Spatial differentiation law of carbon and nitrogen storage along the environmental gradient of Yuanchi lakeshore wetland ecosystems in Changbai Mountain of northeastern China
-
摘要:目的
探究湖泊沿岸湿地生态系统碳氮储量沿湖岸至高地的空间分异规律及形成机制,将有助于减少湿地碳储量估算的不确定性。
方法采用相对生长方程、碳/氮分析仪,同步测定长白山园池沿湖岸至高地环境梯度依次分布的6种沼泽类型(芦苇沼泽L、草丛沼泽C、杜香沼泽D、落叶松泥炭藓沼泽LN、落叶松藓类沼泽LX、落叶松苔草沼泽LT)的生态系统碳、氮储量(植被和土壤)及其相关环境因子(水位、水位波动幅度、土壤有机质、全氮和全磷等),揭示其空间分异规律及其形成机制。
结果(1)植被碳、氮储量(2.17 ~ 69.98 t/hm2和0.058 ~ 0.940 t/hm2)沿湖岸至高地环境梯度均呈递增规律(LT ≈ LX > LN > D > C > L),且均以优势植被层占主体地位(73.72% ~ 93.37%和71.57% ~ 85.24%);(2)土壤碳、氮储量(67.45 ~ 243.21 t/hm2和2.44 ~ 13.53 t/hm2)沿该环境梯度呈阶梯式递减规律(L > C > D ≈ LN > LX ≈ LT)且其碳储量垂直空间分异存在先恒定后递减(L)、先增后降(C、D和LN)和递减(LX和LT))3种类型,其氮储量垂直空间分异与碳储量基本一致(仅C和LX略有不同);(3)生态系统碳、氮储量(122.20 ~ 245.38 t/hm2和3.31 ~ 13.58 t/hm2)沿该环境梯度分别呈先降低后恒定型或阶梯式递减型变化规律,且其土壤碳、氮储量占比呈递减趋势(50.27% ~ 99.11%和73.48% ~ 99.57%),而植被碳、氮储量占比却呈递增趋势(0.89% ~ 49.73%和0.43% ~ 26.52%);(4)生态系统碳储量在湖岸至高地水分环境梯度的下、中、上部生境地段依次受水位促进、水位抑制和水位波动幅度抑制,而氮储量在相应生境地段上依次受水位促进、水位波动幅度抑制和土壤全氮促进。
结论园池沿岸湿地生态系统碳氮储量沿湖岸至高地水分环境梯度存在明显的空间分异规律,且其形成机制为微地形引起的水位梯度和植被类型分布决定着各沼泽类型的碳氮储存能力,故准确测定湖岸带各沼泽类型碳氮储量将有助于减少集水区尺度上碳氮储量估算的不确定性。
Abstract:ObjectiveExploring the spatial differentiation and formation mechanism of carbon and nitrogen storage in wetland ecosystem along the lakeshore to the highlands will help to reduce the uncertainty of wetland carbon storage estimation.
MethodThe ecosystem carbon and nitrogen storage (vegetation and soil), and related environmental factors (water level, water level fluctuation amplitude, soil organic matter, total nitrogen and total phosphorus, etc.) of six plant communities (L-Phragmites australis swamp, C-tussock swamp, D-Ledum palustre swamp, LN-Larix olgensis-Sphagnum magellanicum swamp, LX-Larix olgensis-moss swamp and LT-Larix olgensis-Carex schmidtii swamp) distributing along the lakeshore to the highland environmental gradient were simultaneously determined by relative growth equation and carbon/nitrogen analyzer method, to reveal its spatial differentiation law and its formation mechanism.
Result(1) The carbon and nitrogen storage (2.17−69.98 t/ha and 0.058−0.940 t/ha) of the vegetation increased progressively along the environmental gradient from lakeshore to upland (LT ≈ LX > LN > D > C > L), in which the dominant vegetation layer accounted for main position (73.72%−93.37% and 71.57%−85.24%). (2) The soil carbon and nitrogen storage (67.45−243.21 t/ha and 2.44−13.53 t/ha) decreased along the environmental gradient in a step-by-step manner (L > C > D ≈ LN > LX ≈ LT), there were three types of vertical spatial differentiation of carbon stock: first constant and then decreasing (L), first increasing and then decreasing (C, D and LN), and decreasing (LX and LT), and those of nitrogen storage were basically the same as that of carbon stock (only C and LX were slightly different). (3) The carbon and nitrogen storage (122.20−245.38 t/ha and 3.31−13.58 t/ha) of the ecosystem decreased first and then steadily or decreased in a step-by-step manner along the environmental gradient, respectively, the proportion of carbon and nitrogen in soil decreased (50.27%−99.11% and 73.48%−99.57%), but that of vegetation increased (0.89%−49.73% and 0.43%−26.52%). (4) The carbon storage of ecosystems at the lower, middle and upper habitats of the water environmental gradient from lakeshore to upland was promoted by water level, restrained by water level and restrained by water level fluctuation amplitude in turn, while the nitrogen storage was promoted by water level, restrained by water level fluctuation amplitude and promoted by soil total nitrogen in the corresponding habitat.
ConclusionThe carbon and nitrogen storage of wetland ecosystem in lakeshore of Yuanchi Lake has obvious spatial differentiation law along the water environmental gradient from lakeshore to upland, and its formation mechanism is that the water level gradient and distribution of vegetation types caused by microtopography determine the carbon and nitrogen storage capacity of each marsh type. Therefore, accurate determination of carbon and nitrogen storage of each marsh type in the lakeshore zone will help to reduce the uncertainty of carbon and nitrogen storage estimation at catchment scale.
-
-
图 2 长白山园池沿湖岸至高地环境梯度生态系统碳、氮储量及其分配
不同大写字母表示不同湿地生态系统碳氮储量差异显著(P < 0.05)。Different capital letters mean significant difference between wetland types of environmental carbon and nitrogen storage (P < 0.05).
Figure 2. Carbon and nitrogen storage and distribution along the environmental gradient from lakeshore to upland inYuanchi, Changbai Mountain
表 1 长白山园池沿岸3种森林湿地类型林分特征
Table 1 Stand characteristics of three forest wetland types along lakeshore in Yuanchi, Changbai Mountain
湿地类型
Wetland type树种
Tree species胸高断面积/(m2·hm−2)
Basal area/(m2·ha−1)平均胸径
Mean DBH/cm密度/(株·hm−2)
Density/(plant·ha−1)胸径范围
DBH range/cmLN 落叶松 Larix olgensis 14.90 9.25 1 933 4 ~ 18 LX 落叶松 Larix olgensis 26.28 11.08 2 094 4 ~ 26 LT 落叶松 Larix olgensis 22.75 12.59 1 522 4 ~ 26 注:LN.落叶松泥炭藓沼泽;LX.落叶松藓类沼泽;LT.落叶松苔草沼泽。下同。Notes: LN, Larix olgensis-Sphagnum magellanicum swamp; LX, Larix olgensis-moss swamp; LT, Larix olgensis-Carex schmidtii swamp. The same below. 表 2 长白山园池沿岸6种湿地土壤理化性质
Table 2 Soil physical and chemical properties of six wetland types along lakeshore in Yuanchi, Changbai Mountain
湿地类型
Wetland type水位
Water level/cm水位波动幅度
Water level fluctuation
amplitude/cm土壤温度
Soil
temperature/℃有机质
Organic
matter/(g·kg−1)全氮
Total
nitrogen/(g·kg−1)全磷
Total
phosphorus/(g·kg−1)L 13.50 ± 1.94A 31.50± 1.00D 6.35± 0.25A 302.11 ± 22.13A 10.33 ± 0.49A 0.44 ± 0.01B C 3.13 ± 1.82B 28.83± 0.57D 6.10 ± 0.14A 263.94 ± 8.68B 10.00 ± 0.37A 0.49 ± 0.06B D −18.67 ± 1.53C 45.33 ± 4.37BC 4.24 ± 0.11B 228.34 ± 14.46C 5.24 ± 0.26B 0.61 ± 0.10A LN −32.80 ± 2.73D 42.63 ± 2.97C 3.94 ± 0.26C 208.65 ± 14.42C 4.93 ± 0.97B 0.41 ± 0.03B LX −58.67 ± 1.52E 60.17 ± 5.11A 3.92 ± 0.06C 47.78 ± 5.89D 1.00 ± 0.08C 0.18 ± 0.04C LT −69.33 ± 1.39F 48.33 ± 5.61B 3.96 ± 0.09BC 55.81 ± 4.65D 1.17 ± 0.14C 0.21 ± 0.02C 注:表中数据为平均值 ± 标准差;L.芦苇沼泽;C.草丛沼泽;D.杜香沼泽。不同大写字母表示不同湿地类型之间差异显著(P < 0.05)。下同。Notes: data in the table are mean ± SD. L, Phragmites australis swamp; C, tussock swamp; D, Ledum palustre swamp. Different capital letters mean significant difference among different wetland types (P < 0.05). The same below. 表 3 长白山园池沿湖岸至高地分布的6种湿地类型的植被碳氮储量
Table 3 Vegetation carbon and nitrogen storage of six wetland types along the environmental gradient from lakeshore to upland in Yuanchi, Changbai Mountain
指标
Index层次
Layer湿地类型 Wetland type L C D LN LX LT 生物量/(t·hm−2)
Biomass/(t·ha−1)乔木层 Tree layer 71.49 ± 28.71B 135.28 ± 14.98A 141.72 ± 13.01A 灌木层 Shrub layer 11.41 ± 2.00A 4.58 ± 1.61B 3.96 ± 1.17B 4.08 ± 1.46B 草本层 Herb layer 4.14 ± 0.35A 5.57 ± 0.87A 2.35 ± 0.44B 3.46 ± 0.97B 3.40 ± 0.57B 3.28 ± 0.50B 凋落物层 Litter layrt 1.09 ± 0.27C 1.62 ± 0.54B 1.71 ± 0.53B 2.89 ± 0.60A 2.61 ± 0.59A 2.98 ± 0.57A 植被 Vegetation 5.24 ± 0.39E 7.18 ± 0.08D 15.47 ± 1.42C 82.42 ± 12.53B 145.24 ± 14.04A 152.05 ± 13.67A 碳含量 Carbon
content/(g·kg−1)乔木层 Tree layer 462.37 ± 4.16B 472.64 ± 7.78AB 479.51 ± 0.81A 灌木层 Shrub layer 476.97 ± 5.59A 477.18 ± 6.10A 466.81 ± 6.65AB 463.56 ± 7.04B 草本层 Herb layer 421.34 ± 3.00C 422.80 ± 5.84C 465.55 ± 15.65A 455.63 ± 6.48AB 457.46 ± 13.17A 445.52 ± 8.19B 凋落物层 Litter layer 377.07 ± 6.32B 403.13 ± 8.41B 461.55 ± 11.49A 448.95 ± 16.30A 461.56 ± 34.09A 411.41 ± 37.01B 植被 Vegetation 399.20 ± 1.83D 412.97 ± 6.92C 468.02 ± 0.19A 461.03 ± 3.31AB 464.62 ± 7.73A 450.00 ± 8.52B 碳储量/(t·hm−2)
Carbon storage/
(t·ha−1)乔木层 Tree layer 32.92 ± 7.73B 62.22 ± 6.75A 65.35 ± 5.95A 灌木层 Shrubd layer 5.40 ± 0.87A 2.35 ± 1.01B 1.86 ± 0.55B 1.92 ± 0.70B 草本层 Herb layer 1.75 ± 0.14B 2.36 ± 0.38A 1.11 ± 0.16C 1.74 ± 0.84B 1.56 ± 0.28BC 1.48 ± 0.24BC 凋落物层 Litter layer 0.41 ± 0.06C 0.64 ± 0.19B 0.79 ± 0.22B 1.33 ± 0.09A 1.20 ± 0.31A 1.23 ± 0.30A 植被 Vegetation 2.17 ± 0.16E 3.00 ± 0.04D 7.30 ± 0.62C 38.34 ± 5.92B 66.85 ± 2.37A 69.98 ± 7.63A 碳储量分配比
Carbon storage
allocation/%乔木层 Tree layer 85.10 ± 7.61 93.00 ± 1.27 93.37 ± 0.20 灌木层 Shrub layer 73.72 ± 5.49 6.53 ± 3.91 2.83 ± 0.65 2.74 ± 0.27 草本层 Herb layer 81.03 ± 1.08 78.51 ± 4.44 15.33 ± 3.42 4.85 ± 3.18 2.37 ± 0.60 2.10 ± 0.20 凋落物层 Litter layer 18.97 ± 1.08 21.49 ± 4.44 10.95 ± 2.09 3.52 ± 0.59 1.80 ± 0.13 1.78 ± 0.45 氮含量
Nitrogen content/
(g·kg−1)乔木层 Tree layer 11.12 ± 0.47A 12.07 ± 0.26A 11.95 ± 0.76A 灌木层 Shrub layer 12.63 ± 0.35B 14.33 ± 1.69B 17.60 ± 2.28A 15.55 ± 0.58AB 草本层 Herb layer 9.71 ± 0.38BC 13.62 ± 0.09A 7.83 ± 0.28C 11.14 ± 2.55B 15.03 ± 1.37A 14.44 ± 0.46A 凋落物层 Litter layer 12.62 ± 0.89B 15.78 ± 1.29A 17.52 ± 5.15A 10.84 ± 1.12B 10.73 ± 1.62B 13.72 ± 1.87AB 植被 Vegetation 11.16 ± 0.26B 14.70 ± 0.67A 12.66 ± 1.57B 11.86 ± 0.83B 13.86 ± 1.23AB 13.91 ± 0.46AB 氮储量/(t·hm−2)
Nitrogen storage/
(t·ha−1)乔木层 Tree layer 0.340 ± 0.093B 0.735 ± 0.09A 0.802 ± 0.10A 灌木层 Shrub layer 0.121 ± 0.02A 0.052 ± 0.02B 0.053 ± 0.02B 0.050 ± 0.02B 草本层 Herb layer 0.044 ± 0.01B 0.081 ± 0.01A 0.018 ± 0.00C 0.044 ± 0.02B 0.049 ± 0.01B 0.047 ± 0.01B 凋落物层 Litter layer 0.014 ± 0.01C 0.025 ± 0.01B 0.030 ± 0.01B 0.032 ± 0.00B 0.028 ± 0.01B 0.041 ± 0.01A 植被 Vegetation 0.058 ± 0.01E 0.107 ± 0.00D 0.169 ± 0.01C 0.467 ± 0.06B 0.865 ± 0.08A 0.940 ± 0.11A 氮储量分配比
Nitrogen storage
allocation/%乔木层 Tree layer 71.75 ± 12.28 84.80 ± 2.51 85.24 ± 1.34 灌木层 Shrub layer 71.57 ± 4.72 11.43 ± 5.30 6.19 ± 1.44 5.31 ± 0.28 草本层 Herb layer 76.01 ± 0.86 76.26 ± 6.20 10.59 ± 2.00 9.95 ± 5.93 5.73 ± 1.40 5.05 ± 0.74 凋落物层 Litter layer 23.99 ± 0.86 23.74 ± 6.20 17.84 ± 2.78 6.88 ± 1.06 3.27 ± 0.28 4.40 ± 1.10 表 4 长白山园池沿湖岸至高地分布的6种湿地类型的土壤碳氮储量
Table 4 Soil carbon and nitrogen storage of six wetland types along the environmental gradient from lakeshore to upland in Yuanchi, Changbai Mountain
指标
Index土层深度
Soil depth/cm湿地类型 Wetland type L C D LN LX LT 土壤密度
Bulk density/
(g·cm−3)0 ~ 10 0.14 ± 0.01Bd 0.14 ± 0.01Bd 0.10 ± 0.01Cd 0.14 ± 0.02Bc 0.74 ± 0.07Aa 0.66 ± 0.08Aa 10 ~ 20 0.14 ± 0.01Dde 0.15 ± 0.01Dd 0.33 ± 0.03Cc 0.40 ± 0.06Bb 0.75 ± 0.08Aa 0.78 ± 0.06Aa 20 ~ 30 0.14 ± 0.04De 0.32 ± 0.05Cc 0.66 ± 0.06Ba 0.60 ± 0.03Ba 0.72 ± 0.03ABa 0.78 ± 0.07Aa 30 ~ 40 0.49 ± 0.04Bc 0.55 ± 0.10ABb 0.52 ± 0.04Bb 0.47 ± 0.12Bab 0.69 ± 0.05Aa 0.67 ± 0.11Aa 40 ~ 50 0.91 ± 0.04Aa 0.78 ± 0.03Ba 50 ~ 60 0.58 ± 0.03Ab 0.60 ± 0.03Ab 60 ~ 70 0.49 ± 0.02c 平均值
Mean0.41 ± 0.01B 0.42 ± 0.01B 0.40 ± 0.01B 0.40 ± 0.01B 0.72 ± 0.01A 0.72 ± 0.01A 碳含量
Carbon content/
(g·kg−1)0 ~ 10 344.50 ± 47.70ABa 350.70 ± 11.42Ab 319.80 ± 14.35ABa 310.15 ± 23.15Ba 60.86 ± 6.39Ca 78.09 ± 7.42Ca 10 ~ 20 346.38 ± 21.23Ba 386.70 ± 4.94Aa 158.94 ± 20.96Cb 143.29 ± 23.10Cb 25.24 ± 4.15Db 23.03 ± 4.37Db 20 ~ 30 349.60 ± 11.96Aa 125.43 ± 19.16Bc 41.73 ± 9.89Cc 22.15 ± 2.24Cc 14.34 ± 4.80Cc 18.42 ± 2.21Cb 30 ~ 40 112.59 ± 13.90Ab 25.47 ± 4.33Bd 9.33 ± 1.61Cd 8.52 ± 1.83Cc 10.43 ± 1.69Cc 9.95 ± 1.36Cc 40 ~ 50 38.55 ± 12.56Ac 17.45 ± 5.46Bde 50 ~ 60 21.07 ± 2.68Ad 12.86 ± 1.48Be 60 ~ 70 13.97 ± 2.92e 平均值 175.24 ± 12.84A 153.10 ± 5.04A 132.45 ± 8.38B 121.03 ± 8.36C 27.72 ± 3.41D 32.37 ± 2.69D Mean 碳储量/(t·hm−2)
Carbon storage/
(t·ha−1)0 ~ 10 46.07 ± 3.09ABa 46.89 ± 0.37ABb 32.92 ± 3.67Cb 40.71 ± 4.55Bb 37.15 ± 2.54BCa 48.10 ± 2.85Aa 10 ~ 20 46.97 ± 7.27Ba 54.75 ± 2.62Aa 53.75 ± 7.95Aa 53.92 ± 1.03Aa 16.52 ± 5.22Cb 11.53 ± 0.93Cb 20 ~ 30 49.09 ± 2.95Aa 39.44 ± 6.36Ac 25.25 ± 8.05Bc 10.80 ± 1.46Cc 8.13 ± 2.37Dc 9.62 ± 1.01Cb 30 ~ 40 54.39 ± 7.67Aa 13.40 ± 1.57Bd 2.98 ± 0.80Dd 2.61 ± 0.35Dd 5.64 ± 1.69Cd 4.84 ± 1.38Cc 40 ~ 50 31.97 ± 9.48Ab 11.80 ± 3.41Bd 50 ~ 60 10.59 ± 0.82Ac 5.11 ± 0.75Be 60 ~ 70 4.14 ± 0.81Ad 总计
Total243.21 ± 24.43A 171.39 ± 9.93B 114.90 ± 4.60C 108.03 ± 3.71C 67.45 ± 5.28D 74.08 ± 2.62D 氮含量
Nitrogen content/
(g·kg−1)0 ~ 10 22.92 ± 0.64Aa 23.45 ± 1.37Aa 12.78 ± 0.69Ba 12.73 ± 1.47Ba 2.59 ± 0.06Ca 3.30 ± 0.67Ca 10 ~ 20 19.82 ± 1.17Ba 25.12 ± 1.37Aa 5.82 ± 1.42Cb 5.11 ± 0.78Cb 0.59 ± 0.12Eb 0.70 ± 0.07Db 20 ~ 30 20.92 ± 0.79Aa 6.79 ± 0.77Bb 1.09 ± 0.03Cc 1.32 ± 0.19Cc 0.41 ± 0.10Db 0.36 ± 0.05Dc 30 ~ 40 5.75 ± 0.54Ab 2.50 ± 1.94Bc 0.93 ± 0.26Cc 0.55 ± 0.14Dc 0.38 ± 0.09Db 0.33 ± 0.03Dc 40 ~ 50 1.52 ± 0.01Ac 1.33 ± 0.53Ac 50 ~ 60 1.05 ± 0.14Ad 0.85 ± 0.21Bc 60 ~ 70 0.88 ± 0.16e 平均值
Mean10.41 ± 0.31A 10.01 ± 0.37A 5.16 ± 0.49B 4.93 ± 0.49B 1.00 ± 0.02C 1.17 ± 0.14C 氮储量/(t·hm−2)
Nitrogen storage/
(t·ha−1)0 ~ 10 3.07 ± 0.05Aa 3.13 ± 0.12Aa 1.31 ± 0.22Cb 1.66 ± 0.11Cb 1.60 ± 0.28Ca 2.04 ± 0.41Ba 10 ~ 20 2.69 ± 0.29Ba 3.56 ± 0.30Aa 1.94 ± 0.34Ca 1.93 ± 0.22Ca 0.39 ± 0.13Db 0.35 ± 0.03Db 20 ~ 30 2.94 ± 0.16Aa 2.14 ± 0.27Bb 0.65 ± 0.06Cc 0.64 ± 0.11Cc 0.24 ± 0.06Db 0.19 ± 0.02Dc 30 ~ 40 2.77 ± 0.07Aa 1.27 ± 0.82Bc 0.29 ± 0.08Cd 0.18 ± 0.09Cd 0.20 ± 0.20Cb 0.16 ± 0.04Cc 40 ~ 50 1.27 ± 0.07Ab 0.90 ± 0.34Acd 50 ~ 60 0.53 ± 0.05Ac 0.34 ± 0.08Bd 60 ~ 70 0.26 ± 0.06d 总计
Total13.53 ± 0.28A 11.33 ± 1.17B 4.20 ± 0.34C 4.42 ± 0.08C 2.44 ± 0.20D 2.74 ± 0.46D 注:不同小写字母表示相同湿地类型内各土层间差异显著(P < 0.05)。Note: different lowercase letters indicate significant differences among soil layers within the same wetland types (P < 0.05). 表 5 不同生境下湿地碳氮储量与环境因子的逐步多元线性回归分析
Table 5 Stepwise multiple linear regression analysis of carbon and nitrogen storage and environment factors of wetlands in different habitats
生境类型
Habitat type指标
Index水位
Water level水位波动幅度
Water level
fluctuation
amplitude有机质
Organic
matter全氮
Total N全磷
Total P截距
InterceptR2 P F 下部生境
(长期水淹生境,L和C)
Lower habitat (permanently
flooded habitat, L and C)植被碳储量
Vegetation carbon storage−0.075** 3.205*** 0.869 < 0.01 34.033 土壤碳储量
Soil carbon storage6.975** 149.304*** 0.920 < 0.01 58.127 生态系统碳储量
Ecosystem carbon storage6.900** 152.509*** 0.917 < 0.01 56.017 中部生境
(季节性水淹生境,D和LN)
Intermediate habitat
(seasonally flooded
habitat, D and LN)植被碳储量
Vegetation carbon storage−2.010** −28.899 + 0.813 < 0.01 22.743 土壤碳储量
Soil carbon storage38.798** 91.644*** 0.847 < 0.01 28.616 生态系统碳储量
Ecosystem carbon storage−1.616** 92.705*** 0.882 < 0.01 38.400 上部生境
(无积水生境,LX和LT)
Upper habitat (no standing
water habitat, LX and LT)植被碳储量
Vegetation carbon storage135.469* 41.533* 0.804 < 0.05 21.459 土壤碳储量
Soil carbon storage0.734* 32.768* 0.894 < 0.05 19.600 生态系统碳储量
Ecosystem carbon storage−0.848* 185.136*** 0.651 < 0.05 10.336 下部生境
(长期水淹生境,L和C)
Lower habitat
(permanently flooded
habitat, L and C)植被氮储量
Vegetation nitrogen storage−0.04** 0.118*** 0.869 < 0.01 34.286 土壤氮储量
Soil nitrogen storage0.221* 10.592*** 0.809 < 0.05 22.216 生态系统氮储量
Ecosystem nitrogen storage0.217* 10.710*** 0.800 < 0.05 21.047 中部生境
(季节性水淹生境,D和LN)
Intermediate habitat
(seasonally flooded
habitat, D and LN)植被氮储量
Vegetation nitrogen storage−0.20** −0.186 + 0.837 < 0.05 26.586 土壤氮储量
Soil nitrogen storage−0.078** 0.007* 6.050** 0.963 < 0.05 65.463 生态系统氮储量
Ecosystem nitrogen storage−0.088* 8.418** 0.760 < 0.05 16.820 上部生境
(无积水生境, LX和LT)
Upper habitat (no standing
water habitat, LX and LT)植被氮储量
Vegetation nitrogen storage1.802* 0.551** 0.721 < 0.01 13.894 土壤氮储量
Soil nitrogen storage2.335* 0.056 0.680 < 0.05 11.646 生态系统氮储量
Ecosystem nitrogen storage2.239* 1.068 0.697 < 0.05 12.506 注:+表示在P < 0.1水平上显著;*表示在P < 0.05水平上显著;**表示在P < 0.01水平上显著;***表示在P < 0.001水平上显著。Notes: + indicates significance at P < 0.1 level; * indicates significance at P < 0.05 level; ** indicates significance at P < 0.01 level; *** indicates significance at P < 0.001 level. -
[1] Mitra S, Wassmann R, Vlek P L G. An appraisal of global wetland area and its organic carbon stock[J]. Current Science, 2005, 88(1): 25−35.
[2] Mitsch W J, Bernal B, Nahlik A M, et al. Wetlands, carbon, and climate change[J]. Landscape Ecology, 2013, 28(4): 583−597. doi: 10.1007/s10980-012-9758-8
[3] Koehler A N N K, Sottocornola M, Kiely G. How strong is the current carbon sequestration of an Atlantic blanket bog?[J]. Global Change Biology, 2011, 17(1): 309−319. doi: 10.1111/j.1365-2486.2010.02180.x
[4] Dayathilake D, Lokupitiya E, Wijeratne V. Estimation of soil carbon stocks of urban freshwater wetlands in the Colombo Ramsar Wetland City and their potential role in climate change mitigation[J]. Wetlands, 2021, 41: 1−10. doi: 10.1007/s13157-021-01421-w
[5] Abegaz A, Winowiecki L A, Vågen T G, et al. Spatial and temporal dynamics of soil organic carbon in landscapes of the upper Blue Nile Basin of the Ethiopian Highlands[J]. Agriculture, Ecosystems & Environment, 2016, 218: 190−208.
[6] Xie E, Zhang Y, Huang B, et al. Spatiotemporal variations in soil organic carbon and their drivers in southeastern China during 1981−2011[J/OL]. Soil and Tillage Research, 2021, 205: 104763. [2020−08−22]. https://doi.org/10.1016/j.still.2020.104763.
[7] Gorham E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming[J]. Ecological Applications, 1991, 1(2): 182−195. doi: 10.2307/1941811
[8] Roulet N T. Peatlands, carbon storage, greenhouse gases, and the Kyoto Protocol: prospects and significance for Canada[J]. Wetlands, 2000, 20(4): 605−615. doi: 10.1672/0277-5212(2000)020[0605:PCSGGA]2.0.CO;2
[9] Anderson N J, D’andrea W, Fritz S C. Holocene carbon burial by lakes in SW greenland[J]. Global Change Biology, 2009, 15(11): 2590−2598. doi: 10.1111/j.1365-2486.2009.01942.x
[10] Bills J S, Jacinthe P A, Tedesco L P. Soil organic carbon pools and composition in a wetland complex invaded by reed canary grass[J]. Biology and Fertility of Soils, 2010, 46: 697−706. doi: 10.1007/s00374-010-0476-6
[11] Cotrufo M F, Lavallee J M. Soil organic matter formation, persistence, and functioning: a synthesis of current understanding to inform its conservation and regeneration[J]. Advances in Agronomy, 2022, 172: 1−66.
[12] Wang M L, Lai J P, Hu K T, et al. Compositions and sources of stable organic carbon and nitrogen isotopes in surface sediments of Poyang Lake[J]. China Environmental Science, 2014, 34(4): 1019−1025.
[13] Gudasz C, Bastviken D, Steger K, et al. Temperature-controlled organic carbon mineralization in lake sediments[J]. Nature, 2010, 466: 478−481. doi: 10.1038/nature09186
[14] Keiliweit M, Wanzek T, Kleber M, et al. Anaerobic microsites have an unaccounted role in soil carbon stabilization[J/OL]. Nature Communications, 2017, 8(1): 1771 [2023−01−19]. https://www.nature.com/articles/s41467-017-01406-6.
[15] Li J, Wen Y, Zhou Q, et al. Influence of vegetation and substrate on the removal and transformation of dissolved organic matter in horizontal subsurface-flow constructed wetlands[J]. Bioresource Technology, 2008, 99(11): 4990−4996. doi: 10.1016/j.biortech.2007.09.012
[16] Dai E F, Zhai R X, Ge Q S, et al. Detecting the storage and change on topsoil organic carbon in grasslands of Inner Mongolia from 1980s to 2010s[J]. Journal of Geographical Sciences, 2014, 24(6): 1035−1046. doi: 10.1007/s11442-014-1136-9
[17] Chen X, Yang X, Dong X, et al. Nutrient dynamics linked to hydrological condition and anthropogenic nutrient loading in Chaohu Lake (southeast China)[J]. Hydrobiologia, 2011, 661(1): 223−234. doi: 10.1007/s10750-010-0526-y
[18] Iacob O, Rowan J S, Brown I, et al. Evaluating wider benefits of natural flood management strategies: an ecosystem-based adaptation perspective[J]. Hydrology Research, 2014, 45(6): 774−787. doi: 10.2166/nh.2014.184
[19] Carlson M M L, Wilcox D A, Wiley M J. Hydrogeology and landform morphology affect plant communities in a Great Lakes ridge-and-swale wetland complex[J]. Wetlands, 2020, 40(6): 2209−2224. doi: 10.1007/s13157-020-01312-6
[20] Shipley B, Keddy P A, Lefkovitch L P. Mechanisms producing plant zonation along a water depth gradient: a comparison with the exposure gradient[J]. Canadian Journal of Botany, 1991, 69(7): 1420−1424. doi: 10.1139/b91-184
[21] Qi Q, Zhang D, Zhang M, et al. Hydrological and microtopographic effects on community ecological characteristics of Carex schmidtii tussock wetland[J]. Science of the Total Environment, 2021, 780: 146630. doi: 10.1016/j.scitotenv.2021.146630
[22] Liu Y, Wang L, Liu H, et al. Comparison of carbon sequestration ability and effect of elevation in fenced wetland plant communities of the Xilin River floodplains: a model case study[J]. River Research Applications, 2015, 31(7): 858−866. doi: 10.1002/rra.2777
[23] 梅雪英, 张修峰. 崇明东滩湿地自然植被演替过程中储碳及固碳功能变化[J]. 应用生态学报, 2007, 18(4): 933−936. doi: 10.3321/j.issn:1001-9332.2007.04.037 Mei X Y, Zhang X F. Carbon storage and carbon fixation during the succession of natural vegetation in wetland ecosystem on east beach of Chongming Island[J]. Chinese Journal of Applied Ecology, 2007, 18(4): 933−936. doi: 10.3321/j.issn:1001-9332.2007.04.037
[24] Joabsson A, Christensen T R. Methane emissions from wetlands and their relationship with vascular plants: an arctic example[J]. Global Change Biology, 2001, 7(8): 919−932. doi: 10.1046/j.1354-1013.2001.00044.x
[25] Gan X J, Cai Y T, Choi C Y, et al. Potential impacts of invasive Spartina alterniflora on spring bird communities at Chongming Dongtan, a Chinese wetland of international importance[J]. Estuarine, Coastal Shelf Science, 2009, 83(2): 211−218. doi: 10.1016/j.ecss.2009.03.026
[26] Reddy K R, Delaune R D. Biogeochemistry of wetlands: science and applications[M]. New York: CRC Press, 2008.
[27] Diamond J S, Epstein J M, Cohen M J, et al. A little relief: ecological functions and autogenesis of wetland microtopography[J/OL]. Wiley Interdisciplinary Reviews: Water, 2021, 8(1): e1493 [2023−02−25]. https://doi.org/10.1002/wat2.1493.
[28] Yimer F, Ledin S, Abdeikadit A. Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia[J]. Geoderma, 2006, 135: 335−344. doi: 10.1016/j.geoderma.2006.01.005
[29] Zhao Q, Bai J, Liu Q, et al. Spatial and seasonal variations of soil carbon and nitrogen content and stock in a tidal salt marsh with Tamarix chinensis, China[J]. Wetlands, 2016, 36(1): 145−152.
[30] Reich P B, Hobbie S E, Lee T, et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2[J]. Nature, 2006, 440: 922−925. doi: 10.1038/nature04486
[31] Bai J H, Ouyang H, Xiao R, et al. Spatial variability of soil carbon, nitrogen, and phosphorus content and storage in an alpine wetland in the Qinghai-Tibet Plateau, China[J]. Australian Journal of Soil Research, 2010, 48(8): 730−736. doi: 10.1071/SR09171
[32] Liu W, Chen S, Qin X, et al. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau[J]. Environmental Research Letters, 2012, 7(3): 1−12.
[33] 刘顺, 罗达, 刘千里, 等. 川西亚高山不同森林生态系统碳氮储量及其分配格局[J]. 生态学报, 2017, 37(4): 1074−1083. Liu S, Luo D, Liu Q L, et al. Carbon and nitrogen storage and distribution in different forest ecosystems in the subalpine of western Sichuan[J]. Acta Ecologica Sinica, 2017, 37(4): 1074−1083.
[34] Downing J A, Prairie Y, Cole J, et al. The global abundance and size distribution of lakes, ponds, and impoundments[J]. Limnology Oceanography, 2006, 51(5): 2388−2397. doi: 10.4319/lo.2006.51.5.2388
[35] Buffam I, Turner M G, Desai A R, et al. Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district[J]. Global Change Biology, 2011, 17(2): 1193−1211. doi: 10.1111/j.1365-2486.2010.02313.x
[36] 叶春, 李春华, 邓婷婷. 论湖滨带的结构与生态功能[J]. 环境科学研究, 2015, 28(2): 171−181. Ye C, Li C H, Deng T T. Structures and ecological functions of lake littoral zones[J]. Research of Environmental Sciences, 2015, 28(2): 171−181.
[37] Zheng P R, Li C H, Ye C, et al. Characteristic and affecting factors of wetland herbs’ distribution in the radiant belt toward land of lake-terrestrial ecotone in Tibet, China[J]. Environmental Sciences Europe, 2022, 34(1): 1−16. doi: 10.1186/s12302-021-00581-0
[38] Mitsch W J, Gosselink J G. Wetlands[M]. New York: John Wiley & Sons, 2015.
[39] Coops H, Beklioglu M, Crisman T L. The role of water-level fluctuations in shallow lake ecosystems-workshop conclusions[J]. Hydrobiologia, 2003, 506(1): 23−27.
[40] 黄昕琦, 李琳, 吕烨, 等. 内蒙古乌梁素海湿地土壤有机碳组成与碳储量[J]. 湿地科学, 2015, 13(2): 252−257. Huang X Q, Li L, Lü Y, et al. Composition and storage of organic carbon in soils of in Ulansuhai Wetlands in Inner Mongolia Autonous Region[J]. Wetland Science, 2015, 13(2): 252−257.
[41] 刘旭, 李畅游, 贾克力, 等. 北方干旱区湖泊湿地沉积物有机碳分布及碳储量特征研究: 以乌梁素海为例[J]. 生态环境学报, 2013, 22(2): 319−324. doi: 10.3969/j.issn.1674-5906.2013.02.024 Liu X, Li C Y, Jia K L, et al. Spatial distribution and storage characteristic of organic carbon in sediments of lake wetland in northern arid areas: a case study of Wuliangsuhai Lake[J]. Ecology and Environmental Sciences, 2013, 22(2): 319−324. doi: 10.3969/j.issn.1674-5906.2013.02.024
[42] Dian L, Jiang L J, Wu X F, et al. Soil organic carbon and its controlling factors in the lakeside of west Mauri Lake along the wetland vegetation types[J/OL]. Processes, 2022, 10(4): 765 [2023−04−13]. https://doi.org/10.3390/pr10040765.
[43] Bao K, Wang G, Jia L, et al. Anthropogenic impacts in the Changbai Mountain region of NE China over the last 150 years: geochemical records of peat and altitude effects[J]. Environmental Science and Pollution Research, 2019, 26: 7512−7524. doi: 10.1007/s11356-019-04138-w
[44] Mu C C, Han S J, Luo J C, et al. Biomass distribution patterns of ecotones between forest and swamp in Changbai Mountain[J]. Journal of Forestry Research, 2000, 11: 198−202. doi: 10.1007/BF02855524
[45] 杨金艳, 王传宽. 东北东部森林生态系统土壤碳贮量和碳通量[J]. 生态学报, 2005, 25(11): 2875−2882. doi: 10.3321/j.issn:1000-0933.2005.11.012 Yang J Y, Wang C K. Soil carbon storage and flux of temperate forest ecosystems in northeastern China[J]. Acta Ecologica Sinica, 2005, 25(11): 2875−2882. doi: 10.3321/j.issn:1000-0933.2005.11.012
[46] 牟长城, 王彪, 卢慧翠, 等. 大兴安岭天然沼泽湿地生态系统碳储量[J]. 生态学报, 2013, 33(16): 4956−4965. doi: 10.5846/stxb201212271884 Mu C C, Wang B, Lu H C, et al. Carbon storage of natural wetland ecosystem in Daxing’anling of China[J]. Acta Ecologica Sinica, 2013, 33(16): 4956−4965. doi: 10.5846/stxb201212271884
[47] 王伯炜, 牟长城, 王彪. 长白山原始针叶林沼泽湿地生态系统碳储量[J]. 生态学报, 2019, 39(9): 3344−3354. Wang B W, Mu C C, Wang B. Carbon storage of a primary coniferous forested wetland ecosystem in the temperate Changbai Mountain of China[J]. Acta Ecologica Sinica, 2019, 39(9): 3344−3354.
[48] 梅莉, 张卓文, 谷加存, 等. 水曲柳和落叶松人工林乔木层碳、氮储量及分配[J]. 应用生态学报, 2009, 20(8): 1791−1796. Mei L, Zhang Z W, Gu J C, et al. Carbon and nitrogen storages and allocation in tree layers of Fraxinus mandshurica and Larix gmelinii plantations[J]. Chinese Journal of Applied Ecology, 2009, 20(8): 1791−1796.
[49] 施家月, 王希华, 闫恩荣, 等. 浙江天童常见植物幼树器官的氮磷养分特征[J]. 华东师范大学学报(自然科学版), 2006(2): 121−129. Shi J Y, Wang X H, Yan E R, et al. Saplings nutrient characteristics of common plants in Tiantong National Forest Park[J]. Journal of East China Normal University (Natural Science), 2006(2): 121−129.
[50] 彭文宏, 牟长城, 常怡慧, 等. 东北寒温带永久冻土区森林沼泽湿地生态系统碳储量[J]. 土壤学报, 2020, 57(5): 1526−1538. doi: 10.11766/trxb201910210076 Peng W H, Mu C C, Chang Y H, et al. Carbon storage of forested wetland ecosystems in the cold temperate permafrost region, Northeast China[J]. Acta Pedologica Sinica, 2020, 57(5): 1526−1538. doi: 10.11766/trxb201910210076
[51] Blais A M, Lorrain S, Plourde Y, et al. Organic carbon densities of soils and vegetation of tropical, temperate and boreal forests [M]. Berlin: Springer, 2005: 155−185.
[52] Xu L, He N P, Yu G R. Nitrogen storage in China’s terrestrial ecosystems[J]. Science of the Total Environment, 2020, 709: 136201. doi: 10.1016/j.scitotenv.2019.136201
[53] 高俊琴, 雷光春, 李丽, 等. 若尔盖高原三种湿地土壤有机碳分布特征[J]. 湿地科学, 2010, 8(4): 327−330. Gao J Q, Lei G C, Li L, et al. The distribution characteristics of soil organic carbon in three kinds of wetland soils in Zoige Plateau[J]. Wetland Science, 2010, 8(4): 327−330.
[54] Fenner N, Freeman C. Drought-induced carbon loss in peatlands[J]. Nature Geoscience, 2011, 4(12): 895−900. doi: 10.1038/ngeo1323
[55] Guo X L, Lu X G, Tong S Z, et al. Influence of environment and substrate quality on the decomposition of wetland plant root in the Sanjiang Plain, Northeast China[J]. Journal of Environmental Sciences, 2008, 20(12): 1445−1452. doi: 10.1016/S1001-0742(08)62547-4
[56] 任玉连, 陆梅, 曹乾斌, 等. 南滚河国家级自然保护区典型植被类型土壤有机碳及全氮储量的空间分布特征[J]. 北京林业大学学报, 2019, 41(11): 104−115. Ren Y L, Lu M, Cao Q B, et al. Spatial distribution characteristics of soil organic carbon and total nitrogen stocks across the different typical vegetation types in Nangunhe National Nature Reserve, southwestern China[J]. Journal of Beijing Forestry University, 2019, 41(11): 104−115.
[57] Blodau C, Moore T R. Experimental response of peatland carbon dynamics to a water table fluctuation[J]. Aquatic Sciences, 2003, 65(1): 47−62. doi: 10.1007/s000270300004
[58] 李忠, 孙波, 林心雄. 我国东部土壤有机碳的密度及转化的控制因素[J]. 地理科学, 2001, 21(4): 301−307. doi: 10.3969/j.issn.1000-0690.2001.04.003 Li Z, Sun B, Lin X X. Density of soil organic carbon and the factors controlling its turnover in east China[J]. Scientia Geographica Sinica, 2001, 21(4): 301−307. doi: 10.3969/j.issn.1000-0690.2001.04.003
[59] Shen J, Yuan L, Zhang J, et al. Phosphorus dynamics: from soil to plant[J]. Plant Physiology, 2011, 156(3): 997−1005. doi: 10.1104/pp.111.175232
[60] Malhotra H, Vandana, Sharma S, et al. Phosphorus nutrition: plant growth in response to deficiency and excess[J]. Plant Nutrients Abiotic Stress Tolerance, 2018: 171−190.
[61] Bai J H, Ouyang H, Deng W, et al. Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands[J]. Geoderma, 2005, 124(1/2): 181−192.
[62] Zhong Y, Jiang M, Middleton B A H, et al. Effects of water level alteration on carbon cycling in peatlands[J/OL]. Ecosystem Health Sustainability, 2020, 6(1): 1806113 [2022−09−08]. https://doi.org/10.1080/20964129.2020.1806113.
-
期刊类型引用(1)
1. 卜弘毅,朱正杰,崔素珍,张明,李成之,许志敏,李典鹏,曹学城,孙天一,雷礼纲. 洪泽湖不同湿地类型表层土壤与沉积物碳氮含量特征分析. 湿地科学与管理. 2025(01): 45-51 . 百度学术
其他类型引用(0)