0.05 21.459
    土壤碳储量
    Soil carbon storage
    0.734* 32.768* 0.894 < 0.05 19.600
    生态系统碳储量
    Ecosystem carbon storage
    −0.848* 185.136*** 0.651 < 0.05 10.336
    下部生境
    (长期水淹生境,L和C)
    Lower habitat
    (permanently flooded
    habitat, L and C)
    植被氮储量
    Vegetation nitrogen storage
    −0.04** 0.118*** 0.869 < 0.01 34.286
    土壤氮储量
    Soil nitrogen storage
    0.221* 10.592*** 0.809 < 0.05 22.216
    生态系统氮储量
    Ecosystem nitrogen storage
    0.217* 10.710*** 0.800 < 0.05 21.047
    中部生境
    (季节性水淹生境,D和LN)
    Intermediate habitat
    (seasonally flooded
    habitat, D and LN)
    植被氮储量
    Vegetation nitrogen storage
    −0.20** −0.186 + 0.837 < 0.05 26.586
    土壤氮储量
    Soil nitrogen storage
    −0.078** 0.007* 6.050** 0.963 < 0.05 65.463
    生态系统氮储量
    Ecosystem nitrogen storage
    −0.088* 8.418** 0.760 < 0.05 16.820
    上部生境
    (无积水生境, LX和LT)
    Upper habitat (no standing
    water habitat, LX and LT)
    植被氮储量
    Vegetation nitrogen storage
    1.802* 0.551** 0.721 < 0.01 13.894
    土壤氮储量
    Soil nitrogen storage
    2.335* 0.056 0.680 < 0.05 11.646
    生态系统氮储量
    Ecosystem nitrogen storage
    2.239* 1.068 0.697 < 0.05 12.506
    注:+表示在P < 0.1水平上显著;*表示在P < 0.05水平上显著;**表示在P < 0.01水平上显著;***表示在P < 0.001水平上显著。Notes: + indicates significance at P < 0.1 level; * indicates significance at P < 0.05 level; ** indicates significance at P < 0.01 level; *** indicates significance at P < 0.001 level.
    下载: 导出CSV
  • [1]

    Mitra S, Wassmann R, Vlek P L G. An appraisal of global wetland area and its organic carbon stock[J]. Current Science, 2005, 88(1): 25−35.

    [2]

    Mitsch W J, Bernal B, Nahlik A M, et al. Wetlands, carbon, and climate change[J]. Landscape Ecology, 2013, 28(4): 583−597. doi: 10.1007/s10980-012-9758-8

    [3]

    Koehler A N N K, Sottocornola M, Kiely G. How strong is the current carbon sequestration of an Atlantic blanket bog?[J]. Global Change Biology, 2011, 17(1): 309−319. doi: 10.1111/j.1365-2486.2010.02180.x

    [4]

    Dayathilake D, Lokupitiya E, Wijeratne V. Estimation of soil carbon stocks of urban freshwater wetlands in the Colombo Ramsar Wetland City and their potential role in climate change mitigation[J]. Wetlands, 2021, 41: 1−10. doi: 10.1007/s13157-021-01421-w

    [5]

    Abegaz A, Winowiecki L A, Vågen T G, et al. Spatial and temporal dynamics of soil organic carbon in landscapes of the upper Blue Nile Basin of the Ethiopian Highlands[J]. Agriculture, Ecosystems & Environment, 2016, 218: 190−208.

    [6]

    Xie E, Zhang Y, Huang B, et al. Spatiotemporal variations in soil organic carbon and their drivers in southeastern China during 1981−2011[J/OL]. Soil and Tillage Research, 2021, 205: 104763. [2020−08−22]. https://doi.org/10.1016/j.still.2020.104763.

    [7]

    Gorham E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming[J]. Ecological Applications, 1991, 1(2): 182−195. doi: 10.2307/1941811

    [8]

    Roulet N T. Peatlands, carbon storage, greenhouse gases, and the Kyoto Protocol: prospects and significance for Canada[J]. Wetlands, 2000, 20(4): 605−615. doi: 10.1672/0277-5212(2000)020[0605:PCSGGA]2.0.CO;2

    [9]

    Anderson N J, D’andrea W, Fritz S C. Holocene carbon burial by lakes in SW greenland[J]. Global Change Biology, 2009, 15(11): 2590−2598. doi: 10.1111/j.1365-2486.2009.01942.x

    [10]

    Bills J S, Jacinthe P A, Tedesco L P. Soil organic carbon pools and composition in a wetland complex invaded by reed canary grass[J]. Biology and Fertility of Soils, 2010, 46: 697−706. doi: 10.1007/s00374-010-0476-6

    [11]

    Cotrufo M F, Lavallee J M. Soil organic matter formation, persistence, and functioning: a synthesis of current understanding to inform its conservation and regeneration[J]. Advances in Agronomy, 2022, 172: 1−66.

    [12]

    Wang M L, Lai J P, Hu K T, et al. Compositions and sources of stable organic carbon and nitrogen isotopes in surface sediments of Poyang Lake[J]. China Environmental Science, 2014, 34(4): 1019−1025.

    [13]

    Gudasz C, Bastviken D, Steger K, et al. Temperature-controlled organic carbon mineralization in lake sediments[J]. Nature, 2010, 466: 478−481. doi: 10.1038/nature09186

    [14]

    Keiliweit M, Wanzek T, Kleber M, et al. Anaerobic microsites have an unaccounted role in soil carbon stabilization[J/OL]. Nature Communications, 2017, 8(1): 1771 [2023−01−19]. https://www.nature.com/articles/s41467-017-01406-6.

    [15]

    Li J, Wen Y, Zhou Q, et al. Influence of vegetation and substrate on the removal and transformation of dissolved organic matter in horizontal subsurface-flow constructed wetlands[J]. Bioresource Technology, 2008, 99(11): 4990−4996. doi: 10.1016/j.biortech.2007.09.012

    [16]

    Dai E F, Zhai R X, Ge Q S, et al. Detecting the storage and change on topsoil organic carbon in grasslands of Inner Mongolia from 1980s to 2010s[J]. Journal of Geographical Sciences, 2014, 24(6): 1035−1046. doi: 10.1007/s11442-014-1136-9

    [17]

    Chen X, Yang X, Dong X, et al. Nutrient dynamics linked to hydrological condition and anthropogenic nutrient loading in Chaohu Lake (southeast China)[J]. Hydrobiologia, 2011, 661(1): 223−234. doi: 10.1007/s10750-010-0526-y

    [18]

    Iacob O, Rowan J S, Brown I, et al. Evaluating wider benefits of natural flood management strategies: an ecosystem-based adaptation perspective[J]. Hydrology Research, 2014, 45(6): 774−787. doi: 10.2166/nh.2014.184

    [19]

    Carlson M M L, Wilcox D A, Wiley M J. Hydrogeology and landform morphology affect plant communities in a Great Lakes ridge-and-swale wetland complex[J]. Wetlands, 2020, 40(6): 2209−2224. doi: 10.1007/s13157-020-01312-6

    [20]

    Shipley B, Keddy P A, Lefkovitch L P. Mechanisms producing plant zonation along a water depth gradient: a comparison with the exposure gradient[J]. Canadian Journal of Botany, 1991, 69(7): 1420−1424. doi: 10.1139/b91-184

    [21]

    Qi Q, Zhang D, Zhang M, et al. Hydrological and microtopographic effects on community ecological characteristics of Carex schmidtii tussock wetland[J]. Science of the Total Environment, 2021, 780: 146630. doi: 10.1016/j.scitotenv.2021.146630

    [22]

    Liu Y, Wang L, Liu H, et al. Comparison of carbon sequestration ability and effect of elevation in fenced wetland plant communities of the Xilin River floodplains: a model case study[J]. River Research Applications, 2015, 31(7): 858−866. doi: 10.1002/rra.2777

    [23] 梅雪英, 张修峰. 崇明东滩湿地自然植被演替过程中储碳及固碳功能变化[J]. 应用生态学报, 2007, 18(4): 933−936. doi: 10.3321/j.issn:1001-9332.2007.04.037

    Mei X Y, Zhang X F. Carbon storage and carbon fixation during the succession of natural vegetation in wetland ecosystem on east beach of Chongming Island[J]. Chinese Journal of Applied Ecology, 2007, 18(4): 933−936. doi: 10.3321/j.issn:1001-9332.2007.04.037

    [24]

    Joabsson A, Christensen T R. Methane emissions from wetlands and their relationship with vascular plants: an arctic example[J]. Global Change Biology, 2001, 7(8): 919−932. doi: 10.1046/j.1354-1013.2001.00044.x

    [25]

    Gan X J, Cai Y T, Choi C Y, et al. Potential impacts of invasive Spartina alterniflora on spring bird communities at Chongming Dongtan, a Chinese wetland of international importance[J]. Estuarine, Coastal Shelf Science, 2009, 83(2): 211−218. doi: 10.1016/j.ecss.2009.03.026

    [26]

    Reddy K R, Delaune R D. Biogeochemistry of wetlands: science and applications[M]. New York: CRC Press, 2008.

    [27]

    Diamond J S, Epstein J M, Cohen M J, et al. A little relief: ecological functions and autogenesis of wetland microtopography[J/OL]. Wiley Interdisciplinary Reviews: Water, 2021, 8(1): e1493 [2023−02−25]. https://doi.org/10.1002/wat2.1493.

    [28]

    Yimer F, Ledin S, Abdeikadit A. Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia[J]. Geoderma, 2006, 135: 335−344. doi: 10.1016/j.geoderma.2006.01.005

    [29]

    Zhao Q, Bai J, Liu Q, et al. Spatial and seasonal variations of soil carbon and nitrogen content and stock in a tidal salt marsh with Tamarix chinensis, China[J]. Wetlands, 2016, 36(1): 145−152.

    [30]

    Reich P B, Hobbie S E, Lee T, et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2[J]. Nature, 2006, 440: 922−925. doi: 10.1038/nature04486

    [31]

    Bai J H, Ouyang H, Xiao R, et al. Spatial variability of soil carbon, nitrogen, and phosphorus content and storage in an alpine wetland in the Qinghai-Tibet Plateau, China[J]. Australian Journal of Soil Research, 2010, 48(8): 730−736. doi: 10.1071/SR09171

    [32]

    Liu W, Chen S, Qin X, et al. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau[J]. Environmental Research Letters, 2012, 7(3): 1−12.

    [33] 刘顺, 罗达, 刘千里, 等. 川西亚高山不同森林生态系统碳氮储量及其分配格局[J]. 生态学报, 2017, 37(4): 1074−1083.

    Liu S, Luo D, Liu Q L, et al. Carbon and nitrogen storage and distribution in different forest ecosystems in the subalpine of western Sichuan[J]. Acta Ecologica Sinica, 2017, 37(4): 1074−1083.

    [34]

    Downing J A, Prairie Y, Cole J, et al. The global abundance and size distribution of lakes, ponds, and impoundments[J]. Limnology Oceanography, 2006, 51(5): 2388−2397. doi: 10.4319/lo.2006.51.5.2388

    [35]

    Buffam I, Turner M G, Desai A R, et al. Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district[J]. Global Change Biology, 2011, 17(2): 1193−1211. doi: 10.1111/j.1365-2486.2010.02313.x

    [36] 叶春, 李春华, 邓婷婷. 论湖滨带的结构与生态功能[J]. 环境科学研究, 2015, 28(2): 171−181.

    Ye C, Li C H, Deng T T. Structures and ecological functions of lake littoral zones[J]. Research of Environmental Sciences, 2015, 28(2): 171−181.

    [37]

    Zheng P R, Li C H, Ye C, et al. Characteristic and affecting factors of wetland herbs’ distribution in the radiant belt toward land of lake-terrestrial ecotone in Tibet, China[J]. Environmental Sciences Europe, 2022, 34(1): 1−16. doi: 10.1186/s12302-021-00581-0

    [38]

    Mitsch W J, Gosselink J G. Wetlands[M]. New York: John Wiley & Sons, 2015.

    [39]

    Coops H, Beklioglu M, Crisman T L. The role of water-level fluctuations in shallow lake ecosystems-workshop conclusions[J]. Hydrobiologia, 2003, 506(1): 23−27.

    [40] 黄昕琦, 李琳, 吕烨, 等. 内蒙古乌梁素海湿地土壤有机碳组成与碳储量[J]. 湿地科学, 2015, 13(2): 252−257.

    Huang X Q, Li L, Lü Y, et al. Composition and storage of organic carbon in soils of in Ulansuhai Wetlands in Inner Mongolia Autonous Region[J]. Wetland Science, 2015, 13(2): 252−257.

    [41] 刘旭, 李畅游, 贾克力, 等. 北方干旱区湖泊湿地沉积物有机碳分布及碳储量特征研究: 以乌梁素海为例[J]. 生态环境学报, 2013, 22(2): 319−324. doi: 10.3969/j.issn.1674-5906.2013.02.024

    Liu X, Li C Y, Jia K L, et al. Spatial distribution and storage characteristic of organic carbon in sediments of lake wetland in northern arid areas: a case study of Wuliangsuhai Lake[J]. Ecology and Environmental Sciences, 2013, 22(2): 319−324. doi: 10.3969/j.issn.1674-5906.2013.02.024

    [42]

    Dian L, Jiang L J, Wu X F, et al. Soil organic carbon and its controlling factors in the lakeside of west Mauri Lake along the wetland vegetation types[J/OL]. Processes, 2022, 10(4): 765 [2023−04−13]. https://doi.org/10.3390/pr10040765.

    [43]

    Bao K, Wang G, Jia L, et al. Anthropogenic impacts in the Changbai Mountain region of NE China over the last 150 years: geochemical records of peat and altitude effects[J]. Environmental Science and Pollution Research, 2019, 26: 7512−7524. doi: 10.1007/s11356-019-04138-w

    [44]

    Mu C C, Han S J, Luo J C, et al. Biomass distribution patterns of ecotones between forest and swamp in Changbai Mountain[J]. Journal of Forestry Research, 2000, 11: 198−202. doi: 10.1007/BF02855524

    [45] 杨金艳, 王传宽. 东北东部森林生态系统土壤碳贮量和碳通量[J]. 生态学报, 2005, 25(11): 2875−2882. doi: 10.3321/j.issn:1000-0933.2005.11.012

    Yang J Y, Wang C K. Soil carbon storage and flux of temperate forest ecosystems in northeastern China[J]. Acta Ecologica Sinica, 2005, 25(11): 2875−2882. doi: 10.3321/j.issn:1000-0933.2005.11.012

    [46] 牟长城, 王彪, 卢慧翠, 等. 大兴安岭天然沼泽湿地生态系统碳储量[J]. 生态学报, 2013, 33(16): 4956−4965. doi: 10.5846/stxb201212271884

    Mu C C, Wang B, Lu H C, et al. Carbon storage of natural wetland ecosystem in Daxing’anling of China[J]. Acta Ecologica Sinica, 2013, 33(16): 4956−4965. doi: 10.5846/stxb201212271884

    [47] 王伯炜, 牟长城, 王彪. 长白山原始针叶林沼泽湿地生态系统碳储量[J]. 生态学报, 2019, 39(9): 3344−3354.

    Wang B W, Mu C C, Wang B. Carbon storage of a primary coniferous forested wetland ecosystem in the temperate Changbai Mountain of China[J]. Acta Ecologica Sinica, 2019, 39(9): 3344−3354.

    [48] 梅莉, 张卓文, 谷加存, 等. 水曲柳和落叶松人工林乔木层碳、氮储量及分配[J]. 应用生态学报, 2009, 20(8): 1791−1796.

    Mei L, Zhang Z W, Gu J C, et al. Carbon and nitrogen storages and allocation in tree layers of Fraxinus mandshurica and Larix gmelinii plantations[J]. Chinese Journal of Applied Ecology, 2009, 20(8): 1791−1796.

    [49] 施家月, 王希华, 闫恩荣, 等. 浙江天童常见植物幼树器官的氮磷养分特征[J]. 华东师范大学学报(自然科学版), 2006(2): 121−129.

    Shi J Y, Wang X H, Yan E R, et al. Saplings nutrient characteristics of common plants in Tiantong National Forest Park[J]. Journal of East China Normal University (Natural Science), 2006(2): 121−129.

    [50] 彭文宏, 牟长城, 常怡慧, 等. 东北寒温带永久冻土区森林沼泽湿地生态系统碳储量[J]. 土壤学报, 2020, 57(5): 1526−1538. doi: 10.11766/trxb201910210076

    Peng W H, Mu C C, Chang Y H, et al. Carbon storage of forested wetland ecosystems in the cold temperate permafrost region, Northeast China[J]. Acta Pedologica Sinica, 2020, 57(5): 1526−1538. doi: 10.11766/trxb201910210076

    [51]

    Blais A M, Lorrain S, Plourde Y, et al. Organic carbon densities of soils and vegetation of tropical, temperate and boreal forests [M]. Berlin: Springer, 2005: 155−185.

    [52]

    Xu L, He N P, Yu G R. Nitrogen storage in China’s terrestrial ecosystems[J]. Science of the Total Environment, 2020, 709: 136201. doi: 10.1016/j.scitotenv.2019.136201

    [53] 高俊琴, 雷光春, 李丽, 等. 若尔盖高原三种湿地土壤有机碳分布特征[J]. 湿地科学, 2010, 8(4): 327−330.

    Gao J Q, Lei G C, Li L, et al. The distribution characteristics of soil organic carbon in three kinds of wetland soils in Zoige Plateau[J]. Wetland Science, 2010, 8(4): 327−330.

    [54]

    Fenner N, Freeman C. Drought-induced carbon loss in peatlands[J]. Nature Geoscience, 2011, 4(12): 895−900. doi: 10.1038/ngeo1323

    [55]

    Guo X L, Lu X G, Tong S Z, et al. Influence of environment and substrate quality on the decomposition of wetland plant root in the Sanjiang Plain, Northeast China[J]. Journal of Environmental Sciences, 2008, 20(12): 1445−1452. doi: 10.1016/S1001-0742(08)62547-4

    [56] 任玉连, 陆梅, 曹乾斌, 等. 南滚河国家级自然保护区典型植被类型土壤有机碳及全氮储量的空间分布特征[J]. 北京林业大学学报, 2019, 41(11): 104−115.

    Ren Y L, Lu M, Cao Q B, et al. Spatial distribution characteristics of soil organic carbon and total nitrogen stocks across the different typical vegetation types in Nangunhe National Nature Reserve, southwestern China[J]. Journal of Beijing Forestry University, 2019, 41(11): 104−115.

    [57]

    Blodau C, Moore T R. Experimental response of peatland carbon dynamics to a water table fluctuation[J]. Aquatic Sciences, 2003, 65(1): 47−62. doi: 10.1007/s000270300004

    [58] 李忠, 孙波, 林心雄. 我国东部土壤有机碳的密度及转化的控制因素[J]. 地理科学, 2001, 21(4): 301−307. doi: 10.3969/j.issn.1000-0690.2001.04.003

    Li Z, Sun B, Lin X X. Density of soil organic carbon and the factors controlling its turnover in east China[J]. Scientia Geographica Sinica, 2001, 21(4): 301−307. doi: 10.3969/j.issn.1000-0690.2001.04.003

    [59]

    Shen J, Yuan L, Zhang J, et al. Phosphorus dynamics: from soil to plant[J]. Plant Physiology, 2011, 156(3): 997−1005. doi: 10.1104/pp.111.175232

    [60]

    Malhotra H, Vandana, Sharma S, et al. Phosphorus nutrition: plant growth in response to deficiency and excess[J]. Plant Nutrients Abiotic Stress Tolerance, 2018: 171−190.

    [61]

    Bai J H, Ouyang H, Deng W, et al. Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands[J]. Geoderma, 2005, 124(1/2): 181−192.

    [62]

    Zhong Y, Jiang M, Middleton B A H, et al. Effects of water level alteration on carbon cycling in peatlands[J/OL]. Ecosystem Health Sustainability, 2020, 6(1): 1806113 [2022−09−08]. https://doi.org/10.1080/20964129.2020.1806113.

  • 期刊类型引用(1)

    1. 卜弘毅,朱正杰,崔素珍,张明,李成之,许志敏,李典鹏,曹学城,孙天一,雷礼纲. 洪泽湖不同湿地类型表层土壤与沉积物碳氮含量特征分析. 湿地科学与管理. 2025(01): 45-51 . 百度学术

    其他类型引用(0)

图(2)  /  表(5)
计量
  • 文章访问数:  285
  • HTML全文浏览量:  77
  • PDF下载量:  36
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-07-23
  • 修回日期:  2024-01-10
  • 录用日期:  2024-06-02
  • 网络出版日期:  2024-06-04
  • 刊出日期:  2024-08-29

目录

    /

    返回文章
    返回