Deep learning-based inverse identification of multi-target parameters for tree rooting ground-penetrating radar
-
摘要:目的
使用深度学习方法实现对根系雷达图像的多目标检测和多参数估计。
方法构建了一种以YOLOv5s和CNN-LSTM为主要框架的网络模型实现对根系雷达扫描图像的多目标检测和多参数估计。首先,通过仿真模拟和预埋试验获取试验所需的根系雷达剖面图数据,同时为了增加数据的多样性,使用CycleGAN风格迁移网络获取了一批具有真实雷达图像特征的仿真数据;然后,使用YOLOv5s目标检测网络识别并提取根系响应区域;接着引入频域变换,获取频域特征,并将根系雷达图像的时域特征和频域特征融合;最后,利用卷积神经网络、卷积注意力机制以及长短期记忆网络强调和提取与根系参数相关的信息特征,并使用多任务学习的方法实现对根系半径、深度、相对介电常数以及水平倾角的预测。
结果(1)仿真试验中,根系半径估计的最大误差是4.3 mm,R2为0.980,均方根误差为1.32,深度估计的最大误差是35.1 mm,R2为0.962,均方根误差为17.68,相对介电常数估计的最大误差是3.1,R2为0.960,均方根误差为1.10,水平倾角估计的最大误差是10.2°,R2为0.821,均方根误差是4.96。(2)在实测数据上对根系半径估计的平均相对误差是9.112%,深度估计的平均相对误差是5.772%,水平倾角估计的平均相对误差是11.25%。
结论本文提出的基于深度学习与探地雷达的多目标检测方法可以为根系检测和根系参数估计提供便利。
Abstract:ObjectiveThis paper takes multi-target detection and multi-parameter estimation of root radar images using deep learning methods.
MethodIn this study, a network model with YOLOv5s and CNN-LSTM as the main framework was constructed to achieve multi-target detection and multi-parameter estimation of root radar scanning images. Firstly, the root system radar profile data required for the experiments were obtained through simulation and pre-embedding experiments, and at the same time, in order to increase the diversity of the data, a batch of simulation data with the characteristics of real radar images were obtained using CycleGAN style migration network; then, the root system response region was identified and extracted using the YOLOv5s target detection network; then, the frequency domain transform was introduced to obtain the frequency domain features and fuse the time domain features and frequency domain features of the root system radar image; finally, a convolutional neural network (CNN), a convolutional attention mechanism, and a long short-term memory network (LSTM) were used to emphasize and extract the information features related to the root system parameters, and a multi-task learning approach was used to achieve the prediction of the root system radius, depth, relative permittivity, and horizontal angle.
Result(1) In the simulation experiments, the maximum error in the estimation of root radius was 4.3 mm with R2 of 0.980 and a root mean square error of 1.32. The maximum error in the estimation of depth was 35.1 mm with R2 of 0.962 and a root mean square error of 17.68, and the maximum error in the estimation of relative permittivity was 3.1 with R2 of 0.960 and a root mean square error of 1.10, and the maximum error in the estimation of the horizontal angle was 10.2°, with R2 of 0.821 and the root mean square error was 4.96. (2) The average relative error of root radius estimation on measured data was 9.112%, the average relative error of depth estimation was 5.772%, and the average relative error of horizontal angle estimation was 11.25%.
ConclusionThe experimental data show that the method proposed in this paper can facilitate root detection and root parameter estimation.
-
-
图 2 YOLOv5s网络结构
Backbone表示特征提取部分,Neck表示特征融合部分,Prediction表示预测部分。Focus、CSP1_1、CSP1_3、SPP、FPN和PAN表示YOLOv5s中特定的网络结构。Backbone represents the feature extraction part, Neck represents the feature fusion part, and Prediction represents the prediction part. Focus, CSP1_1, CSP1_3, SPP, FPN, and PAN represent specific network structures in YOLOv5s.
Figure 2. YOLOv5s network structure
图 3 参数估计模块
CA表示通道注意力模块,SA表示空间注意力模块,CBAM表示卷积注意力模块,C表示特征向量的通道数,H表示特征向量的高,W表示特征向量的宽,LSTM表示长短时记忆网络。CA represents channel attention module, SA represents spatial attention module, CBAM represents convolutional block attention module, C represents the number of channels in the feature vector, H represents the height of the feature vector, W represents the width of feature vector, and LSTM represents long short-term memory network.
Figure 3. Parameter estimation module
表 1 不同模型效果展示
Table 1 Display of different model performances
模型
Model平均精度
Mean precision每秒帧数
Frame per secondYOLOv5s 0.788 134 YOLOv5m 0.793 81 YOLOv5l 0.797 34 表 2 仿真参数设置
Table 2 Simulation parameter settings
参数 Parameter 数值 Numerical value 模型尺寸 Model size 2.500 m × 0.600 m × 0.002 m 空间离散步长
Spatial discrete step length/m0.002 时间窗口 Time window/ns 15 天线中心频率
Antenna center frequency/MHz900 土壤相对介电常数
Relative permittivity of soil6 根系相对介电常数
Relative permittivity of root7 ~ 30 根系半径 Root radius/cm 0.5 ~ 5.0 深度 Depth/cm 0 ~ 60 表 3 不同结构网络模型的性能比较
Table 3 Comparison of accuracy of different structural network models
模型
Model参数
ParameterCA FPN CBAM 最大绝对值误差
Maximum absolute value errorR2 均方根误差
Root mean square errorModel-1 半径Radius/mm 5.6 0.952 2.32 深度 Depth/mm 459.0 − 266.30 相对介电常数 Relative permittivity 29.4 − 16.94 水平倾角 Horizontal inclination/(°) 19.5 0.701 6.28 Model-2 半径 Radius/mm √ 10.3 0.930 2.65 深度 Depth/mm 58.2 0.952 19.04 相对介电常数 Relative permittivity 4.2 0.957 1.19 水平倾角 Horizontal inclination/(°) 13.0 0.746 5.76 Model-3 半径 Radius/mm √ √ 7.7 0.950 2.41 深度 Depth/mm 78.5 0.947 19.63 相对介电常数 Relative permittivity 4.3 0.948 1.31 水平倾角 Horizontal inclination/(°) 13.3 0.773 5.46 Model-4 半径 Radius/mm √ √ 10.9 0.921 2.93 深度 Depth/mm 73.7 0.936 21.52 相对介电常数 Relative permittivity 8.4 0.899 1.82 水平倾角 Horizontal inclination/(°) 12.1 0.793 5.21 Model-N 半径 Radius/mm √ √ √ 4.3 0.980 1.32 深度 Depth/mm 35.1 0.962 17.68 相对介电常数 Relative permittivity 3.1 0.960 1.10 水平倾角 Horizontal inclination/(°) 10.2 0.821 4.96 注:表中–表示无明显相关性,√表示网络中使用了该模块,空白表示模型中未使用此模块。Notes: ”–” indicates a negative coefficient and √ indicates that the module is used in the network,blank indicates that this module is not used in the model. 表 4 样本根系预埋试验参数预测结果
Table 4 Predicted results of sample root parameters of pre-embedded experiment
序号
No.图像
Image根系半径 Root radius 根系深度 Root depth 水平倾角 Horizontal inclination 真实值
Real
value/mm估计值
Estimated
value/mm绝对误差
Absolute
error/mm相对误差
Relative
error/%真实值
Real
value/mm估计值
Estimated
value/mm绝对误差
Absolute
error/mm相对误差
Relative
error/%真实值
Real
value/(°)估计值
Estimated
value/(°)绝对误差
Absolute
error/(°)相对误差
Relative
error/%R1 22.0 20.7 1.3 5.91 278 287 9 3.24 90 84 6 6.7 R2 23.1 23.7 0.6 2.60 273 271 2 0.73 75 63 12 16.0 R3 27.6 28.9 1.3 4.71 245 269 24 9.80 60 64 4 6.7 R4 31.5 23.5 8.0 25.40 268 296 28 10.45 45 52 7 15.6 R5 21.6 20.1 1.5 6.94 302 288 14 4.64 -
[1] Liang H, Xing L, Lin J. Application and algorithm of ground-penetrating radar for plant root detection: a review[J/OL]. Sensors, 2020, 20(10): 2836[2022−5−16]. https://doi.org/10.3390/s20102836.
[2] 王哲旭. 基于探地雷达的树木根系检测算法研究[D]. 无锡: 江南大学, 2023. Wang Z X. Reasearch on tree root detection algorithm using ground penetrating radar[D]. Wuxi: Jiangnan University, 2023.
[3] Liu L B, Zhong Q L, Ni, J. Allometric function-based root biomass estimate of woody plants in a karst evergreen and deciduous broadleaf and mixed forest in central Guizhou Province, southwestern China[J]. Acta Ecologica Sinica, 2018, 38(24): 8726−8732.
[4] Riedell W E, Osborne S L. Monolith root sampling elucidates western corn rootworm larval feeding injury in maize[J]. Crop Science, 2017, 57(6): 3170−3178. doi: 10.2135/cropsci2017.04.0218
[5] Chirol C, Carr S J, Spencer K L, et al. Pore, live root and necromass quantification in complex heterogeneous wetland soils using X-ray computed Tomography[J/OL]. Geoderma, 2021, 387: 114898[2021−10−31]. https://doi.org/10.3390/electronics9111804.
[6] Sharma N, Khajuria Y, Sharma J, et al. Microscopic, elemental and molecular spectroscopic investigations of root-knot nematode infested okra plant Roots[J]. Vacuum, 2018, 158: 126−135. doi: 10.1016/j.vacuum.2018.09.039
[7] Lei W, Hou F, Xi J, et al. Automatic hyperbola detection and fitting in GPR B-scan Image[J/OL]. Automation in Construction, 2019, 106: 102839[2021−06−25]. https://doi.org/10.1016/j.autcon.2019.102839.
[8] Luo W, Lee Y H, Ow L F, et al. Accurate tree roots positioning and sizing over undulated ground surfaces by common offset GPR measurements[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1−11.
[9] Barton C V M, Montagu K D. Detection of tree roots and determination of root diameters by ground penetrating radar under optimal Conditions[J]. Tree Physiology, 2004, 24(12): 1323−1331. doi: 10.1093/treephys/24.12.1323
[10] Cui X, Chen J, Shen J, et al. Modeling tree root diameter and biomass by ground-penetrating radar[J]. Science China Earth Sciences, 2011, 54(5): 711−719. doi: 10.1007/s11430-010-4103-z
[11] Tanikawa T, Ikeno H, Yamase K, et al. Can Ground-penetrating radar detect adjacent roots and rock fragments in forest soil?[J]. Plant and Soil, 2021, 468(1−2): 239−257. doi: 10.1007/s11104-021-05116-3
[12] Zhang X H, Derival M, Albrecht U, et al. Evaluation of a ground penetrating radar to map the root architecture of HLB-infected citrus trees[J/OL]. Agronomy, 2019, 9(7): 354[2021−07−03]. https://doi.org/10.3390/agronomy9070354.
[13] Lei W, Luo J, Hou F, et al. Underground cylindrical objects detection and diameter identification in GPR B-scans via the CNN-LSTM framework[J/OL]. Electronics, 2020, 9(11): 1804[2021−10−31]. https://doi.org/10.3390/electronics9111804.
[14] 王泽鹏, 张潇巍, 薛芳秀, 等. 探地雷达树木根系定位与直径估算[J]. 农业工程学报, 2021, 37(8): 160−168. Wang Z P, Zhang X W, Xue F X, et al. Estimating the location and diameter of tree roots using ground penetrating radar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(8): 160−168.
[15] 李光辉, 王哲旭, 徐汇, 等. 基于探地雷达和深度学习的果树根径预测方法[J]. 农业机械学报, 2022, 53(11): 306−313, 348. Li G H, Wang Z X, Xu H, et al. Root diameter prediction method of fruit trees based on ground penetrating radar and deep learning[J]. Transactions of the Chinese Society of Agricultural Machinery, 2022, 53(11): 306−313, 348.
[16] 肖维颖, 王健, 李文顺. 松树株数识别的 YOLOv5 轻量化算法研究[J]. 森林工程, 2023, 39(4): 126−133. Xiao W Y, Wang J, Li W S. Research on YOLOv5 lightweight algorithm for pine tree strain identification[J]. Forest Engineering, 2023, 39(4): 126−133.
[17] 王辉, 欧阳缮, 刘庆华, 等. 基于深度学习的探地雷达二维剖面图像结构特征检测方法[J]. 电子与信息学报, 2022, 44(4): 1284−1294. Wang H, Ouyang S, Liu Q H, et al. Structure feature detection method for ground penetrating radar two-dimensional profile image based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1284−1294.
[18] 魏锦山, 陈争光, 焦峰. 基于不同卷积尺度融合与近红外光谱的土地分类模型研究[J]. 光谱学与光谱分析, 2023, 43(2): 460−467. Wei J S, Chen Z G, Jiao F. Research on land classification model based on fusion of different convolution scales and near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2023, 43(2): 460−467.
[19] Liu T, Bao J, Wang J, et al. A hybrid CNN–LSTM algorithm for online defect recognition of CO2 welding[J/OL]. Sensors, 2018, 18(2): 4369[2021−12−10]. https://doi.org/10.3390/s18124369.
[20] Jeong M, Park M, Nam J, et al. Light-weight student LSTM for real-time wildfire smoke detection[J/OL]. Sensors, 2020, 20(19): 5508[2020−09−25]. https://doi.org/10.3390/s20195508.
[21] Agethen S, Hsu W H. Deep multi-kernel convolutional LSTM networks and an attention-based mechanism for videos[J]. IEEE Transactions on Multimedia, 2020, 22(3): 819−829. doi: 10.1109/TMM.2019.2932564
[22] Lantini L, Massimi F, Tosti F, et al. A deep learning approach for tree root detection using GPR spectrogram imagery[C]// 45th International Conference on Telecommunications and Signal Processing (TSP). Prague: IEEE, 2022: 391−394.
[23] 盛同杰, 赵惊涛, 彭苏萍. 地震绕射波弱信号U-net网络提取方法[J]. 地球物理学报, 2023, 66(3): 1192−1204. Sheng T J, Zhao J T, Peng S P. Seismic diffraction extraction method using U-net for weak signals[J]. Chinese Journal of Geophysics, 2023, 66(3): 1192−1204.
[24] 张省, 李山山, 魏国芳, 等. 面向精细化多尺度特征的遥感图像目标检测[J]. 遥感学报, 2022, 26(12): 2616−2628. doi: 10.11834/jrs.20221801 Zhang S, Li S S, Wei G F, et al. Refined multi-scale feature-oriented object detection of remote sensing images[J]. National Remote Sensing Bulletin, 2022, 26(12): 2616−2628. doi: 10.11834/jrs.20221801
[25] Paknezhad M, Rengarajan H, Yuan C, et al. Improving transparency and representational generalizability through parallel continual Learning[J]. Neural Networks, 2023, 161: 449−465. doi: 10.1016/j.neunet.2023.02.007
[26] Gu J, Ye J C. AdaIN-based tunable CycleGAN for efficient unsupervised low-dose CT denoising[J]. IEEE Transactions on Computational Imaging, 2021, 7: 73−85. doi: 10.1109/TCI.2021.3050266
[27] Dou H, Chen C, Hu X, et al. Asymmetric CycleGAN for image-to-image translations with uneven complexities[J]. Neurocomputing, 2020, 415: 114−122. doi: 10.1016/j.neucom.2020.07.044
[28] Qin Y, Wang Z, Xi D. Tree CycleGAN with maximum diversity loss for image augmentation and its application into gear pitting Detection[J/OL]. Applied Soft Computing, 2022, 114: 108130[2022−11−27]. https://doi.org/10.1016/j.asoc.2021.108130.
[29] Pan J, Sun M, Wang Y, et al. A time-delay estimation approach for coherent GPR signals by taking into account the noise pattern and radar Pulse[J/OL]. Signal Processing, 2020, 176: 107654[2021−06−05]. https://doi.org/10.1016/j.sigpro.2020.107654.
[30] Wang X, Liu S. Noise suppressing and direct wave arrivals removal in GPR data based on Shearlet Transform[J]. Signal Processing, 2017, 132: 227−242. doi: 10.1016/j.sigpro.2016.05.007
[31] 王明凯, 李文彬, 文剑. 基于探地雷达对粗根的识别技术研究[J]. 森林工程, 2020, 36(3): 21−27. Wang M K, Li W B, Wen J. Study on recognition technology of coarse roots using ground-penetrating radar[J]. Forest Engineering, 2020, 36(3): 21−27.
[32] 邱啟璜, 牛健植, 王迪, 等. 基于探地雷达识别林地粗根和石砾[J]. 北京林业大学学报, 2023, 45(7): 99−109. Qiu Q H, Niu J Z, Wang D, et al. Identification of coarse roots and rock fragments in woodland based on ground penetrating radar[J]. Journal of Beijing Forestry University, 2023, 45(7): 99−109.
[33] 朱安宁, 吉丽青, 张佳宝, 等. 不同类型土壤介电常数与体积含水量经验关系研究[J]. 土壤学报, 2011, 48(2): 263−268. Zhu A N, Ji L Q, Zhang J B, et al. Empirical relationship between soil dielectric constant and volumetric water content in various soils[J]. Acta Pedologica Sinica, 2011, 48(2): 263−268.