• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

吉林蛟河不同树种储水量分配特征与预测模型

李昊岩, LiuGuoling, 张春雨, 叶尔江·拜克吐尔汉, 程艳霞, 赵秀海

李昊岩, LiuGuoling, 张春雨, 叶尔江·拜克吐尔汉, 程艳霞, 赵秀海. 吉林蛟河不同树种储水量分配特征与预测模型[J]. 北京林业大学学报, 2024, 46(9): 11-25. DOI: 10.12171/j.1000-1522.20230248
引用本文: 李昊岩, LiuGuoling, 张春雨, 叶尔江·拜克吐尔汉, 程艳霞, 赵秀海. 吉林蛟河不同树种储水量分配特征与预测模型[J]. 北京林业大学学报, 2024, 46(9): 11-25. DOI: 10.12171/j.1000-1522.20230248
Li Haoyan, Liu Guoling, Zhang Chunyu, Yeerjiang Baiketuerhan, Cheng Yanxia, Zhao Xiuhai. Allocation characteristics and prediction models of water storage capacity among different tree species in Jiaohe, Jilin Province of northeastern China[J]. Journal of Beijing Forestry University, 2024, 46(9): 11-25. DOI: 10.12171/j.1000-1522.20230248
Citation: Li Haoyan, Liu Guoling, Zhang Chunyu, Yeerjiang Baiketuerhan, Cheng Yanxia, Zhao Xiuhai. Allocation characteristics and prediction models of water storage capacity among different tree species in Jiaohe, Jilin Province of northeastern China[J]. Journal of Beijing Forestry University, 2024, 46(9): 11-25. DOI: 10.12171/j.1000-1522.20230248

吉林蛟河不同树种储水量分配特征与预测模型

基金项目: 国家重点研发计划重点专项(2023YFF1304003-05),国家自然科学基金项目(32371870)。
详细信息
    作者简介:

    李昊岩。主要研究方向:森林经理。Email:2461093967@qq.com 地址:100083北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    赵秀海,博士,教授。主要研究方向:森林生态学与森林经营管理。Email:Zhaoxh@bjfu.edu.cn 地址:同上。

  • 中图分类号: S715

Allocation characteristics and prediction models of water storage capacity among different tree species in Jiaohe, Jilin Province of northeastern China

  • 摘要:
    目的 

    分析吉林蛟河12个乔木树种整株及各组分含水率和储水量分配特征,构建并筛选各树种最优储水量预测模型,探讨不同树种储水量随森林发育阶段的变化,为该地区森林树种储水量估算提供模型参考。

    方法 

    采用单因素方差分析,对比12个树种不同器官含水率和储水量占比的差异,并通过多重比较法进行显著性检验。应用肯德尔秩相关分析法,以胸径(D)、树高(H)、D2H为模型自变量,整株及各器官储水量为因变量,构建多种形式的储水量预测模型,并通过模型决定系数、参数显著性以及赤池信息准则筛选最优模型。结合林地信息,计算不同发育阶段树种的储水量。

    结果 

    (1)12个树种器官平均含水率顺序为树叶 > 树根 > 树枝 > 树干。除千金榆外,其余树种在各器官储水量分配上普遍呈现树干 > 树根 > 树枝 > 树叶的趋势。随胸径增大,树枝储水量占比增大,而树干与树叶的储水量占比减小,树根储水量变化不显著。(2)12个树种的储水量预测模型均为对数函数形式,不同树种器官的最优模型自变量各异。(3)随着森林演替,单位面积乔木的储水量和生物量均增加。

    结论 

    本研究揭示了储水量占比和含水率在器官间与物种间存在显著差异,其中储水量与树高、胸径之间存在种间特异性,且不同器官储水量占比随胸径增长呈现不同变化趋势。所筛选的储水量最优模型均为对数函数形式,其中单树种储水量预测模型具有较高的拟合精度,而全树种模型更适用于估算区域性储水量。本文阐明了吉林蛟河树木水分状况在不同时空尺度上的变化规律,有助于加深对生态系统动态过程的理解,并为该地区森林树种储水量的精确估算提供了可靠的模型参考。

    Abstract:
    Objective 

    This paper analyzed the distribution characteristics of moisture contents of 12 tree species in northeastern China and species-specific allometric equations of 12 tree species were established to explore the differences in water storage capacity characteristics among different tree species with forest developing, as well as providing model reference for the estimation of water storage capacity in this area.

    Method 

    One-way ANOVA and multiple comparison methods were used to contrast differences in moisture content and water storage capacity proportion among various organs across the 12 tree species. Utilizing Kendall’s rank correlation analysis to identify DBH (D), tree height (H), and D2H as predictor variables in water storage capacity prediction models with whole-tree and organ-specific water storage capacity serving as response variables. Different forms of water storage capacity prediction models were constructed based on these relationships. Optimal models were selected through evaluation using the coefficient of determination, parameter significance level, and Akaike’s information criterion. Integrating stand information, this approach was employed to calculate the water storage capacity of trees across varied developing stages.

    Result 

    (1) Overall, average moisture content was highest in leaves, followed by roots, branches, and stems. Except for Carpinus cordata, all other species showed a consistent pattern in water allocation across organs: stem > root > branch > leaf. As D increased, the proportion of branch water storage capacity increased, while the proportion of stem and leaf water storage capacity decreased, with no significant changes in root water storage capacity. (2) The water storage capacity prediction models for all 12 tree species were best represented by logarithmic functions. The optimal independent variables for organ moisture content models of different tree species were different. (3) With forest succession, both water storage capacity and biomass per unit area increased.

    Conclusion 

    The study highlights significant differences in water storage capacity and distribution among organs and tree species, with species-specific relationship between water storage capacity and D, as well as H. The percentage of water storage capacity of different organs shows different trends with the increase of breast diameter. The water content prediction models for all 12 tree species were best represented by logarithmic functions. The single-species models have higher fitting accuracy, while the multi-species model has broader application. This research elucidates the spatiotemporal dynamics of water status in temperate-boreal tree species, contributing to a deeper understanding of ecosystem dynamics. It provides a scientific basis for accurate estimation of tree water storage capacity in the forest region of Jiaohe, Jilin Province of northeastern China.

  • 图  1   不同树种器官含水率分布格局

    不同小写字母表示不同树种的同一器官间含水率差异显著(P < 0.05)。下同。Different lowercase letters indicate significant differences in moisture content between the same organ of varied tree species (P < 0.05). The same below.

    Figure  1.   Distribution patterns of moisture content in organs of different tree species

    图  2   不同树种各器官储水量的分配格局

    Figure  2.   Allocation patterns of water storage capacity in organs of different tree species

    图  3   树木各器官储水量占比随胸径变化的分配格局

    Figure  3.   Allocation patterns of water storage capacity in organs with DBH

    图  4   12个树种整株(a)、树叶(b)、树枝(c)、树干(d)、树根(e)及地上部分(f)储水量随胸径变化的分配格局

    Figure  4.   Allocation patterns of water storage capacity of whole plant (a), leaf (b), branch (c), stem (d), root (e) and aboveground (f) of 12 tree species with DBH

    图  5   12个树种整株(a)、树叶(b)、树枝(c)、树干(d)、树根(e)及地上部分(f)储水量随树高变化的分配格局

    Figure  5.   Allocation patterns of water storage capacity of whole plant (a), leaf (b), branch (c), stem (d), root (e) and aboveground (f) of 12 tree species with H

    图  6   12个树种整株(a)、树叶(b)、树枝(c)、树干(d)、树根(e)及地上部分(f)储水量随胸径树高组合变化的分配格局

    Figure  6.   Allocation patterns of water storage capacity of whole plant (a), leaf (b), branch (c), stem (d), root (e) and aboveground (f) of 12 tree species with D2H

    图  7   不同发育阶段林地树种储水量的分布格局

    Figure  7.   Distribution patterns of water storage capacity of tree species at different developing stages

    表  1   不同发育阶段林分树种组成及相关指标

    Table  1   Composition of tree species and related indicators in different developing stages of stand

    林分
    Stand
    胸高断面积和物种重要值
    Basal area and species important value
    平均胸径
    Average DBH/cm
    平均树高
    Average
    tree height/m
    密度/(株·hm−2
    Density/
    (tree·ha−1)
    树种
    Tree species
    胸高断面积/(m2·hm−2
    Basal area/(m2·ha−1)
    重要值
    Important
    value
    中龄林
    Middle-aged forest
    胡桃楸 Juglans mandshurica 11.35 25.12 9.20 10.52 1 405
    东北槭 Acer mandshuricum 1.95 15.58
    五角槭Acer pictum subsp. mono 2.06 12.99
    裂叶榆 Ulmus laciniata 1.05 8.58
    春榆 Ulmus japonica 1.34 8.40
    近熟林
    Near-mature forest
    水曲柳 Fraxinus mandshurica 6.52 11.58 9.52 10.85 1 539
    五角槭 Acer pictum subsp. mono 4.61 11.07
    红松 Pinus koraiensis 3.42 7.05
    紫椴 Tilia amurensis 4.29 6.52
    春榆 Ulmus japonica 1.16 6.07
    成熟林
    Mature forest
    五角槭 Acer pictum subsp. mono 5.91 8.86 10.87 14.38 1 004
    红松 Pinus koraiensis 4.91 7.41
    紫椴 Tilia amurensis 4.15 6.52
    水曲柳 Fraxinus mandshurica 4.24 6.26
    东北槭 Acer mandshuricum 2.29 5.19
    老龄林
    Old growth forest
    千金榆 Carpinus cordata 1.70 10.83 11.20 15.43 980
    五角槭 Acer pictum subsp. mono 4.03 10.63
    裂叶榆 Ulmus laciniata 4.48 9.56
    东北槭 Acer mandshuricum 1.91 8.98
    紫椴 Tilia amurensis 4.92 7.90
    注:表中仅列出各发育阶段林分中物种重要值排名前5位的树种。引自文献[2122]。Notes: the table only lists the top 5 tree species with the highest species importance values in each developing stage of stand. Cited from reference [2122].
    下载: 导出CSV

    表  2   12个优势树种样本数量和测定指标

    Table  2   Sample size and measurement indicators of 12 dominant tree species

    树种
    Tree species
    样本数
    Sample size
    胸径
    DBH/cm
    树高
    Tree height/m
    整株储水量
    Water storage capacity of whole plant/kg
    白桦 Betula platyphylla 10 5.7 ~ 40.0 9.3 ~ 22.8 8.34 ~ 1 027.83
    东北槭 Acer mandshuricum 10 7.8 ~ 35.9 9.1 ~ 18.5 18.07 ~ 725.20
    春榆 Ulmus japonica 9 5.6 ~ 39.9 6.8 ~ 20.1 10.17 ~ 1 343.24
    红松 Pinus koraiensis 11 8.4 ~ 44.0 6.7 ~ 22.3 14.77 ~ 1 132.20
    胡桃楸 Juglans mandshurica 10 6.5 ~ 42.5 8.2 ~ 23.0 15.03 ~ 1 169.22
    朝鲜槐 Maackia amurensis 9 4.9 ~ 25.4 7.0 ~ 18.2 7.73 ~ 391.08
    蒙古栎 Quercus mongolica 9 8.0 ~ 41.2 8.4 ~ 22.8 16.83 ~ 1 036.42
    千金榆 Carpinus cordata 9 5.1 ~ 13.4 7.9 ~ 11.9 6.04 ~ 67.91
    青杨 Populus ussuriensis 10 9.1 ~ 47.1 10.5 ~ 26.4 20.78 ~ 1 329.98
    五角槭 Acer pictum subsp. mono 12 6.4 ~ 45.3 8.5 ~ 20.6 10.72 ~ 1 105.85
    水曲柳 Fraxinus mandshurica 10 10.7 ~ 41.4 10.9 ~ 23.7 16.21 ~ 1 371.45
    紫椴 Tilia amurensis 10 7.0 ~ 42.2 9.6 ~ 22.5 10.57 ~ 950.29
    下载: 导出CSV

    表  3   储水量方程式

    Table  3   Water storage capacity equation

    方程代码
    Equation code
    方程类型
    Equation type
    方程形式
    Equation form
    方程代码
    Equation code
    方程类型
    Equation type
    方程形式
    Equation form
    Eq.1一元线性 Univariate lineary = aD + bEq.8多元二次 Multivariate quadraticy = aD2 + bH + c
    Eq.2一元线性 Univariate lineary = aH + bEq.9多元二次 Multivariate quadraticy = aD + bH2 + c
    Eq.3多元线性 Multivariate lineary = aD + bH + cEq.10多元二次 Multivariate quadraticy = aD2 + bH2 + c
    Eq.4一元二次 Quadraticy = aD2 + bEq.11对数 Logarithmicln y = ln a + bln D
    Eq.5一元二次 Quadraticy = aH2 + bEq.12对数 Logarithmicln y = ln a + bln H
    Eq.6一元二次 Quadraticy = aD2 + bD + cEq.13对数 Logarithmicln y = ln a + bln(D2H
    Eq.7一元二次 Quadraticy = aH2 + bH + cEq.14对数 Logarithmicln y = ln a + bln D + cln H
    注:y代表组分储水量(kg),包括整株、叶、茎干、根和地上储水量。H表示树高(m),D表示胸径(cm)。abc为回归方程参数。下同。Notes: y, water storage capacity of component (kg), including leaf water storage capacity, stem water storage capacity, root water storage capacity, aboveground water storage capacity and water storage capacity of whole plant. H, tree height (m); D, diameter at breast height (cm). a, b, c are regression equation parameters, respectively. The same below.
    下载: 导出CSV

    表  4   肯德尔秩相关性分析

    Table  4   Kendall_tau correlation analysis

    储水量
    Water storage capacity
    DHD2H冠幅
    Crown width
    整株 Whole plant0.922***0.709***0.910***0.213
    叶 Leaf0.753***0.583***0.728***0.109
    枝 Branch0.802***0.609***0.777***0.138
    干 Stem0.881***0.733***0.889***0.232
    根 Root0.881***0.674***0.859***0.156
    注:***表示极显著相关(P < 0.001)。 Note: *** indicates extremely significant correlation (P < 0.001).
    下载: 导出CSV

    表  5   各组分储水量最优方程形式

    Table  5   Optimal equation forms for the water storage capacity of each component

    树种 Tree species 组分 Component 方程形式 Equation form R2 P AIC
    白桦 Betula platyphylla整株 Whole plantln y = 1.042ln(D2H) − 3.9650.98 < 0.01−4.140
    叶 Leafln y = 1.031ln(D2H) − 7.3530.90 < 0.0118.269
    枝 Branchln y = 1.441ln(D2H) − 9.5200.92 < 0.0122.886
    干 Stemln y = 0.939ln(D2H) − 3.6310.99 < 0.01−18.812
    根 Rootln y = 2.780ln D − 4.4670.98 < 0.015.694
    地上 Abovegroundln y = 1.014ln(D2H) − 3.9930.99 < 0.01−9.207
    东北槭 Acer mandshuricum整株 Whole plantln y = 2.425ln D − 2.1010.99 < 0.01−12.626
    叶 Leafln y = 2.686ln D − 2.832ln H + 1.280.76 < 0.0115.751
    枝 Branchln y = 3.914ln D − 2.367ln H − 1.6110.94 < 0.0111.654
    干 Stemln y = 0.955ln(D2H) − 3.9810.99 < 0.01−11.171
    根 Rootln y = 2.303ln D − 3.0100.98 < 0.01−3.235
    地上 Abovegroundln y = 2.471ln D − 2.5670.99 < 0.01−13.765
    春榆 Ulmus japonica整株 Whole plantln y = 2.446ln D − 2.2000.98 < 0.011.746
    叶 Leafln y = 2.308ln D − 4.7170.98 < 0.013.353
    枝 Branchln y = 4.033ln D − 2.317ln H − 1.9670.97 < 0.0112.564
    干 Stemln y = 0.948ln(D2H) − 3.5710.96 < 0.019.203
    根 Rootln y = 2.633ln D − 3.7860.98 < 0.012.582
    地上 Abovegroundln y = 2.487ln D − 2.3180.98 < 0.014.405
    红松 Pinus koraiensis整株 Whole plantln y = 0.984ln(D2H) − 3.3770.97 < 0.016.370
    叶 Leafln y = 0.8497ln(D2H) − 4.82690.91 < 0.0115.640
    枝 Branchln y = 2.652ln D − 4.9200.86 < 0.0124.353
    干 Stemln y = 0.937ln D + 2.698ln H − 5.2830.99 < 0.01−0.603
    根 Rootln y = 0.952ln(D2H) − 4.6630.96 < 0.019.206
    地上 Abovegroundln y = 0.992ln(D2H) − 3.6900.97 < 0.016.555
    胡桃楸 Juglans mandshurica整株 Whole plantln y = 2.6679ln D − 0.5497ln H − 1.201 30.99 < 0.01−11.226
    叶 Leafln y = 3.2676ln D − 2.73ln H + 0.395 60.97 < 0.011.119
    枝 Branchln y = 4.861 8ln D − 3.8021ln H0.19670.93 < 0.0119.893
    干 Stemln y = 0.893 9ln(D2H) − 3.407 60.99 < 0.01−13.070
    根 Rootln y = 2.543ln D − 3.9490.97 < 0.015.653
    地上 Abovegroundln y = 2.635ln D − 0.558ln H − 1.3260.99 < 0.01−12.311
    朝鲜槐 Maackia amurensis整株 Whole plantln y = 2.328ln D − 1.8120.98 < 0.01−1.580
    叶 Leafln y = 1.502ln D − 3.1000.78 < 0.0114.688
    枝 Branchln y = 2.952ln D − 5.3010.86 < 0.0122.856
    干 Stemln y = 0.855 5ln(D2H) − 3.021 70.99 < 0.01−12.734
    根 Rootln y = 2.391ln D − 3.4560.97 < 0.012.387
    地上 Abovegroundln y = 0.904 5ln(D2H) − 3.072 80.97 < 0.010.724
    千金榆 Carpinus cordata整株 Whole plantln y = 2.389ln D − 2.0720.97 < 0.01−7.642
    叶 Leafln y = 2.917 1ln D-2.309 7ln H − 0.344 30.86 < 0.017.819
    枝 Branchln y = 3.476ln D − 5.8620.93 < 0.017.884
    干 Stemln y = 1.936ln D − 1.8420.95 < 0.01−6.045
    根 Rootln y = 1.006ln(D2H) − 5.3660.78 < 0.0112.272
    地上 Abovegroundln y = 2.393ln D − 2.2670.98 < 0.01−10.507
    青杨 Populus ussuriensis整株 Whole plantln y = 1.007ln(D2H) − 3.7760.99 < 0.01−26.517
    叶 Leafln y = 2.85ln D − 1.89ln H − 1.5750.89 < 0.0114.203
    枝 Branchln y = 3.895ln D − 2.074ln H − 2.5400.96 < 0.0110.814
    干 Stemln y = 1.557ln D + 1.900ln H − 5.4510.99 < 0.01−21.472
    根 Rootln y = 2.469ln D − 3.8310.98 < 0.01−2.403
    地上 Abovegroundln y = 1.004ln(D2H) − 3.9740.99 < 0.01−27.189
    五角槭 Acer pictum subsp. mono整株 Whole plantln y = 0.979 7ln(D2H) − 3.492 40.99 < 0.01−10.945
    叶 Leafln y = 0.726 6ln(D2H) − 4.598 70.90 < 0.0111.838
    枝 Branchln y = 1.132ln(D2H) − 6.6530.91 < 0.0121.919
    干 Stemln y = 0.937 8ln(D2H) − 3.824 70.99 < 0.01−11.027
    根 Rootln y = 2.535ln D − 3.8010.98 < 0.01−1.232
    地上 Abovegroundln y = 0.955 6ln(D2H) − 3.616 50.99 < 0.01−11.835
    蒙古栎 Quercus mongolica整株 Whole plantln y = 2.155 0ln D + 0.572 3ln H − 2.847 40.99 < 0.01−16.751
    叶 Leafln y = 2.201 92ln D − 0.063 17ln H − 4.740 380.98 < 0.01−2.433
    枝 Branchln y = 4.576ln D − 1.727ln H − 5.7350.93 < 0.0118.667
    干 Stemln y = 1.640ln D + 1.248ln H − 3.7150.99 < 0.01−12.174
    根 Rootln y = 2.315ln D − 3.3370.98 < 0.01−2.664
    地上 Abovegroundln y = 0.9912ln(D2H) − 3.737 90.99 < 0.01−16.113
    水曲柳 Fraxinus mandshurica整株 Whole plantln y = 2.865ln D − 3.4700.97 < 0.013.883
    叶 Leafln y = 0.785 2ln(D2H) − 4.784 30.91 < 0.018.269
    枝 Branchln y = 1.438ln(D2H) − 9.7850.97 < 0.018.782
    干 Stemln y = 3.173ln D − 5.1470.86 < 0.0122.814
    根 Rootln y = 3.09ln D − 0.991 1ln H − 2.552 40.99 < 0.01−8.244
    地上 Abovegroundln y = 2.985ln D − 4.1860.96 < 0.018.710
    紫椴 Tilia amurensis整株 Whole plantln y = 0.999 5ln(D2H) − 3.737 40.99 < 0.01−14.284
    叶 Leafln y = 0.913 9ln(D2H) − 6.460 30.93 < 0.0112.766
    枝 Branchln y = 3.698ln D − 1.282ln H − 4.120.99 < 0.011.795
    干 Stemln y = 1.548ln D + 1.739ln H − 5.1480.99 < 0.01−5.491
    根 Rootln y = 2.256ln D − 3.0590.97 < 0.012.284
    地上 Abovegroundln y = 1.024ln(D2H) − 4.2460.99 < 0.01−14.025
    全树种 All tree species整株 Whole plantln y = 2.296 7ln D + 0.350 8ln H − 2.674 10.98 < 0.01−44.547
    叶 Leafln y = 2.449 9lnD − 0.920 2ln H − 2.853 20.85 < 0.01179.610
    枝 Branchln y = 3.333 0lnD − 0.943 2ln H − 3.993 60.89 < 0.01217.206
    干 Stemln y = 0.962 3ln(D2H) − 3.919 00.96 < 0.0148.822
    根 Rootln y = 2.456 8ln D + 0.165 4ln H − 4.098 40.96 < 0.0157.071
    地上 Abovegroundln y = 2.254 5ln D + 0.400 9ln H − 2.962 90.98 < 0.01−16.184
    下载: 导出CSV

    表  6   不同发育阶段林分单位面积乔木储水量

    Table  6   Water storage capacity of trees per unit area in different developing stages of stand

    指标
    Index
    中龄林
    Middle-aged forest
    近熟林
    Near-mature forest
    成熟林
    Mature forest
    老龄林
    Old growth forest
    储水量/(t·hm−2) Water storage capacity/(t·ha−1) (194.37 ± 10.39)b (201.37 ± 6.58)b (271.88 ± 8.96)a (276.36 ± 10.70)a
    生物量/(t·hm−2) Biomass/(t·ha−1) (248.02 ± 13.97)b (248.66 ± 7.31)b (299.78 ± 12.21)a (312.18 ± 12.65)a
    注:同行不同小写字母表示差异显著(P < 0.05)。Notes: different lowercase letters in the same line indicate significant differences (P < 0.05).
    下载: 导出CSV
  • [1]

    Ievinsh G. Water content of plant tissues: so simple that almost forgotten?[J]. Plants, 2023, 12(6): 1238.

    [2] 王曙光, 普晓兰, 丁雨龙, 等. 云南箭竹地上部分生物量模型研究[J]. 南京林业大学学报(自然科学版), 2010, 34(1): 141−144.

    Wang S G, Pu X L, Ding Y L, et al. A study on the aboveground biomass models of Fargesia yunnanensis[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2010, 34(1): 141−144.

    [3]

    Yang Y, Kim J E, Song H J, et al. Methodology: non-invasive monitoring system based on standing wave ratio for detecting water content variations in plants[J/OL]. Plant Methods, 2021, 17[2023−10−16]. https://doi.org/10.1186/s13007-021-00757-y.

    [4] 刘树华, 李浩, 陆宏芳. 鼎湖山南亚热带森林生态系统服务价值动态[J]. 生态环境学报, 2011, 20(6): 1042−1047. doi: 10.3969/j.issn.1674-5906.2011.06.009

    Liu S H, Li H, Lu H F. Dynamics in ecosystem service values of lower subtropical forest in Dinghushan[J]. Ecology and Environment, 2011, 20(6): 1042−1047. doi: 10.3969/j.issn.1674-5906.2011.06.009

    [5] 王忠诚, 邓秀秀, 崔卓卿, 等. 洞庭湖区主要森林类型土壤持水性能研究[J]. 中南林业科技大学学报, 2016, 36(5): 79−84.

    Wang Z C, Deng X X, Cui Z Q, et al. Research on water holding capacity of forest soil around Dongting Lake[J]. Journal of Central South University of Forestry & Technology, 2016, 36(5): 79−84.

    [6] 张远东, 刘世荣, 马姜明, 等. 川西亚高山桦木林的林地水文效应[J]. 生态学报, 2005, 25(11): 147−154.

    Zhang Y D, Liu S R, Ma J M, et al. Woodland hydrological effects of birch forests in sub-alpine region of western Sichuan, China[J]. Acta Ecologica Sinica, 2005, 25(11): 147−154.

    [7]

    Wang B, Wu F, Xiao S, et al. Effect of succession gaps on the understory water-holding capacity in an over-mature alpine forest at the upper reaches of the Yangtze River[J]. Hydrological Processes, 2016, 30(5): 692−703. doi: 10.1002/hyp.10613

    [8]

    Neris J, Tejedor M, Rodriguez M, et al. Effect of forest floor characteristics on water repellency, infiltration, runoff and soil loss in Andisols of Tenerife (Canary Islands, Spain)[J]. Catena, 2013, 108: 50−57. doi: 10.1016/j.catena.2012.04.011

    [9]

    Gash J H C. An analytical model of rainfall interception by forests[J]. Quarterly Journal of the Royal Meteorological Society, 1979, 443: 43−55.

    [10] 陈振雄, 贺东北. 南方马尾松含水率特征及其模型研建[J]. 中南林业调查规划, 2011, 30(2): 56−60, 64.

    Chen Z X, He D B. Moisture content and model of Pinus massoniana in southern China[J]. Central South Forest Inventory and Planning, 2011, 30(2): 56−60, 64.

    [11] 张清, 陆素娟, 李品荣, 等. 半干旱石漠化地区直干桉生物量及含水率特征分析[J]. 西部林业科学, 2019, 48(4): 126−131.

    Zhang Q, Lu S J, Li P R, et al. Biomass of Eucalyptus maidenii in semi-arid rocky desertification area[J]. Journal of West China Forestry Science, 2019, 48(4): 126−131.

    [12] 王柯人, 罗文秀, 舒清态, 等. 龙竹人工林的含水率分析及地上生物量回归模型构建[J]. 西南林业大学学报(自然科学), 2021, 41(6): 168−174.

    Wang K R, Luo W X, Shu Q T, et al. Analysis of moisture content and construction of aboveground biomass regression model for Dendrocalamus giganteus plantation[J]. Journal of Southwest Forestry University (Natural Sciense), 2021, 41(6): 168−174.

    [13] 薛杨, 王小燕, 宿少锋, 等. 不同径阶木麻黄含水率和生物量的研究[J]. 热带农业科学, 2017, 37(12): 87−91.

    Xue Y, Wang X Y, Su S F, et al. Determination of moisture content and biomass of Casuarina equisetifolia with different trunk diameters[J]. Tropical Forestry, 2017, 37(12): 87−91.

    [14] 董点, 林天喜, 唐景毅, 等. 紫椴生物量分配格局及异速生长方程[J]. 北京林业大学学报, 2014, 36(4): 54−63.

    Dong D, Lin T X, Tang J Y, et al. Biomass allocation patterns and allometric models of Tilia amurensis [J]. Journal of Beijing Forestry University, 2014, 36(4): 54−63.

    [15] 兰洁, 肖中琪, 李吉玫, 等. 天山雪岭云杉生物量分配格局及异速生长模型[J]. 浙江农林大学学报, 2020, 37(3): 416−423.

    Lan J, Xiao Z Q, Li J M, et al. Biomass allocation and allometric growth of Picea schrenkiana in Tianshan Mountains[J]. Journal of Zhejiang A&F University, 2020, 37(3): 416−423.

    [16] 李亚麒, 孙继伟, 李江飞, 等. 云南松不同家系苗木生物量分配及其异速生长[J]. 北京林业大学学报, 2021, 43(8): 18−28.

    Li Y Q, Sun J W, Li J F, et al. Biomass allocation and its allometric growth of Pinus yunnanensis seedlings of different families[J]. Journal of Beijing Forestry University, 2021, 43(8): 18−28.

    [17]

    Enquist B J, Niklas K J. Invariant scaling relations across tree-dominated communities[J]. Nature, 2001, 410: 655−660. doi: 10.1038/35070500

    [18]

    Dias D P, Marenco R A. Tree growth, wood and bark water content of 28 Amazonian tree species in response to variations in rainfall and wood density[J]. Iforest-Biogeosciences and Forestry, 2016, 9: 445−451. doi: 10.3832/ifor1676-008

    [19] 何怀江, 叶尔江·拜克吐尔汉, 张春雨, 等. 吉林蛟河针阔混交林12个树种生物量分配规律[J]. 北京林业大学学报, 2016, 38(4): 53−62.

    He H J, Yeerjiang Baiketuerhan, Zhang C Y, et al. Biomass allocation of twelve tree species in coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province, northeast China[J]. Journal of Beijing Forestry University, 2016, 38(4): 53−62.

    [20] 何怀江. 采伐干扰对吉林蛟河针阔混交林碳储量和碳平衡的影响[D]. 北京: 北京林业大学, 2018.

    He H J. Effects of thinning disturbance on carbon storage and carbon balance in coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province[D]. Beijing: Beijing Forestry University, 2018.

    [21] 范娟. 吉林蛟河针阔混交林生物多样性时空格局及其与地上部分生物量的关系[D] 北京: 北京林业大学, 2015.

    Fan J. Spatial and temporal pattern of biodiversity and its correlation with aboveground biomass in coniferous and broadleaved mixed forests of Jiaohe, Jilin[D]. Beijing: Beijing Forestry University, 2015.

    [22] 吴金卓, 孔琳琳, 王娇娇, 等. 吉林蛟河不同演替阶段针阔混交林凋落物持水特性研究[J]. 南京林业大学学报(自然科学版), 2016, 40(2): 113−120.

    Wu J Z, Kong L L, Wang J J, et al. Hydrological characteristics of forest litters in conifer and broad-leaved mixed forests at different forest successional stages in Jiaohe, Jilin Province[J]. Journal of NanJing Forestry University (Natural Science Edition), 2016, 40(2): 113−120.

    [23]

    Mate R, Johansson T, Sitoe A. Biomass equations for tropical forest tree species in Mozambique[J]. Forests, 2014, 5(3): 535−556. doi: 10.3390/f5030535

    [24]

    Wang C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1): 9−16.

    [25]

    Niklas K J. Modelling below- and above-ground biomass for non-woody and woody plants[J]. Annals of Botany, 2005, 95(2): 315−321. doi: 10.1093/aob/mci028

    [26]

    Enquist B J, Niklas K J. Global allocation rules for patterns of biomass partitioning in seed plants[J]. Science, 2002, 295: 1517−1520. doi: 10.1126/science.1066360

    [27]

    Luo W, Jiang Y, Lu X, et al. Patterns of plant biomass allocation in temperate grasslands across a 2500-km transect in northern China[J]. PLoS ONE, 2013, 8(8): e71749. doi: 10.1371/journal.pone.0071749

    [28] 张德军, 张廓玉, 张利梅. 防风固沙林营造技术[J]. 内蒙古林业科技, 2000(1): 30−33.

    Zhang D J, Zhang K Y, Zhang L M. Techniques for creating windbreak and sand fixation forests[J]. Inner Mongolia Forestry Science & Technology, 2000(1): 30−33.

    [29] 金胶胶, 宋子文, 马晓雨, 等. 大青杨对不同干旱胁迫强度的形态和生理响应[J]. 植物研究, 2019, 39(4): 490−496.

    Jin J J, Song Z W, Ma X Y, et al. Morphological and physiological responses of Populus ussuriensis Kom. to drought stress[J]. Bulletin of Botanical Research, 2019, 39(4): 490−496.

    [30] 于森. 大青杨PubZIP43基因抗旱功能研究[D] 哈尔滨: 东北林业大学, 2021.

    Yu S. Study of drought tolerance function of PubZIP43 in Populus ussuriensis[D]. Harbin: Northeast Forestry University, 2021.

    [31] 李金明, 叶玉媛, 刘锦春, 等. 重庆地区几种常见单叶与复叶树种叶内生物量分配及异速生长分析[J]. 植物科学学报, 2021, 39(1): 76−84.

    Li J M, Ye Y Y, Liu J C, et al. Analysis of leaf biomass allocation and allometric growth of several common single-leaf and compound-leaf tree species in the Chongqing area[J]. Plant Science Journal, 2021, 39(1): 76−84.

    [32] 赵厚本, 周光益, 李兆佳, 等. 南亚热带常绿阔叶林4个常见树种的生物量分配特征与异速生长模型[J]. 林业科学, 2022, 58(2): 23−31.

    Zhao H B, Zhou G Y, Li Z J, et al. Biomass allocation and allometric growth models of four common tree species in southern subtropical evergreen broad-leaved forest[J]. Scientia Silvae Sinicae, 2022, 58(2): 23−31.

    [33]

    Weiner J. Allocation, plasticity and allometry in plants[J]. Perspectives in Plant Ecology Evolution and Systematics, 2004, 6(4): 207−215. doi: 10.1078/1433-8319-00083

    [34]

    Gren G I, Franklin O. Root: shoot ratios, optimization and nitrogen productivity[J]. Annals of Botany, 2003, 92(6): 795−800.

    [35]

    Niklas K J, Enquist B J. Canonical rules for plant organ biomass partitioning and annual allocation[J]. American Journal of Botany, 2002, 89(5): 812−819. doi: 10.3732/ajb.89.5.812

    [36]

    Poorter H, Niklas K J, Reich P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control[J]. New Phytologist, 2012, 193(1): 30−50.

    [37]

    Veronica G, Luis P P, Gerardo R. Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient[J]. Forest Ecology and Management, 2010, 259(6): 1118−1126. doi: 10.1016/j.foreco.2009.12.025

    [38] 周琳月. 千金榆繁殖技术研究[D] 杨陵: 西北农林科技大学, 2016.

    Zhou L Y. Study on propagation technique of Carpinus cordata[D]. Yangling: Northwest A&F University, 2016.

    [39] 赵儒楠, 何倩倩, 褚晓洁, 等. 气候变化下千金榆在我国潜在分布区预测[J]. 应用生态学报, 2019, 30(11): 3833−3843.

    Zhao R N, He Q Q, Chu X J, et al. Prediction of potential distribution of Carpinus cordata in China under climate change[J]. The Journal of Applied Ecology, 2019, 30(11): 3833−3843.

    [40] 左舒翟, 任引, 翁闲, 等. 亚热带常绿阔叶林9个常见树种的生物量相对生长模型[J]. 应用生态学报, 2015, 26(2): 356−362.

    Zuo S Z, Ren Y, Weng X, et al. Biomass allometric equations of nine common tree species in an evergreen broadleaved forest of subtropical China[J]. Chinese Journal of Applied Ecology, 2015, 26(2): 356−362.

    [41]

    Lin K, Lyu M, Jiang M, et al. Improved allometric equations for estimating biomass of the three Castanopsis carlesii H. forest types in subtropical China[J]. New Forests, 2017, 48(1): 115−135.

    [42]

    Peng S, He N, Yu G, et al. Aboveground biomass estimation at different scales for subtropical forests in China[J]. Botanical Studies, 2017, 58(1): 45. doi: 10.1186/s40529-017-0199-1

    [43] 范春楠, 郑金萍, 韩士杰, 等. 吉林省中东部森林分布区水曲柳分布及其生态特征[J]. 北京林业大学学报, 2017, 39(4): 1−11.

    Fan C N, Zheng J P, Han S J, et al. Resource distribution and ecological characteristics of Fraxinus mandshurica in central-eastern forest region of Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(4): 1−11.

    [44] 吴升仕, 朱国和, 许仲明, 等. 水曲柳引种驯化研究初报[J]. 浙江林业科技, 1992(6): 41−42.

    Wu S S, Zhu G H, Xu Z M, et al. Preliminary report on research of introducing variety and domestication of Fraxinus mandshurica Rupr.[J]. Journal of Zhejiang Forestry Science and Technology, 1992(6): 41−42.

    [45] 薛思雷, 王庆成, 孙欣欣, 等. 遮荫对水曲柳和蒙古栎光合、生长和生物量分配的影响[J]. 植物研究, 2012, 32(3): 354−359.

    Xue S L, Wang Q C, Sun X X, et al. Effects of shading on thephotosynthetic characteristics, growth, and biomass allocation in Fraxinus mandshurica and Quercus mongolica[J]. Bulletin of Botanical Research, 2012, 32(3): 354−359.

    [46] 张鑫鑫. 不同光照条件下胡桃楸幼苗生长、生理及分子响应机制研究[D] 哈尔滨: 东北林业大学, 2023.

    Zhang X X. Study on physiological and molecular response mechanism of Juglans mandshurica seedlings under different light conditions[D]. Harbin: Northeast Forestry University, 2023.

    [47] 李旭华, 于大炮, 代力民, 等. 长白山阔叶红松林生产力随林分发育的变化[J]. 应用生态学报, 2020, 31(3): 706−716.

    Li X H, Yu D P, Dai L M, et al. Changes of productivity with stand development in broadleaf-Korean pine forest in Changbai Mountain, China[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 706−716.

    [48] 黄柳菁, 林欣, 刘兴诏, 等. 广东不同林龄乔木生物量及物种多样性与叶面积指数的关系[J]. 西南林业大学学报(自然科学), 2017, 37(6): 91−98.

    Huang L J, Lin X, Liu X Z, et al. The relation among biomass, biodiversity and LAI of trees at different stand ages in Guangdong Province[J]. Journal of Southwest Forestry University, 2017, 37(6): 91−98.

  • 期刊类型引用(4)

    1. 吴昊,刘海玉,乔晓磊,卫轶君,吴杨. 生物质及镁渣复合黏结剂制备焦粉型煤. 上海电力大学学报. 2023(02): 195-202+209 . 百度学术
    2. 尹伟明,蒋金婷,樊星,郭元茹,韩世岩. 木质素磺酸钠/三聚氰胺甲醛微球泡沫的制备及表征. 复合材料学报. 2018(09): 2362-2368 . 百度学术
    3. 徐保明,张弘,唐强,张家晖,李俊,李志鹏,陈坤. 木质素基碳纤维制备方法的研究进展. 化工新型材料. 2018(04): 23-26 . 百度学术
    4. 陈梁,辛善志,米铁,胡明华. 木质素制备活性炭的工艺及其吸附性能研究. 江汉大学学报(自然科学版). 2017(03): 219-224 . 百度学术

    其他类型引用(5)

图(7)  /  表(6)
计量
  • 文章访问数:  456
  • HTML全文浏览量:  87
  • PDF下载量:  56
  • 被引次数: 9
出版历程
  • 收稿日期:  2023-09-21
  • 修回日期:  2024-02-28
  • 录用日期:  2024-04-11
  • 网络出版日期:  2024-04-15
  • 刊出日期:  2024-09-24

目录

    /

    返回文章
    返回