Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

新疆大果沙棘原浆、籽油和果油气味特征及产品间相关性

曾奥, 许炳烨, 王雪, 孟德豪, 孙青占, 吕兆林

曾奥, 许炳烨, 王雪, 孟德豪, 孙青占, 吕兆林. 新疆大果沙棘原浆、籽油和果油气味特征及产品间相关性[J]. 北京林业大学学报, 2024, 46(2): 132-142. DOI: 10.12171/j.1000-1522.20230241
引用本文: 曾奥, 许炳烨, 王雪, 孟德豪, 孙青占, 吕兆林. 新疆大果沙棘原浆、籽油和果油气味特征及产品间相关性[J]. 北京林业大学学报, 2024, 46(2): 132-142. DOI: 10.12171/j.1000-1522.20230241
Zeng Ao, Xu Bingye, Wang Xue, Meng Dehao, Sun Qingzhan, Lü Zhaolin. Odor characteristics and inter-product correlation of Xinjiang large berry sea buckthorn pulp, seed oil and fruit oil[J]. Journal of Beijing Forestry University, 2024, 46(2): 132-142. DOI: 10.12171/j.1000-1522.20230241
Citation: Zeng Ao, Xu Bingye, Wang Xue, Meng Dehao, Sun Qingzhan, Lü Zhaolin. Odor characteristics and inter-product correlation of Xinjiang large berry sea buckthorn pulp, seed oil and fruit oil[J]. Journal of Beijing Forestry University, 2024, 46(2): 132-142. DOI: 10.12171/j.1000-1522.20230241

新疆大果沙棘原浆、籽油和果油气味特征及产品间相关性

基金项目: 沙棘高效提取技术研究及产品开发(2016hxfwswxy011)。
详细信息
    作者简介:

    曾奥。主要研究方向:天然产物功能性开发与利用。Email:869770824@qq.com 地址:100083北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    吕兆林,博士,教授。主要研究方向:林源活性物质提取与功能性食品开发。Email:zhaolinlv@bjfu.edu.cn 地址:同上。

  • 中图分类号: TS201.2;S793.6

Odor characteristics and inter-product correlation of Xinjiang large berry sea buckthorn pulp, seed oil and fruit oil

  • 摘要:
    目的 

    通过对新疆大果沙棘原浆、籽油及果油呈香物质进行分析,确定其气味特征及产品间相关性,为新疆大果沙棘制品的进一步开发和真伪鉴定提供数据支撑。

    方法 

    采用固相微萃取结合气相色谱−质谱串联技术对新疆大果沙棘原浆、籽油和果油这3种沙棘主要制品的香气进行研究,表征每种沙棘制品的呈香组分及其香气活度,探究3种沙棘产品的关键香气组分,对其进行归类和分析,明确每种沙棘产品的香气特征,并通过聚类热图和相关性分析初步探究3种沙棘制品的香气组分之间的关联性。

    结果 

    3种新疆大果沙棘制品共有64种呈香物质,沙棘原浆最多,其次是沙棘果油,沙棘籽油最少;沙棘原浆和果油关键呈香物质以酯类为主,籽油以醇类为主。沙棘原浆与果油的香气特征相似,均以果味和酒味为主,沙棘籽油以果味、花香和油脂味为主。新疆大果沙棘原浆、籽油和果油挥发性成分含量丰富,香气独特。沙棘原浆与果油相关性更高,沙棘籽油与另外两种制品相关性较低。

    结论 

    研究结果可为后续沙棘产品深加工开发提供一定的理论基础。

    Abstract:
    Objective 

    The purpose of this paper was to determine the odor characteristics and correlation between products by analyzing the aromatic substances in the pulp, seed oil and fruit oil of Xinjiang large berry sea buckthorn, and provide data support for the further development and authenticity identification of Xinjiang large berry sea buckthorn products.

    Method 

    In this study, solid phase microextraction combined with gas chromatography-mass spectrometry was used to study the aroma of three main products of large berry sea buckthorn from Xinjiang of northwestern China. The odor components and odor activities of each product were characterized. The key odor components of the three products were investigated, classified and analyzed, and the odor characteristics of each product were clarified. The correlation between odor components of three sea buckthorn products was preliminarily explored through cluster thermograms and correlation plot.

    Result 

    64 kinds of odor substances were detected in the three sea buckthorn products. Followed by sea buckthorn fruit oil, sea buckthorn pulp contained the most varieties of odor components while seed oil contained the least. The key contributors to the odor of sea buckthorn pulp and fruit oil were mostly esters, and the seed oil was mainly alcohols. The odor characteristics of sea buckthorn pulp and fruit oil were similar, both of which were mainly fruity and alcoholic, while sea buckthorn seed oil was mainly fruity, floral, and oily. Xinjiang large berry sea buckthorn pulp, seed oil, and fruit oil are rich in volatile components and have a unique aroma. Sea buckthorn pulp has a higher correlation with fruit oil, while seed oil has a lower correlation with the other two products.

    Conclusion 

    The results can provide a theoretical basis for the further processing and development of sea buckthorn products.

  • 竹材具生长周期短、硬度强、韧性高、可降解的生物性材料。且在现有木材资源不能适应家具产业发展迫切需要的情况下,竹材是取代实木的最理想材料[1],竹集成材作为保持了竹材优异的物理力学性能的竹制家具用材,具有良好的发展前景。众所周知,竹材容易受外界环境如光照、水、微生物等的侵害而发生变色、腐朽[2],竹集成材亦如是。对竹集成材进行表面涂饰是最能够有效保护其性能的方法之一。

    以水作为溶剂的水性漆与传统油性漆相比,不含挥发性有机物(volatile organic compounds,VOCs),具有绿色环保、节约资源的特性[3]。伴随着国家环保政策的不断完善和绿色环保理念的普及,水性漆在家具、室内装饰、建筑等领域将逐步替代传统涂料[4]。然而竹集成材水性漆涂饰面临着竹集成材密度大,纹孔少,横向渗透困难等问题[5],使得水性漆漆膜附着力差,竹集成材水性漆涂饰工业化进度缓慢。为了克服这些问题,Lu[6]通过对毛竹表面进行过氧化氢表面预处理的方法,提高了水性漆在毛竹表面的附着力。此外其他研究人员通过使用湿热处理[7-8]、碱液浸泡处理[9]等方法,也在一定程度上提高了竹材表面的润湿性和粗糙度,改善了水性漆等流体在竹材内部的渗透效率,漆膜的附着力由此增强。涂饰工艺对涂料性能的发挥有着重要影响,是涂饰过程中的关键技术环节。但目前有关水性涂饰工艺的研究还着重于水曲柳、杨木等木质材料上[10-12],对竹集成材涂饰工艺研究较少,且未有水性清漆和色漆对竹集成材硬度、附着力等漆膜性能影响方面的研究。

    为了解决竹集成材水性涂装这些难题,本研究以家具中最为常用的毛竹集成材为基材,在省去预处理的基础上优化了竹集成材水性涂饰工艺,提高了水性涂饰工艺的效率,系统地探究了竹集成材清漆与色漆涂饰性能的影响及竹集成材水性漆漆膜的附着机理,为竹家具的水性化涂装提升提供理论支持和科学依据。

    选取含水率为11%的毛竹集成材,制成尺寸为100 mm(长) × 100 mm(宽) × 10 mm(厚)的试样18块,并对试样在室温和湿度为(65 ± 3)%的环境下进行打磨。选用涂料为自制水性底漆和商业水性面漆(分为清漆与色漆两种类型,主要成分为水性聚氨酯树脂,底漆固体含量为39.2%,面漆固体含量为34.6%)。

    依次用80目、120目、180目和240目砂纸对基材进行顺纹打磨并用羊毛刷除尘。涂饰前底漆与面漆分别添加5% 和8%的去离子水进行调配。调配底漆涂布量为80 g/m2,面漆涂布量为120 g/m2,在室温下均匀地喷涂底漆3遍、面漆1遍,每遍喷涂干燥之后再次顺纹打磨1遍(图1)。涂饰完后基材后在室温下干燥8 h。

    图  1  竹集成材涂饰工艺流程
    Figure  1.  Finishing process of bamboo laminated lumber

    将无差别的18个样品分为A、B和C这3组,每组6个,按照字母加数字的方式编号成A1 ~ A6、B1 ~ B6和C1 ~ C6。

    选取A组试样进行漆膜的硬度测试。根据ISO 15184—1998 《色漆和清漆 铅笔法测定漆膜硬度》标准测试。选取B组试样进行漆膜的附着力测定。根据ISO 2409—2013《色漆和清漆交叉切割试验》中的检测标准,按照规定的步骤,使用QFH漆膜划格仪依次对每个试样进行测定。参照ISO 2813—2014《色漆和清漆在20°、60°和85°非金属色漆漆膜镜面光泽的测定》使用60°光泽度仪对C组和对照试样进行光泽度测试。

    参照GB/T 12472—2003《产品几何量技术规范(GPS) 表面结构 轮廓法 木制件表面粗糙度参数及其数值》,使用TR240便携式表面粗糙度仪测试试样的表面粗糙度,将触针的运动转变为电信号,测量出各粗糙度参数。设置取样长度为2.5 mm,为了提高准确率,在每一块试件上选取4 个点测试,并对测试结果进行记录。

    使用SP60色差仪按照国际照明委员会CIE标准色度系统对C组试样基材涂饰前后的颜色变化进行定量的度量。CIE由L*a*b*这3个数值进行评估。L*表示亮度;a*表示红绿,数值变化由正到负,表示颜色从红(正)到绿(负);b*表示黄蓝,数值变化由正到负,表示颜色从黄(正)到蓝(负)。总色差值ΔE表示颜色知觉差异,数值越小则表示颜色变化越小。ΔE由公式(1)确定:

    ΔE=ΔL2+Δa2+Δb2 (1)

    式中:ΔL*、Δa* 和Δb*分别为涂饰前后的L*a*b*差值。

    使用场发射环境扫描电镜(FEG-ESEM,XL30ESEMFEG,FEI Company,USA)观察并记录基材涂饰前后的表面形态。将加速电压设置为7 kV后,着重对涂饰后基材与漆膜界面结合处的形态进行观察。

    用溴化钾压片法分别测定涂饰前后试样的FTIR。设置光谱分辨率为4 cm−1,在500 ~ 4 000 cm−1范围内,利用傅里叶变换红外光谱仪(Nicolet6700傅里叶红外光谱仪,Thermo Scientific, Waltham, USA)扫描得到清漆、色漆、竹集成材、清漆和色漆涂饰后的基材的5种FTIR。测试完成后,将所有5个样品的光谱绘制成图表,分析每个样品的特征峰的变化,并据此探究水性漆与竹集成材的结合机理。

    漆膜硬度代表了涂饰在基材上的漆膜的机械强度,反映了漆膜对来自外界的碰擦、刺划等机械作用的耐受能力[13]。从表1可以看出:清漆的漆膜硬度为1H,而色漆的漆膜硬度为2H。这是因为漆膜的硬度是由成膜物质的性能所决定的,色漆中含有较高硬度的颜料,因而色漆的硬度优于清漆。但两者的硬度均能够满足GB/T 3324—2017《木家具通用技术条件》中室内装饰、实木地板的使用要求[14]。此外,我们发现清漆和色漆的漆膜硬度均比之前研究的水性漆涂饰水曲柳所得的硬度高[12],这充分说明了水性漆采用喷涂的涂饰工艺能在竹集成材上产生能媲美在木材上的效果。

    表  1  水性漆漆膜的硬度与附着力
    Table  1.  Hardness and adhesion of film of waterborne paint
    清漆 Varnish色漆 Color paint
    试件 Sample硬度 Hardness附着力 Adhesion试件 Sample硬度 Hardness附着力 Adhesion
    A11H0级 Grade 0B12H1级 Grade 1
    A21H0级 Grade 0B22H1级 Grade 1
    A31H0级 Grade 0B32H1级 Grade 1
    A41H0级 Grade 0B42H1级 Grade 1
    A51H0级 Grade 0B52H1级 Grade 1
    A61H0级 Grade 0B62H1级 Grade 1
    平均值 Average value1H0级 Grade 0平均值 Average value2H1级 Grade 1
    下载: 导出CSV 
    | 显示表格

    漆膜附着力是指导家具涂装工艺优化方向的关键数据,也是影响漆膜性能的重要指标之一[15-16]。由表1可知:清漆漆膜的附着力比色漆漆膜的附着力更高,可达为最高的0级,这是由于色漆由于含有颜料,其固含量高于清漆,所以清漆具有更高的渗透能力,因而清漆能更好地填充在基材的细胞腔里。从SEM图中也能清晰地看到涂饰前后的差别。在未涂饰基材图(图2a2b)中可以看到有较大的导管存在基材的横切面上,而纵切面上较多的则是裸露的细胞腔,基材表面裸露的细胞腔为水性漆在基材表面良好的附着性能提供了一定的基础。基材涂饰清漆和色漆后(图2c2d),沟槽状的细胞腔和细胞胞间层中都有成膜物填充,因而达到较强的附着力。且从图2c2d中也能看出:因清漆的渗透性能更好,使得在相同涂布量下,色漆的漆膜厚度明显高于清漆。此外,竹集成材水性清漆涂饰的漆膜附着力与之前研究的木材水性漆涂饰的附着力相当[12]。这也再次证明了使用“三低一面”的喷涂涂饰工艺能达到较好的漆膜性能。

    图  2  基材涂饰前后电镜图
    Figure  2.  SEM pictures before and after substrate painting

    漆膜的光反射能力是通过漆膜的光泽度来衡量的,在一定范围内,随着竹材基材的表面光泽度增加,视觉效果变好[17]。涂饰前后基材的光泽度一般区分为垂直竹材纹理的光泽度值(gloss value of vertical bamboo texture,GZT)和平行竹材纹理的光泽度值(gloss value of parallel bamboo texture,GZL)。由图3可得涂饰后试样光泽度明显高于未涂饰试样,这是因为水性漆成膜物的光泽度比竹材自身的光泽度高。清漆涂饰后的平均GZT和GZL分别为19.83和21.24,色漆涂饰后的分别为21.39和22.93,均比未涂饰时提高了5倍以上,大大提升了竹集成材的装饰效果。且色漆因颜料填料含量较高,成膜物质在竹材表面固着占比更多,从而使得色漆光泽度均高于清漆。通过进一步对比发现试样的GZL均高于GZT,这是因为竹材大多数细胞是轴向排列的,在平行纹理方向,大部分细胞被剖开,细胞腔呈沟槽状暴露出来,因此成膜物容易填充到腔径大的细胞腔中;细胞壁的相对含量在垂直纹理方向上较多,因此成膜物很难渗透到具有纳米级孔的细胞壁中,导致平行纹理方向上成膜物的含量高于垂直纹理方向上的含量,因此其光泽度也显著增加[18-19]

    图  3  基材涂饰前后光泽度
    GZT为光泽度仪垂直于木材纹理方向时所测得的光泽度值;GZL为光泽度仪平行于木材纹理方向时所测得的光泽度值。 GZT is the glossiness value measured when glossmeter is perpendicular to the direction of wood texture. GZL is the glossiness value measured when glossmeter is parallel to the direction of wood texture.
    Figure  3.  Glossiness of substrate before and after painting

    表面粗糙度是指竹材在加工的过程中表面留下的各种不同程度的微观加工痕迹或不平度,常被用来评价竹材表面的质量,将会直接影响竹材的涂饰效果以及涂料的用量,常用轮廓算数平均偏差Ra、轮廓算数均方偏差Rq、微观不平度十点高度Rz和轮廓最大高度Ry表示[20]。本实验主要采用Ra表征试样的表面粗糙度,Ra的值越小,说明其表面越光滑平整。不同涂饰情况对应试样的表面粗糙度和电镜图见图4图5。涂饰后的Ra值均小于未涂饰的Ra值,从SEM图也可以清楚地看出基材裸露的细胞腔被水性漆覆盖,表面粗糙度降低。且清漆涂饰后的Ra值比色漆涂饰后的Ra值小。这是因为色漆中含有颜料颗粒(图5b),可能影响成膜的交联程度,这导致涂饰色漆后表面粗糙度高于涂饰清漆后的表面粗糙度。

    图  4  涂饰前后试样表面粗糙度平均值
    Ra为评定轮廓的算数平均偏差; Rz为微观不平度十点高度,是指在取样长度内5 个最大的轮廓峰高的平均;Rq为评定轮廓的算数均方偏差;Ry为轮廓最大高度,是指在取样长度内,轮廓峰顶线和轮廓谷底线之间的距离。Ra is the arithmetical mean deviation of assessed profile; Rz is the height of ten points of micro unevenness, which refers to the average of five maximum contour peak heights within the sampling length; Rq is the root mean square deviation of the assessed profile; Ry is the maximum height of profile, which refers to the distance between the contour peak line and the contour bottom line within the sampling length.
    Figure  4.  Surface roughness of substrate before and after painting
    图  5  涂饰后基材表面电镜图
    Figure  5.  SEM pictures of substrate surface after painting

    色差是指两种颜色之间的差异。色差值是色差的数值表达。色差和色差值受涂料成分、涂饰工艺等因素的影响[21]。涂膜前后的色度值变化如图6所示。涂饰清漆前L*值为72.38,涂饰清漆后降低至64.37;a*值由原来的7.03增加到10.12;b*值由24.48增加到30.64。结果表明,涂层后基材表面明度略有下降,红色和黄色指数略有增加。ΔE较小为10.56,说明涂饰清漆前后竹集成材的表面颜色相差不大。这是因为水性清漆不含颜料,在竹集成材表面固化后是透明的,能较好地保持竹集成材本身的颜色。而涂饰色漆后L*值降低至34.74;a*值增加到12.03;b*值降低至18.30。说明涂层后基材表面明度有一定程度的下降,红色和蓝色指数略有增加。ΔE值较大,为38.46,这表明竹集成材表面的色彩特征因色漆中颜料的颜色发生了较大程度的改变。

    图  6  涂饰前后色度值对比
    L*表示亮度;a*表示红绿;b*表示黄蓝。 L* indicates lightness, a* indicates red and green, and b* indicates yellow and blue.
    Figure  6.  Comparison of chromaticity values before and after painting

    图7显示了各试样的FTIR,可以看出:3 436 cm−1处吸收峰是由−OH伸缩振动引起的,与其他谱线相比,竹材谱线在这一位置的峰值明显最强,且涂饰后色漆和清漆在1 724 cm−1处(C=O的拉伸振动特征峰)的强度分别较纯色漆与清漆小得多,在1 143 cm−1处(酯基中C−O伸缩振动峰)的峰值比竹材谱线的更强,说明水性漆中的极性分子(如羧基、羟基)与基材中的羟基结合后,水性底漆中的羧基与基材中的羟基发生了酯化反应,两者之间形成了氢键使结合更加稳固[22-23]。此外色漆在2 921 cm−1(−CH2反对称伸缩振动峰)、1 724 cm−1(C=O的拉伸振动特征峰)、1 460 cm−1(−CH2弯曲振动峰)、1 143 cm−1(C−O伸缩振动)处的峰值均比清漆所在的峰值高,这是由于色漆中相应的基团的占比比清漆中的高。所以水性底漆除物理结合外,还会与基材发生化学反应,使成膜物能很好地附着在竹集成材表面。

    图  7  水性漆与竹集成材涂饰前后的红外表征
    Figure  7.  Infrared characterization of waterborne paint and bamboo laminated lumber before and after painting

    本研究所获得的清漆的漆膜硬度为1H,色漆的漆膜硬度为2H。涂饰后,水性漆与竹集成材以机械互锁的物理形式和化学反应结合的形式使成膜物质能很好地附着在基材表面。由于色漆中含有颜料,清漆的附着性能优于色漆,可达最高的0级,与木材水性涂饰的附着性能相当。而颜料颗粒的存在影响了成膜的交联程度,使得色漆的表面粗糙度高于清漆。清漆和色漆涂饰后基材的光泽度提高了5倍以上,且平行纹理方向上的光泽度高于垂直纹理方向上。因色漆含有颜料,清漆涂饰前后总色差值较低,较好地保持了竹集成材本身优美的颜色。因此,本水性涂饰工艺在竹集成材上能获得较好的漆膜性能和较强的附着力,并能在很大程度上提升了竹集成材的装饰效果,为竹材及其制品的水性化涂装提供了重要的理论和技术支持。

  • 图  1   沙棘原浆、籽油和果油呈香物质总离子流图

    Figure  1.   Total ion flow diagram of odor components in sea buckthorn pulp, seed oil and fruit oil

    图  2   沙棘原浆、籽油和果油中呈香物质类别及其含量比较

    Figure  2.   Comparison of the categories and contents of odor components in sea buckthorn pulp, seed oil and fruit oil

    图  3   沙棘原浆、籽油及果油风味轮廓图

    Figure  3.   Flavor profile of sea buckthorn pulp, seed oil and fruit oil

    图  4   沙棘原浆与籽油共有呈香物质气味活度值(OAV)比较

    Figure  4.   Comparison of odor activity value (OAV) of the odor components shared by sea buckthorn pulp and seed oil

    图  5   沙棘原浆与果油共有呈香物质OAV比较

    Figure  5.   Comparison of the OAV of the odor components shared by sea buckthorn pulp and fruit oil

    图  6   沙棘果油与籽油共有呈香物质OAV比较

    Figure  6.   Comparison of the OAV of the odor components shared by sea buckthorn fruit oil and seed oil

    图  7   沙棘原浆、籽油和果油共有呈香物质聚类热图分析

    Figure  7.   Cluster heatmap analysis of odor components shared by sea buckthorn pulp, seed oil and fruit oil

    图  8   沙棘原浆、籽油和果油共有呈香物质相关性分析图

    圆圈直径与相关系数r的绝对值有关。The diameter of circle is related to the absolute value of the correlation r.

    Figure  8.   Correlation plot of odor components shared by sea buckthorn pulp, seed oil and fruit oil

    表  1   沙棘原浆、籽油和果油呈香物质

    Table  1   Odor components of sea buckthorn pulp, seed oil and fruit oil

    类别
    Classification
    序号
    No.
    名称
    Name
    保留指数
    Retention
    Index
    分子式
    Formula
    香气描述
    Odor
    description
    香气分类
    Odor
    type
    阈值
    Threshold
    value/
    (mg·kg−1
    原浆 Pulp 籽油 Seed oil 果油 Fruit oil
    含量
    Content/
    (mg·kg−1
    OAV 含量
    Content/
    (mg·kg−1
    OAV 含量
    Content/
    (mg·kg−1
    OAV
    酯类
    Esters
    1 乙酸乙酯
    Ethyl acetate
    921 C4H8O2 果味,类似白兰地,菠萝回味Fruity, brandy-like, reminiscent of pineapple 1,2 0.005 0.162 6 32.514 0
    2 丁酸乙酯
    thyl butyrate
    1 057 C6H12O2 菠萝后调的果味 A fruity odor with pineapple undertone 1 0.000 9 0.268 9 298.831 9 0.235 1 261.185 7
    3 2-甲基丁酸乙酯 Ethyl 2-methylbutyrate 1 077 C7H14O2 强烈的果味,类似苹果Powerful fruity, apple- like 1 0.000 013 1.397 4 107 488.723 4 0.979 6 75 350.988 0
    4 异戊酸乙酯 Ethyl isovalerate 1 088 C7H14O2 强烈的果味,葡萄酒味,类似苹果 Strong fruity, vinous, apple-like odor 1,2 0.000 01 3.564 1 356 413.230 5 3.533 6 353 363.167 2
    5 异戊酸丁酯 Butyl isovalerate 1 295 C9H18O2 苹果味,梨味,甜味,菠萝味,桃子味 Apple, pear, sweet, pineapple, peach odor 1,3 1.215 2
    6 己酸乙酯 Ethyl hexanoate 1 231 C8H16O2 强烈的果味,带有菠萝、香蕉和酒味 Powerful fruity odor with a pineapple, banana, also wine odor 1,2 0.002 2 20.139 2 9 154.179 8 0.219 8 99.895 9 30.906 4 14 048.377 7
    7 丁酸异戊酯 Isoamyl butyrate 1 263 C9H18O2 果味,杏味,菠萝味,香蕉味 Fruity, apricot, pineapple, banana odor 1 0.015 0.264 0 17.600 7 0.356 0 23.732 2
    8 2-甲基丁酸-3-甲基丁酯 3-methylbutyl 2-methylbutanoate 1 276 C10H20O2 果味 Fruity odor 1 0.008 6 0.730 3 84.918 3 1.409 0 163.834 0
    9 异戊酸异戊酯 Isoamyl isovalerate 1 296 C10H20O2 甜味,苹果味,杏味,芒果味 Sweet, apple, apricot, mango odor 1,3 0.02 16.920 8 846.039 5 0.860 3 43.017 0 59.773 9 2 988.696 1
    10 庚酸乙酯 Ethyl heptanoate 1 342 C9H18O2 果味,葡萄酒和白兰地回味Fruity odor reminiscent of winy-brandy 1,2 0.001 9 1.599 5 841.821 4
    11 己酸异丁酯 Isobutyl hexanoate 1 353 C10H20O2 类似可可味后调的苹果味和果味Apple, fruity odor with cocoa-like undertone 1 1.032 3 0.077 9
    12 2-羟基异戊酸乙酯 Ethyl 2-hydroxyisovalerate 1 426 C7H14O3 菠萝味,草莓味,茶味,蜂蜜味 Pineapple, strawberry, tea, honey odor 1,3 0.844 0 0.327 0
    13 辛酸乙酯 Ethyl octanoate 1 436 C10H20O2 令人愉悦的果香、花香,带有酒和杏子味A pleasant fruity, floral odor with wine–apricot note 1,2,4 0.019 3 18.087 0 937.149 9 0.559 7 29.002 1 43.238 7 2 240.348 0
    14 己酸异戊酯 Isoamyl hexanoate 1 460 C11H22O2 苹果味,菠萝味,甜味 Apple, pineapple, sweet odor 1,3 0.32 23.856 3 74.551 0
    15 当归酸-3-甲基丁酯3-methylbutyl angelate 1 471 C10H18O2 新鲜的草本味,酒味,果味,当归味,酸味 Fresh herbal, wine, fruity, angelic, acid odor 1,2,6 0.477 0 0.436 4
    16 辛酸异丁酯 Isobutyl octanoate 1 551 C12H24O2 果味,油脂味,花香 Fruity, oily, floral odor 1,4,6 0.464 2
    17 癸酸甲酯 Methyl decanoate 1 586 C11H22O2 油脂味,酒味,果味,花香 Oily, wine, fruity, floral odor 1,2,4,5 0.004 3 0.067 1 15.598 5
    18 苯甲酸甲酯 Methyl benzoate 1 615 C8H8O2 果味,类似依兰香 Fruity odor, similar to cananga 1,4 0.073 0.339 4 4.649 8 0.297 0 4.067 9
    19 癸酸乙酯 Ethyl decanoate 1 638 C12H24O2 葡萄味,油脂味,类似白兰地Grape,oily,brandy-like odor 1,2,5 0.005 1.905 1 381.015 9 7.784 8 155 6.965 3
    20 苯甲酸乙酯 Ethyl benzoate 1 660 C9H10O2 果味,依兰香 Fruity odor, similar to cananga 1,4 0.055 56 6.017 0 108.298 2 6.329 6 113.924 3
    21 辛酸异戊酯 Isoamyl octanoate 1 664 C13H26O2 果味 Fruity odor 1 0.07 4.276 6 61.095 0
    22 反式-4-癸酸乙酯 Ethyl trans-4-decenoate 1 680 C12H22O2 果味,类似酯类,像柑橘的甜味和醛类味道 Fruity, ester-like, sweet and aldehyde odor like citrus 1,3 0.730 5 4.321 2
    23 γ-己内酯
    γ-hexalactone
    1 688 C6H10O2 甜味,草本味,奶油味,烟草味和类似香豆素的椰子味 Sweet, herbaceous, creamy, tobacco and coumarin-like coconut odor 3,6 0.26 0.363 1 1.396 6
    24 月桂酸乙酯
    Ethyl laurate
    1 828 C14H28O2 花香,果味 Floral, fruity odor 1,4 5.9 1.511 7 0.256 2
    25 苯甲酸异戊酯 Isoamyl benzoate 1 928 C12H16O2 淡淡的甜味,类似果味 Mild sweet, fruit-like 1,3 0.25 4.417 5 17.670 0 27.827 5 111.310 1
    26 异戊酸苯乙酯 Phenethyl isovalerate 1 980 C13H18O2 果味,类似玫瑰香 Fruity odor, rose-like 1,4 0.125 1 1.278 2
    27 γ-壬内酯γ-nonalactone 2 010 C9H16O2 强烈的椰子和脂肪回味Strong odor reminiscent of coconut and a fatty 5 0.009 7 0.322 8 33.275 0
    醇类 Alcohols 28 乙醇 Ethanol 955 C2H6O 强烈的酒味,醚味,医院味 Strong alcoholic, ethereal, medical odor 2 950 3.631 8 0.003 8
    29 异戊醇3-methyl-1-butanol 1 192 C5H12O 杂醇油味,类似威士忌味,辛辣味 Fusel oil, whiskey-characteristic, pungent odor 2,5 0.004 4.146 7 1 036.673 8
    30 正己醇n-hexanol 1 354 C6H14O 草本味,木质香,芳香,淡淡的甜味,果味 Herbaceous, woody, fragrant, mild sweet, fruity odor 1,3,6 0.005 6 0.750 1 133.939 3 1.137 9 203.200 3 0.199 5 35.622 6
    31 顺−氧化芳樟醇cis-linalol furanoxide 1 444 C10H18O2 泥土味,花香,甜味,木质香 Earthy, floral, sweet, woody odor 3,4,6 0.1 0.344 4 3.444 2
    32 庚醇 Heptyl alcohol 1 462 C7H16O 芳香,木质香,油脂味,淡淡的脂肪味 Fragrant, woody, oily, faint fatty odor 5,6 0.005 4 0.559 7 103.650 7 0.079 6 14.736 3
    33 芳樟醇 Linalool 1 553 C10H18O 花香 Floral odor 4 0.000 22 0.261 9 1 190.422 0
    34 1-辛醇1-octanol 1 565 C8H18O 新鲜的橘子和玫瑰香Fresh orange-rose odor 1,4 0.125 8 0.763 0 6.065 2 0.744 2 5.915 4 0.990 3 7.871 9
    35 (E,E)-3,5-辛烯-2-酮(E,E)-3,5-octadien-2-one 1 566 C8H12O 辛辣味,草本味 Pungent, herbaceous 6 0.1 1.175 4 11.754 1
    36 苯甲醇 Benzyl alcohol 1 876 C7H8O 果味 Fruity odor 1 2.546 21 0.235 4 0.092 5 0.894 1 0.351 1 0.208 2 0.081 8
    37 苯乙醇 Phenylethyl alcohol 1 909 C8H10O 玫瑰香 Rose-like odor 4 0.564 23 5.811 9 10.300 6 4.817 8 8.538 6
    酸类 Acids 38 乙酸 Acetic acid 1 454 C2H4O2 强烈的辛辣味,醋味 Strong pungent, vinegar 99 1.572 2 0.015 9 0.377 1 0.003 8 0.102 5 0.001 0
    39 丙酸 Propanoic acid 1 525 C3H6O2 辛辣味,哈喇味 Pungent, rancid 1 2.19 0.342 5 0.156 4
    40 正丁酸n-butyric acid 1 631 C4H8O2 强烈刺鼻的腐败黄油味 A persistent, penetrating, rancid, butter-like 5 2.4 0.394 8 0.164 5
    41 异戊酸 Isovaleric acid 1 674 C5H10O2 哈喇味,奶酪味 Rancid, cheese-like 0.49 52.524 8 107.193 4 1.072 3 2.188 5
    42 己酸 Hexanoic 1 850 C6H12O2 汗味,腐败味,酸味,辛辣味,奶酪味,脂肪味,不好的椰子油回味 Sweaty, rancid, sour, pungent, cheesy, fatty, unpleasant odor reminiscent of copra oil 5 0.89 6.518 5 7.324 1 5.974 7 6.713 1 1.048 4 1.177 9
    43 庚酸 Heptanoic acid 1 958 C7H14O2 腐败味,汗味,酸味,脂肪味 Rancid, sweat-like, sour, fatty odor 5 0.64 0.341 8 0.534 0 1.758 2 2.747 2 0.418 5 0.653 9
    44 辛酸 Octanoic acid 2 067 C8H16O2 淡淡的果酸味Faint fruity-acid odor 1 3 0.282 8 0.094 3 0.375 4 0.125 1
    45 壬酸 Nonanoic acid 2 165 C9H18O2 脂肪味 Fatty odor 5 4.6 1.1578 0.2517 0.110 0 0.023 9
    46 亚油酸 Linoleic acid 3 168 C18H32O2 淡淡的脂肪味 Faint fatty odor 5 13.792 6
    醛类 Aldehydes 47 正己醛 Hexanal 1 103 C6H12O 脂肪味,青草味,强烈的果味 Fatty, grassy, powerful fruity odor 1,5,6 0.005 0.232 7 46.541 3
    48 正庚醛 Heptanal 1 184 C7H14O 强烈的脂肪味,苦味,辛辣味 Strong fatty, harsh, pungent 5 0.002 8 0.646 7 230.970 0
    49 正辛醛n-octanal 1 280 C8H16O 脂肪味,柑橘味,蜂蜜味 Fatty, citrus, honey 1,3,5 0.000 587 0.188 8 321.614 1 0.239 0 407.227 8
    50 正壬醛n-nonanal 1 390 C9H18O 强烈的脂肪味,散发橘子和玫瑰香Strong fatty odor developing an orange and rose note 1,4,5 0.001 1 1.534 7 1 395.158 0 0.534 7 486.048 5 1.785 3 1 623.043 1
    51 (E)-2-辛烯醛(E)-2-octenal 1 422 C8H14O 新鲜黄瓜味,脂肪味,草本味,香蕉味,绿叶味 Fresh cucumber, fatty, herbal, banana, green leaf odor 1,5,6 0.003 0.280 1 93.351 1
    52 糠醛 Furfural 1 460 C5H4O2 环状醛特有的渗透性气味 Characteristic penetrating odor typical of cyclic aldehyde 9.562 20.464 2 2.140 2 0.122 2 0.012 8
    53 正癸醛 Decanal 1 468 C10H20O 甜味,花香,柑橘味,脂肪味 Sweet, floral, citrus, fatty 1,3,4,5 0.003 0.321 4 107.144 6
    54 苯甲醛 Benzaldehyde 1 505 C7H6O 强烈的甜味,苦味,杏仁味,樱桃味 Strong sweet, bitter, almond, cherry 1,3 0.750 89 0.943 9 1.257 1 0.320 7 0.427 0 0.527 1 0.702 0
    酮类 Ketones 55 丙酮 Acetoin 1 275 C4H8O2 淡淡的木质香,酸奶味 Bland woody, yogurt odor 6 0.014 0.813 3 58.092 4
    56 甲基庚酮 Methylheptenone 1 330 C8H14O 强烈的脂肪味,柑橘味 Strong fatty, citrus-like 1,5 0.068 2.589 9 38.087 0 0.270 0 3.971 0
    57 2-癸酮2-decanone 1 503 C10H20O 橘子味,花香,脂肪味,桃子味 Orange, floral, fatty, peach odor 1,4,5 0.008 3 0.158 6 19.108 1
    58 (E)-β-大马酮(E)-β-damascenone 1 813 C13H18O 苹果味,玫瑰香,蜂蜜味,烟草味,甜味 Apple, rose, honey, tobacco, sweet odor 1,3,4 0.000 002 0.090 6 45 307.329 3
    59 (E)-β-紫罗兰酮(E)-β-ionone 1 940 C13H20O 干燥的花香,木质香,鸢尾香 Dry floral, woody, orris odor 4,6 0.003 5 0.080 5 22.987 4
    60 β-紫罗兰酮β-ionone 1 940 C13H20O 干燥的花香,木质香,鸢尾香 Dry floral, woody, orris odor 4,6 0.000 007 0.047 5 6 789.479 4
    其他 Others 61 月桂烯 Myrcene 1 146 C10H16 甜味,香油味,塑料味 Sweet, balsamic, plastic odor 3,5 0.001 2 0.064 7 53.909 2
    62 2-戊基呋喃
    2-pentylfuran
    1 215 C9H14O 果味,青豆味,金属味,蔬菜味 Fruity, green bean, metallic, vegetable odor 1 0.005 8 0.484 1 83.459 7
    63 γ-松油烯 γ-terpinene 1 238 C10H16 木质香,热带柠檬味 Woody, tropical lemon odor 1,6 1 0.564 6 0.564 6
    64 (Z)-β-罗勒烯(Z)-β-ocimene 1 248 C10H16 花香,草本味,甜味 Floral, herbal, sweet odor 3,4,6 0.034 0.693 5 20.396 6
    注:香气分类列中“1”为果味,“2”为酒味,“3”为甜味,“4”为花香,“5”为油脂味,“6”为草本味,“−”为不属于这6类;空白表示未检出或无。OAV代表气味活度值. Notes: in odor type column, “1” represents fruity, “2” represents alcoholic, “3” represents sweet, “4” represents floral, “5” represents fatty, “6” represents herbal, and “−” represents not belonging to those six types. Blank space indicates not detected or not present. OAV represents odor activity value.
    下载: 导出CSV

    表  2   沙棘原浆、籽油和果油共有呈香物质差异显著性分析

    Table  2   Difference significance analysis of odor components shared by sea buckthorn pulp, fruit oil and seed oil

    序号
    No.
    呈香物质
    Odor component
    原浆中含量
    Content in pulp/(mg·kg−1
    籽油中含量
    Content in seed oil/(mg·kg−1
    果油中含量
    Content in fruit oil/(mg·kg−1
    1 己酸乙酯 Ethyl acetate 20.139 2 ± 5.753 0b 0.219 8 ± 0.066 0c 30.906 4 ± 0.708 8a
    2 异戊酸异戊酯 Isoamyl isovalerate 16.920 8 ± 2.153 3b 0.860 3 ± 0.152 6c 59.773 9 ± 7.628 9a
    3 辛酸乙酯 Ethyl octanoate 18.087 0 ± 0.196 3b 0.559 7 ± 0.093 6c 43.238 7 ± 1.555 4a
    4 正己醇 n-hexanol 0.750 1 ± 0.622 1a 1.137 9 ± 0.273 3a 0.199 5 ± 0.088 0a
    5 1-辛醇 1-octanol 0.763 0 ± 0.345 2a 0.744 2 ± 0.182 7a 0.990 3 ± 0.408 0a
    6 苯甲醇 Benzyl alcohol 0.235 4 ± 0.236 8b 0.894 1 ± 0.096 5a 0.208 2 ± 0.175 6b
    7 乙酸 Acetic acid 1.572 2 ± 0.389 7a 0.377 1 ± 0.060 5b 0.102 5 ± 0.073 1b
    8 己酸 Hexanoic 6.518 5 ± 2.021 7a 5.974 7 ± 0.246 2a 1.048 4 ± 0.532 1b
    9 庚酸 Heptanoic acid 0.341 8 ± 0.095 6b 1.758 2 ± 0.263 8a 0.418 5 ± 0.070 0b
    10 正壬醛 n-nonanal 1.534 7 ± 0.639 1a 0.534 7 ± 0.115 4b 1.785 3 ± 0.097 6a
    11 苯甲醛 Benzaldehyde 0.943 9 ± 0.188 0a 0.320 7 ± 0.035 9b 0.527 1 ± 0.081 6b
    注:同行不同字母表示沙棘原浆、籽油和果油间差异显著(P < 0.05)。 Note: different letters in the same row indicate significant differences among sea buckthorn pulp, fruit oil and seed oil (P < 0.05).
    下载: 导出CSV
  • [1] 吕兆林, 袁玮琼, 张柏林, 等. 沙棘果实中主要活性成分质量分布[J]. 北京林业大学学报, 2021, 43(1): 144−152.

    Lü Z L, Yuan W Q, Zhang B L, et al. A review on mass distribution of active components from Hippophae rhamnoides fruits[J]. Journal of Beijing Forestry University, 2021, 43(1): 144−152.

    [2]

    Ao X, Mu Y H, Xie S, et al. Impact of UHT processing on volatile components and chemical composition of sea buckthorn ( Hippophae rhamnoides) pulp: a prediction of the biochemical pathway underlying aroma compound formation[J]. Food Chemistry, 2022, 390: 1−10.

    [3]

    Geetha S, Asheesh G. Medicinal and therapeutic potential of Sea buckthorn ( Hippophae rhamnoides L.)[J]. Journal of Ethnopharmacology, 2011, 138(2): 268−278. doi: 10.1016/j.jep.2011.09.024

    [4] 魏贞伟, 邵弘, 王俊国, 等. 超临界CO2萃取沙棘籽油及热敏性物质分析[J]. 食品科学, 2012, 33(24): 97−100. doi: 10.7506/spkx1002-6630-201224020

    Wei Z W, Shao H, Wang J G, et al. Supercritical carbon dioxide extraction of sea buckthorn seed oil and analysis of thermosensitive substances[J]. Food Science, 2012, 33(24): 97−100. doi: 10.7506/spkx1002-6630-201224020

    [5]

    Sanwal N, Mishra S, Sahu J K, et al. Effect of ultrasound-assisted extraction on efficiency, antioxidant activity, and physicochemical properties of sea buckthorn ( Hippophae salicipholia) seed oil[J]. LWT, 2022, 153: 1−13.

    [6] 柳梅, 任璇, 姚玉军, 等. 沙棘叶多酚提取物抗氧化及体外降血糖活性研究[J]. 天然产物研究与开发, 2017, 29(6): 1013−1019.

    Liu M, Ren X, Yao Y J, et al. Antioxidant and in vitro hypoglycemic activities of polyphenol in sea buckthorn leaves[J]. Natural Product Research and Development, 2017, 29(6): 1013−1019.

    [7] 魏晨业, 包晓玮, 王娟, 等. 沙棘多糖分离纯化及抗氧化活性[J]. 食品科学, 2021, 42(4): 227−232.

    Wei C Y, Bao X W, Wang J, et al. Isolation, purification and antioxidant activity of polysaccharides from the fruit of Hippophae rhamnoides[J]. Food Science, 2021, 42(4): 227−232.

    [8]

    Ming C, Yiwen G, Zhongrong J, et al. Sea buckthorn pulp oil nanoemulsions fabricated by ultra-high pressure homogenization process: a promising carrier for nutraceutical[J]. Journal of Food Engineering, 2020, 287: 1−10.

    [9]

    Shen F, Zhuang J, Wang Q, et al. Enhancement in the metabolic profile of sea buckthorn juice via fermentation for its better efficacy on attenuating diet-induced metabolic syndrome by targeting gut microbiota[J]. Food Research International, 2022, 162: 1−13.

    [10] 陶翠, 王捷, 姚玉军, 等. 沙棘中白雀木醇表征方法及其分布规律[J]. 北京林业大学学报, 2020, 42(1): 121−126.

    Tao C, Wang J, Yao Y J, et al. Characterization and distribution rule of quebrachitol in Hippophae rhamnoides[J]. Journal of Beijing Forestry University, 2020, 42(1): 121−126.

    [11] 康健, 王爱芹, 顾晶晶, 等. 新疆沙棘生产性能和主要营养成分研究[J]. 食品科学, 2009, 30(4): 99−102. doi: 10.3321/j.issn:1002-6630.2009.04.017

    Kang J, Wand A Q, Gu J J, et al. Analysis of processing performance and main nutritional components of sea buckthorn in Xinjiang[J]. Food Science, 2009, 30(4): 99−102. doi: 10.3321/j.issn:1002-6630.2009.04.017

    [12] 林萍, 姚娜娜, 车凤斌, 等. 5种干制方式对大果沙棘干燥特性及品质的影响[J]. 食品工业科技, 2022, 43(4): 41−48.

    Lin P, Yao N N, Che F B, et al. Effects of five different drying methods on drying characteristic and quality of Hippophae rhamnoides[J]. Science and Technology of Food Industry, 2022, 43(4): 41−48.

    [13] 方亮, 李珍, 李杰. 大果沙棘不同品种、不同部位油脂的提取及元素分析[J]. 食品安全质量检测学报, 2021, 12(15): 6090−6096.

    Fang L, Li Z, Li J. Extraction and element analysis of oil from different varieties and parts of Hippophae rhamnoides[J]. Journal of Food Safety and Quality, 2021, 12(15): 6090−6096.

    [14] 任向荣, 蔺国仓, 回经涛, 等. 新疆地区小浆果产业发展现状及持续发展建议[J]. 北方园艺, 2023(3): 127−132.

    Ren X R, Lin G C, Hui J T, et al. Present situation and sustainable development of small berry industry in Xinjiang[J]. Northern Horticulture, 2023(3): 127−132.

    [15]

    Liu Y Y, Sheng J, Li J J, et al. Influence of lactic acid bacteria on physicochemical indexes, sensory and flavor characteristics of fermented sea buckthorn juice[J]. Food Bioscience, 2022, 46: 1−9.

    [16] 黄蕊, 盛文军, 李霁昕, 等. 超高压及热处理对中国沙棘原浆挥发性成分影响的比较[J]. 食品科学, 2018, 39(18): 204−208. doi: 10.7506/spkx1002-6630-201818032

    Huang R, Sheng W J, Li J X, et al. A comparison of the effects of ultra-high pressure and heat treatments on the volatile components of Chinese sea buckthorn pulp ( Hippophae rhamnoides L. subsp. sinensis Rousi)[J]. Food Science, 2018, 39(18): 204−208. doi: 10.7506/spkx1002-6630-201818032

    [17] 马慧敏. 新疆大果沙棘速溶果粉的制备、品质评价及其应用[D]. 阿拉尔: 塔里木大学, 2023.

    Ma H M. Preparation, quality evaluation and application of Xinjiang big fruit seabuckthorn instant fruit powd [D]. Alar: Tarim University, 2023.

    [18]

    Dąbrowski G, Czaplicki S, Szustak M, et al. Composition of flesh lipids and oleosome yield optimization of selected sea buckthorn ( Hippophae rhamnoides L.) cultivars grown in Poland[J]. Food Chemistry, 2022, 369: 1−9.

    [19] 徐冰冰, 张九凯, 赵贵明,等. 基于非靶标代谢组学的沙棘油真实性鉴别技术[J]. 食品科学, 2021, 42(18): 246−253. doi: 10.7506/spkx1002-6630-20200327-393

    Xu B B, Zhang J K, Zhao G M, et al. Authentication of sea buckthorn oil based on non-targeted metabolomics[J]. Food Science, 2021, 42(18): 246−253. doi: 10.7506/spkx1002-6630-20200327-393

    [20] 明悦. 《全国沙棘资源本底调查报告》发布[J]. 绿色中国, 2022(13): 58−59.

    Ming Y. “National sea buckthorn resources background investigation report” released[J]. Green China, 2022(13): 58−59.

    [21] 钟心, 尤飞, 周振亚, 等. 我国沙棘产业发展现状与对策建议[J]. 世界林业研究, 2021, 34(3): 102−106.

    Zhong X, You F, Zhou Z Y, et al. Analysis and suggestions on the seabuckthorn industry development in China[J]. World Forestry Research, 2021, 34(3): 102−106.

    [22] 张九凯, 徐冰冰, 韩建勋, 等. 基于脂质组学的沙棘油及其掺假油的甘油酯组成比较分析[J]. 中国食品学报, 2021, 21(11): 144−158.

    Zhang J K, Xu B B, Han J X, et al. Comparative analysis of the glyceride composition of sea buckthorn oil and its adulterated oil based on lipidomics[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(11): 144−158.

    [23]

    Wu D, Xia Q L, Cheng H, et al. Changes of volatile flavor compounds in sea buckthorn juice during fermentation based on gas chromatography-ion mobility spectrometry[J]. Foods, 2022, 11(21): 1−18.

    [24]

    Zeng L, Fu Y Q, Huang J S, et al. Comparative analysis of volatile compounds in Tieguanyin with different types based on HS–SPME–GC–MS[J]. Foods, 2022, 11(11): 1−14.

    [25] 付依依, 王永霞, 张笑莹, 等. 植物乳杆菌发酵对沙棘原浆主要成分、抗氧化性及挥发性物质的影响[J]. 中国酿造, 2022, 41(2): 125−131.

    Fu Y Y, Wang Y X, Zhang X Y, et al. Effects of Lactobacillus plantarum fermentation on main components, antioxidant and volatile substances of sea buckthorn pulp[J]. China Brewing, 2022, 41(2): 125−131.

    [26] 魏长宾, 李苗苗, 马智玲, 等. 金菠萝品种果实香气成分和特征香气研究[J]. 基因组学与应用生物学, 2019, 38(4): 1702−1711.

    Wei C B, Li M M, Ma Z L, et al. The study of aroma components and characteristic aroma of gold pineapple fruit[J]. Genomics and Applied Biology, 2019, 38(4): 1702−1711.

    [27] 陈朸为, 乔宇, 潘思轶. 固相微萃取–气质联用分析塔罗科血橙汁香气成分[J]. 食品科学, 2007, 28(7): 396−399.

    Chen L W, Qiao Y, Pan S Y. Analysis of aroma components in Tarocco blood orange juice by solid-phase microextraction coupled with gas chromatography-mass spectrometry[J]. Food Science, 2007, 28(7): 396−399.

    [28] 陈倩莲, 刘仕章, 占仕权, 等. 基于HS-SPME-GC-MS和OAV鉴定4种武夷岩茶关键呈香物质[J/OL]. 食品工业科技, 2023, 44(14): 296−303[2023−03−07]. https://doi.org/10.13386/j.issn1002-0306.2022090092.

    Chen Q L, Liu S Z, Zhan S Q, et al. Identification of key aroma components of Wuyi rock tea based on HS-SPMEGC-MS and OAV[J/OL]. Science and Technology of Food Industry, 2023, 44(14): 296−303[2023−03−07]. https://doi.org/10.13386/j.issn1002-0306.2022090092.

  • 期刊类型引用(2)

    1. 谷国泽,宋魁彦. 水性清漆涂饰对皮影表面的装饰效果. 家具. 2025(01): 19-22 . 百度学术
    2. 钟成龙,侯贤锋,卓光武,高振忠,涂登云,胡传双. 重组竹表面涂饰工艺研究. 竹子学报. 2023(02): 41-47 . 百度学术

    其他类型引用(2)

图(8)  /  表(2)
计量
  • 文章访问数:  506
  • HTML全文浏览量:  98
  • PDF下载量:  42
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-09-19
  • 修回日期:  2023-12-30
  • 录用日期:  2024-01-01
  • 网络出版日期:  2024-01-07
  • 刊出日期:  2024-01-31

目录

/

返回文章
返回