Allocation characteristics and prediction models of water storage capacity among different tree species in Jiaohe, Jilin Province of northeastern China
-
摘要:目的
分析吉林蛟河12个乔木树种整株及各组分含水率和储水量分配特征,构建并筛选各树种最优储水量预测模型,探讨不同树种储水量随森林发育阶段的变化,为该地区森林树种储水量估算提供模型参考。
方法采用单因素方差分析,对比12个树种不同器官含水率和储水量占比的差异,并通过多重比较法进行显著性检验。应用肯德尔秩相关分析法,以胸径(D)、树高(H)、D2H为模型自变量,整株及各器官储水量为因变量,构建多种形式的储水量预测模型,并通过模型决定系数、参数显著性以及赤池信息准则筛选最优模型。结合林地信息,计算不同发育阶段树种的储水量。
结果(1)12个树种器官平均含水率顺序为树叶 > 树根 > 树枝 > 树干。除千金榆外,其余树种在各器官储水量分配上普遍呈现树干 > 树根 > 树枝 > 树叶的趋势。随胸径增大,树枝储水量占比增大,而树干与树叶的储水量占比减小,树根储水量变化不显著。(2)12个树种的储水量预测模型均为对数函数形式,不同树种器官的最优模型自变量各异。(3)随着森林演替,单位面积乔木的储水量和生物量均增加。
结论本研究揭示了储水量占比和含水率在器官间与物种间存在显著差异,其中储水量与树高、胸径之间存在种间特异性,且不同器官储水量占比随胸径增长呈现不同变化趋势。所筛选的储水量最优模型均为对数函数形式,其中单树种储水量预测模型具有较高的拟合精度,而全树种模型更适用于估算区域性储水量。本文阐明了吉林蛟河树木水分状况在不同时空尺度上的变化规律,有助于加深对生态系统动态过程的理解,并为该地区森林树种储水量的精确估算提供了可靠的模型参考。
Abstract:ObjectiveThis paper analyzed the distribution characteristics of moisture contents of 12 tree species in northeastern China and species-specific allometric equations of 12 tree species were established to explore the differences in water storage capacity characteristics among different tree species with forest developing, as well as providing model reference for the estimation of water storage capacity in this area.
MethodOne-way ANOVA and multiple comparison methods were used to contrast differences in moisture content and water storage capacity proportion among various organs across the 12 tree species. Utilizing Kendall’s rank correlation analysis to identify DBH (D), tree height (H), and D2H as predictor variables in water storage capacity prediction models with whole-tree and organ-specific water storage capacity serving as response variables. Different forms of water storage capacity prediction models were constructed based on these relationships. Optimal models were selected through evaluation using the coefficient of determination, parameter significance level, and Akaike’s information criterion. Integrating stand information, this approach was employed to calculate the water storage capacity of trees across varied developing stages.
Result(1) Overall, average moisture content was highest in leaves, followed by roots, branches, and stems. Except for Carpinus cordata, all other species showed a consistent pattern in water allocation across organs: stem > root > branch > leaf. As D increased, the proportion of branch water storage capacity increased, while the proportion of stem and leaf water storage capacity decreased, with no significant changes in root water storage capacity. (2) The water storage capacity prediction models for all 12 tree species were best represented by logarithmic functions. The optimal independent variables for organ moisture content models of different tree species were different. (3) With forest succession, both water storage capacity and biomass per unit area increased.
ConclusionThe study highlights significant differences in water storage capacity and distribution among organs and tree species, with species-specific relationship between water storage capacity and D, as well as H. The percentage of water storage capacity of different organs shows different trends with the increase of breast diameter. The water content prediction models for all 12 tree species were best represented by logarithmic functions. The single-species models have higher fitting accuracy, while the multi-species model has broader application. This research elucidates the spatiotemporal dynamics of water status in temperate-boreal tree species, contributing to a deeper understanding of ecosystem dynamics. It provides a scientific basis for accurate estimation of tree water storage capacity in the forest region of Jiaohe, Jilin Province of northeastern China.
-
-
表 1 不同发育阶段林分树种组成及相关指标
Table 1 Composition of tree species and related indicators in different developing stages of stand
林分
Stand胸高断面积和物种重要值
Basal area and species important value平均胸径
Average DBH/cm平均树高
Average
tree height/m密度/(株·hm−2)
Density/
(tree·ha−1)树种
Tree species胸高断面积/(m2·hm−2)
Basal area/(m2·ha−1)重要值
Important
value中龄林
Middle-aged forest胡桃楸 Juglans mandshurica 11.35 25.12 9.20 10.52 1 405 东北槭 Acer mandshuricum 1.95 15.58 五角槭Acer pictum subsp. mono 2.06 12.99 裂叶榆 Ulmus laciniata 1.05 8.58 春榆 Ulmus japonica 1.34 8.40 近熟林
Near-mature forest水曲柳 Fraxinus mandshurica 6.52 11.58 9.52 10.85 1 539 五角槭 Acer pictum subsp. mono 4.61 11.07 红松 Pinus koraiensis 3.42 7.05 紫椴 Tilia amurensis 4.29 6.52 春榆 Ulmus japonica 1.16 6.07 成熟林
Mature forest五角槭 Acer pictum subsp. mono 5.91 8.86 10.87 14.38 1 004 红松 Pinus koraiensis 4.91 7.41 紫椴 Tilia amurensis 4.15 6.52 水曲柳 Fraxinus mandshurica 4.24 6.26 东北槭 Acer mandshuricum 2.29 5.19 老龄林
Old growth forest千金榆 Carpinus cordata 1.70 10.83 11.20 15.43 980 五角槭 Acer pictum subsp. mono 4.03 10.63 裂叶榆 Ulmus laciniata 4.48 9.56 东北槭 Acer mandshuricum 1.91 8.98 紫椴 Tilia amurensis 4.92 7.90 注:表中仅列出各发育阶段林分中物种重要值排名前5位的树种。引自文献[21−22]。Notes: the table only lists the top 5 tree species with the highest species importance values in each developing stage of stand. Cited from reference [21−22]. 表 2 12个优势树种样本数量和测定指标
Table 2 Sample size and measurement indicators of 12 dominant tree species
树种
Tree species样本数
Sample size胸径
DBH/cm树高
Tree height/m整株储水量
Water storage capacity of whole plant/kg白桦 Betula platyphylla 10 5.7 ~ 40.0 9.3 ~ 22.8 8.34 ~ 1 027.83 东北槭 Acer mandshuricum 10 7.8 ~ 35.9 9.1 ~ 18.5 18.07 ~ 725.20 春榆 Ulmus japonica 9 5.6 ~ 39.9 6.8 ~ 20.1 10.17 ~ 1 343.24 红松 Pinus koraiensis 11 8.4 ~ 44.0 6.7 ~ 22.3 14.77 ~ 1 132.20 胡桃楸 Juglans mandshurica 10 6.5 ~ 42.5 8.2 ~ 23.0 15.03 ~ 1 169.22 朝鲜槐 Maackia amurensis 9 4.9 ~ 25.4 7.0 ~ 18.2 7.73 ~ 391.08 蒙古栎 Quercus mongolica 9 8.0 ~ 41.2 8.4 ~ 22.8 16.83 ~ 1 036.42 千金榆 Carpinus cordata 9 5.1 ~ 13.4 7.9 ~ 11.9 6.04 ~ 67.91 青杨 Populus ussuriensis 10 9.1 ~ 47.1 10.5 ~ 26.4 20.78 ~ 1 329.98 五角槭 Acer pictum subsp. mono 12 6.4 ~ 45.3 8.5 ~ 20.6 10.72 ~ 1 105.85 水曲柳 Fraxinus mandshurica 10 10.7 ~ 41.4 10.9 ~ 23.7 16.21 ~ 1 371.45 紫椴 Tilia amurensis 10 7.0 ~ 42.2 9.6 ~ 22.5 10.57 ~ 950.29 表 3 储水量方程式
Table 3 Water storage capacity equation
方程代码
Equation code方程类型
Equation type方程形式
Equation form方程代码
Equation code方程类型
Equation type方程形式
Equation formEq.1 一元线性 Univariate linear y = aD + b Eq.8 多元二次 Multivariate quadratic y = aD2 + bH + c Eq.2 一元线性 Univariate linear y = aH + b Eq.9 多元二次 Multivariate quadratic y = aD + bH2 + c Eq.3 多元线性 Multivariate linear y = aD + bH + c Eq.10 多元二次 Multivariate quadratic y = aD2 + bH2 + c Eq.4 一元二次 Quadratic y = aD2 + b Eq.11 对数 Logarithmic ln y = ln a + bln D Eq.5 一元二次 Quadratic y = aH2 + b Eq.12 对数 Logarithmic ln y = ln a + bln H Eq.6 一元二次 Quadratic y = aD2 + bD + c Eq.13 对数 Logarithmic ln y = ln a + bln(D2H) Eq.7 一元二次 Quadratic y = aH2 + bH + c Eq.14 对数 Logarithmic ln y = ln a + bln D + cln H 注:y代表组分储水量(kg),包括整株、叶、茎干、根和地上储水量。H表示树高(m),D表示胸径(cm)。a、b、c为回归方程参数。下同。Notes: y, water storage capacity of component (kg), including leaf water storage capacity, stem water storage capacity, root water storage capacity, aboveground water storage capacity and water storage capacity of whole plant. H, tree height (m); D, diameter at breast height (cm). a, b, c are regression equation parameters, respectively. The same below. 表 4 肯德尔秩相关性分析
Table 4 Kendall_tau correlation analysis
储水量
Water storage capacityD H D2H 冠幅
Crown width整株 Whole plant 0.922*** 0.709*** 0.910*** 0.213 叶 Leaf 0.753*** 0.583*** 0.728*** 0.109 枝 Branch 0.802*** 0.609*** 0.777*** 0.138 干 Stem 0.881*** 0.733*** 0.889*** 0.232 根 Root 0.881*** 0.674*** 0.859*** 0.156 注:***表示极显著相关(P < 0.001)。 Note: *** indicates extremely significant correlation (P < 0.001). 表 5 各组分储水量最优方程形式
Table 5 Optimal equation forms for the water storage capacity of each component
树种 Tree species 组分 Component 方程形式 Equation form R2 P AIC 白桦 Betula platyphylla 整株 Whole plant ln y = 1.042ln(D2H) − 3.965 0.98 < 0.01 −4.140 叶 Leaf ln y = 1.031ln(D2H) − 7.353 0.90 < 0.01 18.269 枝 Branch ln y = 1.441ln(D2H) − 9.520 0.92 < 0.01 22.886 干 Stem ln y = 0.939ln(D2H) − 3.631 0.99 < 0.01 −18.812 根 Root ln y = 2.780ln D − 4.467 0.98 < 0.01 5.694 地上 Aboveground ln y = 1.014ln(D2H) − 3.993 0.99 < 0.01 −9.207 东北槭 Acer mandshuricum 整株 Whole plant ln y = 2.425ln D − 2.101 0.99 < 0.01 −12.626 叶 Leaf ln y = 2.686ln D − 2.832ln H + 1.28 0.76 < 0.01 15.751 枝 Branch ln y = 3.914ln D − 2.367ln H − 1.611 0.94 < 0.01 11.654 干 Stem ln y = 0.955ln(D2H) − 3.981 0.99 < 0.01 −11.171 根 Root ln y = 2.303ln D − 3.010 0.98 < 0.01 −3.235 地上 Aboveground ln y = 2.471ln D − 2.567 0.99 < 0.01 −13.765 春榆 Ulmus japonica 整株 Whole plant ln y = 2.446ln D − 2.200 0.98 < 0.01 1.746 叶 Leaf ln y = 2.308ln D − 4.717 0.98 < 0.01 3.353 枝 Branch ln y = 4.033ln D − 2.317ln H − 1.967 0.97 < 0.01 12.564 干 Stem ln y = 0.948ln(D2H) − 3.571 0.96 < 0.01 9.203 根 Root ln y = 2.633ln D − 3.786 0.98 < 0.01 2.582 地上 Aboveground ln y = 2.487ln D − 2.318 0.98 < 0.01 4.405 红松 Pinus koraiensis 整株 Whole plant ln y = 0.984ln(D2H) − 3.377 0.97 < 0.01 6.370 叶 Leaf ln y = 0.8497ln(D2H) − 4.8269 0.91 < 0.01 15.640 枝 Branch ln y = 2.652ln D − 4.920 0.86 < 0.01 24.353 干 Stem ln y = 0.937ln D + 2.698ln H − 5.283 0.99 < 0.01 −0.603 根 Root ln y = 0.952ln(D2H) − 4.663 0.96 < 0.01 9.206 地上 Aboveground ln y = 0.992ln(D2H) − 3.690 0.97 < 0.01 6.555 胡桃楸 Juglans mandshurica 整株 Whole plant ln y = 2.6679ln D − 0.5497ln H − 1.201 3 0.99 < 0.01 −11.226 叶 Leaf ln y = 3.2676ln D − 2.73ln H + 0.395 6 0.97 < 0.01 1.119 枝 Branch ln y = 4.861 8ln D − 3.8021ln H − 0.1967 0.93 < 0.01 19.893 干 Stem ln y = 0.893 9ln(D2H) − 3.407 6 0.99 < 0.01 −13.070 根 Root ln y = 2.543ln D − 3.949 0.97 < 0.01 5.653 地上 Aboveground ln y = 2.635ln D − 0.558ln H − 1.326 0.99 < 0.01 −12.311 朝鲜槐 Maackia amurensis 整株 Whole plant ln y = 2.328ln D − 1.812 0.98 < 0.01 −1.580 叶 Leaf ln y = 1.502ln D − 3.100 0.78 < 0.01 14.688 枝 Branch ln y = 2.952ln D − 5.301 0.86 < 0.01 22.856 干 Stem ln y = 0.855 5ln(D2H) − 3.021 7 0.99 < 0.01 −12.734 根 Root ln y = 2.391ln D − 3.456 0.97 < 0.01 2.387 地上 Aboveground ln y = 0.904 5ln(D2H) − 3.072 8 0.97 < 0.01 0.724 千金榆 Carpinus cordata 整株 Whole plant ln y = 2.389ln D − 2.072 0.97 < 0.01 −7.642 叶 Leaf ln y = 2.917 1ln D-2.309 7ln H − 0.344 3 0.86 < 0.01 7.819 枝 Branch ln y = 3.476ln D − 5.862 0.93 < 0.01 7.884 干 Stem ln y = 1.936ln D − 1.842 0.95 < 0.01 −6.045 根 Root ln y = 1.006ln(D2H) − 5.366 0.78 < 0.01 12.272 地上 Aboveground ln y = 2.393ln D − 2.267 0.98 < 0.01 −10.507 青杨 Populus ussuriensis 整株 Whole plant ln y = 1.007ln(D2H) − 3.776 0.99 < 0.01 −26.517 叶 Leaf ln y = 2.85ln D − 1.89ln H − 1.575 0.89 < 0.01 14.203 枝 Branch ln y = 3.895ln D − 2.074ln H − 2.540 0.96 < 0.01 10.814 干 Stem ln y = 1.557ln D + 1.900ln H − 5.451 0.99 < 0.01 −21.472 根 Root ln y = 2.469ln D − 3.831 0.98 < 0.01 −2.403 地上 Aboveground ln y = 1.004ln(D2H) − 3.974 0.99 < 0.01 −27.189 五角槭 Acer pictum subsp. mono 整株 Whole plant ln y = 0.979 7ln(D2H) − 3.492 4 0.99 < 0.01 −10.945 叶 Leaf ln y = 0.726 6ln(D2H) − 4.598 7 0.90 < 0.01 11.838 枝 Branch ln y = 1.132ln(D2H) − 6.653 0.91 < 0.01 21.919 干 Stem ln y = 0.937 8ln(D2H) − 3.824 7 0.99 < 0.01 −11.027 根 Root ln y = 2.535ln D − 3.801 0.98 < 0.01 −1.232 地上 Aboveground ln y = 0.955 6ln(D2H) − 3.616 5 0.99 < 0.01 −11.835 蒙古栎 Quercus mongolica 整株 Whole plant ln y = 2.155 0ln D + 0.572 3ln H − 2.847 4 0.99 < 0.01 −16.751 叶 Leaf ln y = 2.201 92ln D − 0.063 17ln H − 4.740 38 0.98 < 0.01 −2.433 枝 Branch ln y = 4.576ln D − 1.727ln H − 5.735 0.93 < 0.01 18.667 干 Stem ln y = 1.640ln D + 1.248ln H − 3.715 0.99 < 0.01 −12.174 根 Root ln y = 2.315ln D − 3.337 0.98 < 0.01 −2.664 地上 Aboveground ln y = 0.9912ln(D2H) − 3.737 9 0.99 < 0.01 −16.113 水曲柳 Fraxinus mandshurica 整株 Whole plant ln y = 2.865ln D − 3.470 0.97 < 0.01 3.883 叶 Leaf ln y = 0.785 2ln(D2H) − 4.784 3 0.91 < 0.01 8.269 枝 Branch ln y = 1.438ln(D2H) − 9.785 0.97 < 0.01 8.782 干 Stem ln y = 3.173ln D − 5.147 0.86 < 0.01 22.814 根 Root ln y = 3.09ln D − 0.991 1ln H − 2.552 4 0.99 < 0.01 −8.244 地上 Aboveground ln y = 2.985ln D − 4.186 0.96 < 0.01 8.710 紫椴 Tilia amurensis 整株 Whole plant ln y = 0.999 5ln(D2H) − 3.737 4 0.99 < 0.01 −14.284 叶 Leaf ln y = 0.913 9ln(D2H) − 6.460 3 0.93 < 0.01 12.766 枝 Branch ln y = 3.698ln D − 1.282ln H − 4.12 0.99 < 0.01 1.795 干 Stem ln y = 1.548ln D + 1.739ln H − 5.148 0.99 < 0.01 −5.491 根 Root ln y = 2.256ln D − 3.059 0.97 < 0.01 2.284 地上 Aboveground ln y = 1.024ln(D2H) − 4.246 0.99 < 0.01 −14.025 全树种 All tree species 整株 Whole plant ln y = 2.296 7ln D + 0.350 8ln H − 2.674 1 0.98 < 0.01 −44.547 叶 Leaf ln y = 2.449 9lnD − 0.920 2ln H − 2.853 2 0.85 < 0.01 179.610 枝 Branch ln y = 3.333 0lnD − 0.943 2ln H − 3.993 6 0.89 < 0.01 217.206 干 Stem ln y = 0.962 3ln(D2H) − 3.919 0 0.96 < 0.01 48.822 根 Root ln y = 2.456 8ln D + 0.165 4ln H − 4.098 4 0.96 < 0.01 57.071 地上 Aboveground ln y = 2.254 5ln D + 0.400 9ln H − 2.962 9 0.98 < 0.01 −16.184 表 6 不同发育阶段林分单位面积乔木储水量
Table 6 Water storage capacity of trees per unit area in different developing stages of stand
指标
Index中龄林
Middle-aged forest近熟林
Near-mature forest成熟林
Mature forest老龄林
Old growth forest储水量/(t·hm−2) Water storage capacity/(t·ha−1) (194.37 ± 10.39)b (201.37 ± 6.58)b (271.88 ± 8.96)a (276.36 ± 10.70)a 生物量/(t·hm−2) Biomass/(t·ha−1) (248.02 ± 13.97)b (248.66 ± 7.31)b (299.78 ± 12.21)a (312.18 ± 12.65)a 注:同行不同小写字母表示差异显著(P < 0.05)。Notes: different lowercase letters in the same line indicate significant differences (P < 0.05). -
[1] Ievinsh G. Water content of plant tissues: so simple that almost forgotten?[J]. Plants, 2023, 12(6): 1238.
[2] 王曙光, 普晓兰, 丁雨龙, 等. 云南箭竹地上部分生物量模型研究[J]. 南京林业大学学报(自然科学版), 2010, 34(1): 141−144. Wang S G, Pu X L, Ding Y L, et al. A study on the aboveground biomass models of Fargesia yunnanensis[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2010, 34(1): 141−144.
[3] Yang Y, Kim J E, Song H J, et al. Methodology: non-invasive monitoring system based on standing wave ratio for detecting water content variations in plants[J/OL]. Plant Methods, 2021, 17[2023−10−16]. https://doi.org/10.1186/s13007-021-00757-y.
[4] 刘树华, 李浩, 陆宏芳. 鼎湖山南亚热带森林生态系统服务价值动态[J]. 生态环境学报, 2011, 20(6): 1042−1047. doi: 10.3969/j.issn.1674-5906.2011.06.009 Liu S H, Li H, Lu H F. Dynamics in ecosystem service values of lower subtropical forest in Dinghushan[J]. Ecology and Environment, 2011, 20(6): 1042−1047. doi: 10.3969/j.issn.1674-5906.2011.06.009
[5] 王忠诚, 邓秀秀, 崔卓卿, 等. 洞庭湖区主要森林类型土壤持水性能研究[J]. 中南林业科技大学学报, 2016, 36(5): 79−84. Wang Z C, Deng X X, Cui Z Q, et al. Research on water holding capacity of forest soil around Dongting Lake[J]. Journal of Central South University of Forestry & Technology, 2016, 36(5): 79−84.
[6] 张远东, 刘世荣, 马姜明, 等. 川西亚高山桦木林的林地水文效应[J]. 生态学报, 2005, 25(11): 147−154. Zhang Y D, Liu S R, Ma J M, et al. Woodland hydrological effects of birch forests in sub-alpine region of western Sichuan, China[J]. Acta Ecologica Sinica, 2005, 25(11): 147−154.
[7] Wang B, Wu F, Xiao S, et al. Effect of succession gaps on the understory water-holding capacity in an over-mature alpine forest at the upper reaches of the Yangtze River[J]. Hydrological Processes, 2016, 30(5): 692−703. doi: 10.1002/hyp.10613
[8] Neris J, Tejedor M, Rodriguez M, et al. Effect of forest floor characteristics on water repellency, infiltration, runoff and soil loss in Andisols of Tenerife (Canary Islands, Spain)[J]. Catena, 2013, 108: 50−57. doi: 10.1016/j.catena.2012.04.011
[9] Gash J H C. An analytical model of rainfall interception by forests[J]. Quarterly Journal of the Royal Meteorological Society, 1979, 443: 43−55.
[10] 陈振雄, 贺东北. 南方马尾松含水率特征及其模型研建[J]. 中南林业调查规划, 2011, 30(2): 56−60, 64. Chen Z X, He D B. Moisture content and model of Pinus massoniana in southern China[J]. Central South Forest Inventory and Planning, 2011, 30(2): 56−60, 64.
[11] 张清, 陆素娟, 李品荣, 等. 半干旱石漠化地区直干桉生物量及含水率特征分析[J]. 西部林业科学, 2019, 48(4): 126−131. Zhang Q, Lu S J, Li P R, et al. Biomass of Eucalyptus maidenii in semi-arid rocky desertification area[J]. Journal of West China Forestry Science, 2019, 48(4): 126−131.
[12] 王柯人, 罗文秀, 舒清态, 等. 龙竹人工林的含水率分析及地上生物量回归模型构建[J]. 西南林业大学学报(自然科学), 2021, 41(6): 168−174. Wang K R, Luo W X, Shu Q T, et al. Analysis of moisture content and construction of aboveground biomass regression model for Dendrocalamus giganteus plantation[J]. Journal of Southwest Forestry University (Natural Sciense), 2021, 41(6): 168−174.
[13] 薛杨, 王小燕, 宿少锋, 等. 不同径阶木麻黄含水率和生物量的研究[J]. 热带农业科学, 2017, 37(12): 87−91. Xue Y, Wang X Y, Su S F, et al. Determination of moisture content and biomass of Casuarina equisetifolia with different trunk diameters[J]. Tropical Forestry, 2017, 37(12): 87−91.
[14] 董点, 林天喜, 唐景毅, 等. 紫椴生物量分配格局及异速生长方程[J]. 北京林业大学学报, 2014, 36(4): 54−63. Dong D, Lin T X, Tang J Y, et al. Biomass allocation patterns and allometric models of Tilia amurensis [J]. Journal of Beijing Forestry University, 2014, 36(4): 54−63.
[15] 兰洁, 肖中琪, 李吉玫, 等. 天山雪岭云杉生物量分配格局及异速生长模型[J]. 浙江农林大学学报, 2020, 37(3): 416−423. Lan J, Xiao Z Q, Li J M, et al. Biomass allocation and allometric growth of Picea schrenkiana in Tianshan Mountains[J]. Journal of Zhejiang A&F University, 2020, 37(3): 416−423.
[16] 李亚麒, 孙继伟, 李江飞, 等. 云南松不同家系苗木生物量分配及其异速生长[J]. 北京林业大学学报, 2021, 43(8): 18−28. Li Y Q, Sun J W, Li J F, et al. Biomass allocation and its allometric growth of Pinus yunnanensis seedlings of different families[J]. Journal of Beijing Forestry University, 2021, 43(8): 18−28.
[17] Enquist B J, Niklas K J. Invariant scaling relations across tree-dominated communities[J]. Nature, 2001, 410: 655−660. doi: 10.1038/35070500
[18] Dias D P, Marenco R A. Tree growth, wood and bark water content of 28 Amazonian tree species in response to variations in rainfall and wood density[J]. Iforest-Biogeosciences and Forestry, 2016, 9: 445−451. doi: 10.3832/ifor1676-008
[19] 何怀江, 叶尔江·拜克吐尔汉, 张春雨, 等. 吉林蛟河针阔混交林12个树种生物量分配规律[J]. 北京林业大学学报, 2016, 38(4): 53−62. He H J, Yeerjiang Baiketuerhan, Zhang C Y, et al. Biomass allocation of twelve tree species in coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province, northeast China[J]. Journal of Beijing Forestry University, 2016, 38(4): 53−62.
[20] 何怀江. 采伐干扰对吉林蛟河针阔混交林碳储量和碳平衡的影响[D]. 北京: 北京林业大学, 2018. He H J. Effects of thinning disturbance on carbon storage and carbon balance in coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province[D]. Beijing: Beijing Forestry University, 2018.
[21] 范娟. 吉林蛟河针阔混交林生物多样性时空格局及其与地上部分生物量的关系[D] 北京: 北京林业大学, 2015. Fan J. Spatial and temporal pattern of biodiversity and its correlation with aboveground biomass in coniferous and broadleaved mixed forests of Jiaohe, Jilin[D]. Beijing: Beijing Forestry University, 2015.
[22] 吴金卓, 孔琳琳, 王娇娇, 等. 吉林蛟河不同演替阶段针阔混交林凋落物持水特性研究[J]. 南京林业大学学报(自然科学版), 2016, 40(2): 113−120. Wu J Z, Kong L L, Wang J J, et al. Hydrological characteristics of forest litters in conifer and broad-leaved mixed forests at different forest successional stages in Jiaohe, Jilin Province[J]. Journal of NanJing Forestry University (Natural Science Edition), 2016, 40(2): 113−120.
[23] Mate R, Johansson T, Sitoe A. Biomass equations for tropical forest tree species in Mozambique[J]. Forests, 2014, 5(3): 535−556. doi: 10.3390/f5030535
[24] Wang C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1): 9−16.
[25] Niklas K J. Modelling below- and above-ground biomass for non-woody and woody plants[J]. Annals of Botany, 2005, 95(2): 315−321. doi: 10.1093/aob/mci028
[26] Enquist B J, Niklas K J. Global allocation rules for patterns of biomass partitioning in seed plants[J]. Science, 2002, 295: 1517−1520. doi: 10.1126/science.1066360
[27] Luo W, Jiang Y, Lu X, et al. Patterns of plant biomass allocation in temperate grasslands across a 2500-km transect in northern China[J]. PLoS ONE, 2013, 8(8): e71749. doi: 10.1371/journal.pone.0071749
[28] 张德军, 张廓玉, 张利梅. 防风固沙林营造技术[J]. 内蒙古林业科技, 2000(1): 30−33. Zhang D J, Zhang K Y, Zhang L M. Techniques for creating windbreak and sand fixation forests[J]. Inner Mongolia Forestry Science & Technology, 2000(1): 30−33.
[29] 金胶胶, 宋子文, 马晓雨, 等. 大青杨对不同干旱胁迫强度的形态和生理响应[J]. 植物研究, 2019, 39(4): 490−496. Jin J J, Song Z W, Ma X Y, et al. Morphological and physiological responses of Populus ussuriensis Kom. to drought stress[J]. Bulletin of Botanical Research, 2019, 39(4): 490−496.
[30] 于森. 大青杨PubZIP43基因抗旱功能研究[D] 哈尔滨: 东北林业大学, 2021. Yu S. Study of drought tolerance function of PubZIP43 in Populus ussuriensis[D]. Harbin: Northeast Forestry University, 2021.
[31] 李金明, 叶玉媛, 刘锦春, 等. 重庆地区几种常见单叶与复叶树种叶内生物量分配及异速生长分析[J]. 植物科学学报, 2021, 39(1): 76−84. Li J M, Ye Y Y, Liu J C, et al. Analysis of leaf biomass allocation and allometric growth of several common single-leaf and compound-leaf tree species in the Chongqing area[J]. Plant Science Journal, 2021, 39(1): 76−84.
[32] 赵厚本, 周光益, 李兆佳, 等. 南亚热带常绿阔叶林4个常见树种的生物量分配特征与异速生长模型[J]. 林业科学, 2022, 58(2): 23−31. Zhao H B, Zhou G Y, Li Z J, et al. Biomass allocation and allometric growth models of four common tree species in southern subtropical evergreen broad-leaved forest[J]. Scientia Silvae Sinicae, 2022, 58(2): 23−31.
[33] Weiner J. Allocation, plasticity and allometry in plants[J]. Perspectives in Plant Ecology Evolution and Systematics, 2004, 6(4): 207−215. doi: 10.1078/1433-8319-00083
[34] Gren G I, Franklin O. Root: shoot ratios, optimization and nitrogen productivity[J]. Annals of Botany, 2003, 92(6): 795−800.
[35] Niklas K J, Enquist B J. Canonical rules for plant organ biomass partitioning and annual allocation[J]. American Journal of Botany, 2002, 89(5): 812−819. doi: 10.3732/ajb.89.5.812
[36] Poorter H, Niklas K J, Reich P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control[J]. New Phytologist, 2012, 193(1): 30−50.
[37] Veronica G, Luis P P, Gerardo R. Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient[J]. Forest Ecology and Management, 2010, 259(6): 1118−1126. doi: 10.1016/j.foreco.2009.12.025
[38] 周琳月. 千金榆繁殖技术研究[D] 杨陵: 西北农林科技大学, 2016. Zhou L Y. Study on propagation technique of Carpinus cordata[D]. Yangling: Northwest A&F University, 2016.
[39] 赵儒楠, 何倩倩, 褚晓洁, 等. 气候变化下千金榆在我国潜在分布区预测[J]. 应用生态学报, 2019, 30(11): 3833−3843. Zhao R N, He Q Q, Chu X J, et al. Prediction of potential distribution of Carpinus cordata in China under climate change[J]. The Journal of Applied Ecology, 2019, 30(11): 3833−3843.
[40] 左舒翟, 任引, 翁闲, 等. 亚热带常绿阔叶林9个常见树种的生物量相对生长模型[J]. 应用生态学报, 2015, 26(2): 356−362. Zuo S Z, Ren Y, Weng X, et al. Biomass allometric equations of nine common tree species in an evergreen broadleaved forest of subtropical China[J]. Chinese Journal of Applied Ecology, 2015, 26(2): 356−362.
[41] Lin K, Lyu M, Jiang M, et al. Improved allometric equations for estimating biomass of the three Castanopsis carlesii H. forest types in subtropical China[J]. New Forests, 2017, 48(1): 115−135.
[42] Peng S, He N, Yu G, et al. Aboveground biomass estimation at different scales for subtropical forests in China[J]. Botanical Studies, 2017, 58(1): 45. doi: 10.1186/s40529-017-0199-1
[43] 范春楠, 郑金萍, 韩士杰, 等. 吉林省中东部森林分布区水曲柳分布及其生态特征[J]. 北京林业大学学报, 2017, 39(4): 1−11. Fan C N, Zheng J P, Han S J, et al. Resource distribution and ecological characteristics of Fraxinus mandshurica in central-eastern forest region of Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(4): 1−11.
[44] 吴升仕, 朱国和, 许仲明, 等. 水曲柳引种驯化研究初报[J]. 浙江林业科技, 1992(6): 41−42. Wu S S, Zhu G H, Xu Z M, et al. Preliminary report on research of introducing variety and domestication of Fraxinus mandshurica Rupr.[J]. Journal of Zhejiang Forestry Science and Technology, 1992(6): 41−42.
[45] 薛思雷, 王庆成, 孙欣欣, 等. 遮荫对水曲柳和蒙古栎光合、生长和生物量分配的影响[J]. 植物研究, 2012, 32(3): 354−359. Xue S L, Wang Q C, Sun X X, et al. Effects of shading on thephotosynthetic characteristics, growth, and biomass allocation in Fraxinus mandshurica and Quercus mongolica[J]. Bulletin of Botanical Research, 2012, 32(3): 354−359.
[46] 张鑫鑫. 不同光照条件下胡桃楸幼苗生长、生理及分子响应机制研究[D] 哈尔滨: 东北林业大学, 2023. Zhang X X. Study on physiological and molecular response mechanism of Juglans mandshurica seedlings under different light conditions[D]. Harbin: Northeast Forestry University, 2023.
[47] 李旭华, 于大炮, 代力民, 等. 长白山阔叶红松林生产力随林分发育的变化[J]. 应用生态学报, 2020, 31(3): 706−716. Li X H, Yu D P, Dai L M, et al. Changes of productivity with stand development in broadleaf-Korean pine forest in Changbai Mountain, China[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 706−716.
[48] 黄柳菁, 林欣, 刘兴诏, 等. 广东不同林龄乔木生物量及物种多样性与叶面积指数的关系[J]. 西南林业大学学报(自然科学), 2017, 37(6): 91−98. Huang L J, Lin X, Liu X Z, et al. The relation among biomass, biodiversity and LAI of trees at different stand ages in Guangdong Province[J]. Journal of Southwest Forestry University, 2017, 37(6): 91−98.
-
期刊类型引用(4)
1. 吴昊,刘海玉,乔晓磊,卫轶君,吴杨. 生物质及镁渣复合黏结剂制备焦粉型煤. 上海电力大学学报. 2023(02): 195-202+209 . 百度学术
2. 尹伟明,蒋金婷,樊星,郭元茹,韩世岩. 木质素磺酸钠/三聚氰胺甲醛微球泡沫的制备及表征. 复合材料学报. 2018(09): 2362-2368 . 百度学术
3. 徐保明,张弘,唐强,张家晖,李俊,李志鹏,陈坤. 木质素基碳纤维制备方法的研究进展. 化工新型材料. 2018(04): 23-26 . 百度学术
4. 陈梁,辛善志,米铁,胡明华. 木质素制备活性炭的工艺及其吸附性能研究. 江汉大学学报(自然科学版). 2017(03): 219-224 . 百度学术
其他类型引用(5)