Processing math: 100%
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

连香树雌雄株生长及适应性策略差异

张露月, 刘艳红, 韩冬青

张露月, 刘艳红, 韩冬青. 连香树雌雄株生长及适应性策略差异[J]. 北京林业大学学报, 2024, 46(12): 71-81. DOI: 10.12171/j.1000-1522.20230263
引用本文: 张露月, 刘艳红, 韩冬青. 连香树雌雄株生长及适应性策略差异[J]. 北京林业大学学报, 2024, 46(12): 71-81. DOI: 10.12171/j.1000-1522.20230263
Zhang Luyue, Liu Yanhong, Han Dongqing. Differences in growth and adaptive strategies between male and female plants of Cercidiphyllum japonicum[J]. Journal of Beijing Forestry University, 2024, 46(12): 71-81. DOI: 10.12171/j.1000-1522.20230263
Citation: Zhang Luyue, Liu Yanhong, Han Dongqing. Differences in growth and adaptive strategies between male and female plants of Cercidiphyllum japonicum[J]. Journal of Beijing Forestry University, 2024, 46(12): 71-81. DOI: 10.12171/j.1000-1522.20230263

连香树雌雄株生长及适应性策略差异

基金项目: 国家重点研发计划项目(2016YFC0503106)。
详细信息
    作者简介:

    张露月。主要研究方向:恢复生态。Email:15263221230@163.com 地址:100083北京市海淀区清华东路35号北京林业大学生态与自然保护学院

    责任作者:

    刘艳红,博士,教授。主要研究方向:森林生态学、恢复生态与生物多样性保护和城市生态。Email:liuyh@bjfu.edu.cn 地址:同上。

  • 中图分类号: S792.99

Differences in growth and adaptive strategies between male and female plants of Cercidiphyllum japonicum

  • 摘要:
    目的 

    探讨生殖压力影响下孑遗植物连香树雌雄株资源分配和适应性策略的差异性,以期为全球气候变化背景下第三纪孑遗植物中的雌雄异株树种生理生态学相关研究提供理论参考。

    方法 

    以北京市国家植物园中起源于白垩纪的第三纪孑遗植物雌雄异株植物连香树为研究对象,对其生长盛期7—9月雌雄株形态、光合参数、叶绿素含量、叶绿素荧光参数、化学计量特征、防御物质含量等进行动态监测及相关性分析。

    结果 

    (1)在夏季高温期影响下,连香树雌雄株光合能力均存在一定的减弱,表现为净光合速率减弱,并通过降低气孔导度和蒸腾速率以减少水分流失,采用光保护策略以保护自身免受热和光抑制,降低最大光化学量子产量和光化学猝灭系数,增加非光化学量子产量,同时增加抗氧化酶活性以增强组织抗氧化活性,增加黄酮类次生代谢物以增强抗逆能力。(2)雌株的单叶面积、比叶重、一年生小枝长、展叶效率均显著高于雄株,在7—8月雌株的光合速率、水分利用效率、叶绿素a、总叶绿素含量、最大光化学产量、花青素含量等参数均显著大于雄株。

    结论 

    雌株以更高的光合能力用于生殖补偿,同时以化学防御为代价增加对生长和繁殖的资源投入,采取“激进型”适应性策略;而雄株则投入更多的资源用于防御,采取“保守型”适应性策略。

    Abstract:
    Objective 

    The differences of reproductive compensation mechanism, resource allocation and adaptive strategy between male and female plants of relict plant Cercidiphyllum japonicum under the influence of reproductive pressure were discussed in order to provide some references for the study of physiological ecology of dioecious tree species in Tertiary relict plants under the background of global climate change.

    Method 

    In this study, C. japonicum, a tertiary relict dioecious plant originated from the Cretaceous in Beijing National Botanical Garden, was used as the research object. The morphology, photosynthetic parameters, chlorophyll content, chlorophyll fluorescence parameters, stoichiometric characteristics and defensive substance content of male and female plants at different developmental stages in the growing season were dynamically monitored and correlation analysis was performed.

    Result 

    (1) Under the influence of high temperature period in summer, the photosynthetic capacity of male and female plants of C. japonicum decreased to a certain extent, which was manifested by the decrease of net photosynthetic rate and the decrease of stomatal conductance and transpiration rate to reduce water loss. The photoprotection strategy was used to protect itself from heat and photoinhibition, reduce the maximum photochemical quantum yield and photochemical quenching coefficient, increase non-photochemical quantum yield, increase antioxidant enzyme activity to enhance tissue antioxidant activity, and increase flavonoid secondary metabolites to enhance stress resistance. (2) The single leaf area, specific leaf mass, annual twig length and leaf expansion efficiency of female plants were significantly higher than those of male plants. The photosynthetic rate, water use efficiency, chlorophyll a, total chlorophyll content, maximum photochemical yield and anthocyanin content of female plants were significantly higher than those of male plants from July to August.

    Conclusion 

    Female plants have a reproductive cost compensation mechanism, which uses higher photosynthetic capacity for reproductive compensation, and increases resource input for growth and reproduction at the expense of chemical defense, and adopts a ‘radical’ adaptive strategy, while male plants invest more resources for defense and adopt a ‘conservative’ adaptive strategy.

  • 活性碳纤维作为一种新型吸附材料,以比表面积高、吸附容量大、吸附脱附速率快、耐热耐酸碱等优点,被广泛应用于环境净化、催化剂载体、储能材料等领域[1-2]。活性碳纤维的孔隙结构是影响各项性能的关键因素。在活化过程中,碳基体与活化剂之间的反应导致大量孔隙的生成,而不仅仅是纤维表面的烧失,这表明活化反应具有选择性。作为活化前驱体,炭化过程的产物碳纤维由乱层石墨多晶结构组成[3],其微观晶体结构对活化孔结构形成具有重要的影响。在活化过程中,活化剂优先侵蚀碳纤维的无定形区、晶胞缺陷处、晶界处和初始孔隙处,而后进入有序化较高的微晶区域。上述位置的碳基体以不同的速率与活化剂反应,从而形成孔洞,随着活化继续进行,孔结构进一步变深、扩宽[4-5]

    近年,为缓解石化资源危机,利用林业生物质资源制备活性碳纤维受到了广泛关注。其中,基于木材液化物制备的活性碳纤维具有丰富的孔隙结构[6-7],且在污染物净化[8-10]、抗菌性能[11-14]、电化学特性[15-17]等方面表现出优良的性能。目前,针对木材液化物纤维在炭化、活化过程中微晶结构的变化已进行了一系列研究。马晓军等[18]研究表明:800 ~ 1 000 ℃炭化温度下,木材液化物原丝形成大量多苯稠环结构,碳网重组并进行有序化生长,石墨化程度显著提高。赵广杰[19]指出:木材苯酚液化物原丝分子网状交联结构在300 ~ 600 ℃炭化过程中被破坏并发生重排,进而形成初步的碳网结构;700 ℃以上,碳网继续生长,聚合度逐渐提高。Liu等[20]指出:较高的活化温度或较长的活化时间会导致木材液化物活性碳纤维乱层石墨结构的破坏,使其结晶化程度降低。Li等[21]研究了CO2活化过程中木材液化物活性碳纤维的微晶结构随着活化温度升高的变化规律,由微晶尺寸数据推断600 ℃之前微晶结构正在经历芳环结构向多层石墨堆叠结构的转变,而600 ℃以后,石墨网有序化程度逐步提高,乱层石墨晶体结构逐渐稳定,晶胞尺寸逐渐增大。Liu等[22]比较了利用木材液化物原丝和碳纤维分别制备的活性碳纤维微晶结构的区别,得出:前者具有更大的晶体尺寸和更致密的乱层石墨结构,而后者微孔数量较多,微孔孔径较大。Ma等[23]通过添加木炭制备中孔木材液化物活性碳纤维,微晶结构研究表明:木炭的添加打断了活性碳纤维的碳平面,限制了乱层石墨片层的生长和排列,进而影响了乱层石墨片层的发育和有序堆积,导致了中孔结构的增加。Liu等[24]研究指出:木材液化物活性碳纤维中孔结构源于纤维缺陷的扩大,中孔结构的形成加剧了乱层石墨微晶结构的瓦解。以上研究充分证实了不同炭化与活化过程中纤维微晶结构变化与孔结构形成的相关性,然而尚未详细阐明微晶结构演变对孔结构形成的作用及影响规律。

    为进一步揭示木材液化物活性碳纤维孔结构形成机制,本研究通过控制炭化温度获得具有不同微晶结构的杉木液化物碳纤维,并以水蒸气作为活化剂在800 ℃下进行活化,采用元素分析仪、X射线衍射仪和氮气吸附仪分别考察了随着活化时间延长,杉木液化物活性碳纤维元素组成、微晶结构和孔结构的变化,探讨了微晶结构演变和孔结构形成两者之间的作用机制及影响规律。

    将杉木(Cunninghamia lanceolata)木粉粉碎至20 ~ 80目,并在(105 ± 5) ℃下干燥24 h。苯酚(分析纯)为北京笃信精细制剂厂生产。磷酸(分析纯),质量分数37%,北京化工厂生产。六次甲基四胺(分析纯)为西陇化工股份有限公司生产。甲醛(分析纯),质量分数37%,广东光华科技股份有限公司生产。盐酸(分析纯),质量分数37%,北京化工厂生产。

    将20 g杉木木粉与苯酚按质量比1∶6混合加入三口烧瓶中,并加入苯酚质量8%的磷酸作为催化剂进行杉木木粉液化工艺。开启冷凝器,在1 053 r/min的搅拌速率下,液化混合物以5 ℃/min的升温速率在油浴中加热至160 ℃并保温2.5 h。而后撤去油浴,待三口烧瓶冷却至室温,撤去冷凝器,将液化产物通过50 mL砂芯漏斗(直径为8 cm,G3型,孔径为15 ~ 40 μm),抽真空过滤制得杉木苯酚液化物。

    将10 g杉木苯酚液化物和0.5 g六次甲基四胺混合加入纺丝管,开启搅拌器,以5 ℃/min的升温速率在空气中加热至(175 ± 2) ℃,并保温20 min合成纺丝液,而后在120 ~ 130 ℃进行纺丝制备初始纤维。将得到的初始纤维浸入含有7.4 mL甲醛、6 mL盐酸和1.4 mL蒸馏水的酸溶液中,以0.25 ℃/min的升温速率加热至90 ℃,保温2 h进行固化工艺。待固化结束后取出纤维,经蒸馏水洗涤后放入(85 ± 2) ℃烘箱干燥2 h,得到原丝。

    将约5 g的原丝以2 ℃/min的升温速率在N2保护下分别加热至设定的炭化温度(500、700、900 ℃)并保温1 h。之后以4 ℃/min的速率将温度调整至800 ℃,结束炭化过程。待炭化产物冷却至室温,取出炭化产物得到杉木苯酚液化物碳纤维(liquefied wood carbon fibers,LWCFs)。LWCFs-500、LWCFs-700和LWCFs-900分别代表炭化温度为500、700、900 ℃的LWCFs。

    将约5 g的前驱体纤维以2 ℃/min的升温速率在N2保护下分别加热至设定的炭化温度(500、700、900 ℃)并保温1 h。之后以4 ℃/min的速率将温度调整至800 ℃,此时开启水蒸气(流量为6.69 g/min),活化20、40 min制备活性碳纤维。待活化产物冷却至室温,取出活化产物得到杉木苯酚液化物活性碳纤维(activated liquefied wood carbon fibers,ALWCFs)。ALWCFs-500-20代表炭化温度为500 ℃,活化时间为20 min的ALWCFs,其他样品名称含义与之相同。

    采用美国公司(Thermo)生产的A FLASH EA1112型元素分析仪对所有样品的碳、氢、氮元素质量分数进行测试。测试条件为:以He为载气,碳、氢、氮元素分解温度为950 ℃。氧元素质量分数计算公式如下:

    WO=(1WCWHWN)×100%

    式中:WCWHWN分别表示碳、氢、氮元素的质量分数。

    采用日本公司(SHIMAZU)生产的XRD-6000型X射线衍射仪采集样品的X射线衍射图谱。具体操作如下:将约0.5 g的干燥样品在研钵中研磨15 min,放入样品台中压实后开始检测。铜靶辐射(辐射管额定电压为40 kV,额定电流为30 mA,波长为0.154 nm),扫描频率为2 (°)/min,2θ角扫描区间值为15° ~ 60°,测量步长为0.2°。

    样品的石墨层间距(d002)、石墨层堆叠厚度(Lc002)由(002)衍射面求得,石墨网横向尺寸(La110)由(110)衍射面求得,依据Scherrer公式[25]计算。

    d002=λ/(2sinθ002)
    Lc002=0.94λ/(βcosθ002)
    La110=1.84λ/(βcosθ110)

    式中:λ表示入射X射线的波长,取0.154 nm;β表示该晶面衍射峰的半峰宽;θ为该衍射峰所对应的衍射角。

    采用美国公司(Quantachrome)生产的Autosorb iQ型氮气吸附分析仪进行测定。将0.0500 g的ALWCFs待测样品装入干燥的测试管,经300 ℃脱气3 h,在−196 ℃下测定不同相对压强下的N2吸附/脱附等温线。采用Brunauer-Emmett-Teller法[26]计算BET比表面积SBET;由相对压力约为0.99时的液氮吸附量换算成液氮体积,得到总孔容Vt;采用t-plot法[27]计算微孔比表面积Smi和微孔孔容Vmi;采用Barrett, Joyner & Halenda(BJH)法[28]计算中孔孔容VBJH;采用Horvath-Kawazoe(HK)法[29]计算峰值孔径DHK;由BET法计算平均孔径Da;由Density Functional Theory(DFT)法[30]计算孔径大小与分布。

    不同炭化–活化过程中LWCFs与ALWCFs的元素质量分数及变化趋势分别见表1图1。在炭化样品中,随着炭化温度升高,碳元素质量分数逐渐增加,氢、氧元素质量分数减少。其中,炭化温度由700 ℃升高至900 ℃过程中,氢、氧元素质量分数的减少十分明显,这表明脂肪族官能团和含氧官能团的热解在高于700 ℃以后变得剧烈。在同一活化时间下,随着炭化温度升高,碳元素质量分数逐渐增加,氢、氧元素质量分数逐渐减少。综上可知,炭化温度的提高促进了非碳元素的挥发,且有利于活化过程中碳元素的富集。

    表  1  不同炭化–活化过程中LWCFs和ALWCFs的元素质量分数变化
    Table  1.  Changes of element percentage compositions for LWCFs and ALWCFs by different carbonization-activation processes
    样品名称 Sample name质量分数 Mass fraction/%
    CHNO
    LWCFs-500 88.76 1.15 0.61 9.49
    LWCFs-700 89.21 1.17 0.64 9.00
    LWCFs-900 91.71 0.84 0.64 6.82
    ALWCFs-500-20 91.25 1.04 0.58 7.14
    ALWCFs-700-20 93.23 1.03 0.62 5.12
    ALWCFs-900-20 94.31 0.79 0.6 4.30
    ALWCFs-500-40 93.45 1.14 0.57 4.86
    ALWCFs-700-40 94.25 0.99 0.64 4.13
    ALWCFs-900-40 95.10 0.69 0.57 3.64
    下载: 导出CSV 
    | 显示表格
    图  1  不同炭化–活化过程中LWCFs和ALWCFs的元素质量分数变化图
    LWCFs对应的活化时间为0 min,ALWCFs对应的是活化时间为20 ~ 40 min。LWCFs correspond to the activation time of 0 min, and ALWCFs correspond to the activation time of 20–40 min.
    Figure  1.  Changes of element percentage compositions for LWCFs and ALWCFs by different carbonization-activation processes

    图2为不同炭化–活化过程中LWCFs与ALWCFs的XRD衍射图谱。从图中可以看出:LWCFs与ALWCFs在2θ为19° ~ 21°和44°附近均出现衍射峰,分别对应于石墨碳层的(002)衍射面和(110)衍射面[31-32]。这两处衍射峰和形态特点说明LWCFs与ALWCFs的微晶结构均由乱层石墨微晶堆叠而成,属于多晶乱层石墨结构。

    图  2  不同炭化–活化过程LWCFs和ALWCFs的X射线衍射图谱
    Figure  2.  X ray diffraction patterns for LWCFs and ALWCFs prepared by different carbonization-activation processes

    不同炭化–活化过程中LWCFs与ALWCFs的微晶结构参数见表2。相关微晶结构参数在不同炭化–活化过程中的变化趋势分别见图3图4。LWCFs的d002值均大于石墨微晶的层间距(0.335 4 nm),表明石墨化程度较低[33-34]

    表  2  不同炭化–活化过程LWCFs和ALWCFs的微晶结构参数
    Table  2.  Microcrystalline structure parameters for LWCFs and ALWCFs prepared by different carbonization-activation processes
    样品名称
    Sample name
    2θ/(°)d002/nmLc002/nmLc002/d002La110/nmLa110/Lc002
    LWCFs-500 20.3 0.437 0.505 1.16 1.683 3.33
    LWCFs-700 20.8 0.427 0.509 1.19 1.606 3.16
    LWCFs-900 20.8 0.427 0.515 1.21 1.651 3.21
    ALWCFs-500-20 20.6 0.430 0.512 1.19 2.365 4.62
    ALWCFs-700-20 20.6 0.430 0.512 1.19 2.274 4.44
    ALWCFs-900-20 19.9 0.446 0.501 1.12 2.870 5.72
    ALWCFs-500-40 19.4 0.457 0.538 1.18 2.245 4.17
    ALWCFs-700-40 20.2 0.439 0.464 1.06 2.217 4.78
    ALWCFs-900-40 21.4 0.415 0.447 1.08 2.779 6.23
    注:θ为衍射峰所对应的衍射角,d002为墨层间距,Lc002为石墨层堆叠厚度,La110为石墨网横向尺寸。Notes:θ is the diffraction angle corresponding to the diffraction peak, d002 is the spacing between graphite layers, Lc002 is the stacking thickness of graphite layers, and La110 is the transverse size of graphite network.
    下载: 导出CSV 
    | 显示表格
    图  3  LWCFs和ALWCFs的Lc002值和La110值变化图
    Figure  3.  Changes of Lc002 and La110 values for LWCFs and ALWCFs
    图  4  LWCFs和ALWCFs的d002值和Lc002/d002变化图
    Figure  4.  Changes of d002 and Lc002/d002 values for LWCFs and ALWCFs

    随着炭化温度升高,LWCFs(002)衍射峰的2θ角从20.3°偏移至20.8°,d002值减少0.01 nm,Lc002值增加0.01 nm,轴向石墨层数Lc002/d002增加0.05。可见,炭化温度的升高使LWCFs的乱层石墨微晶结构更加致密,微晶间排列更趋于规整,且轴向尺寸逐渐增大。LWCFs的La110值与La110/Lc002随着炭化温度由500 ℃升至700 ℃逐渐减小,在此过程中LWCFs的化学结构因热解产生破坏并逐步向多层堆叠的乱层石墨结构转变。当炭化温度升高至900 ℃,LWCFs的La110值与La110/Lc002增大,此时乱层石墨微晶结构更趋有序、规整,横向微晶发生了生长。

    活化过程中,当炭化温度为700和900 ℃时,Lc002值随着活化时间延长呈减小趋势,在活化时间高于20 min时,Lc002值的减少尤为明显,其中,ALWCFs-700-40的Lc002值较LWCFs-700减小了8.8%,ALWCFs-900-40的Lc002值较LWCFs-900减小了13.2%,这是由活化过程中水蒸气对乱层石墨轴向微晶的侵蚀所致,且随着活化时间的延长,侵蚀程度明显加重。与上述情况相反,当炭化温度为500 ℃时,Lc002随着活化时间的延长呈增加趋势,ALWCFs-500-40的Lc002值较LWCFs-500增加了6.5%。这是由于LWCFs-500纤维结构中有较多的晶体缺陷和较大的初始孔隙,活化反应优先在这些缺陷和孔隙处发生,以至于水蒸气没有充分进入微晶内部[4]

    随着活化时间延长至20 min,La110值增加显著,其中,900 ℃炭化时的增加率最高,ALWCFs-900-20较LWCFs-900增加了73.8%。La110值的升高表明乱层石墨网络横向尺寸的增大,这是源于微晶间碰撞所产生的横向重排,在900 ℃下最为剧烈,这与上文中LWCFs横向微晶结构的变化趋势一致,进一步证实900 ℃下乱层石墨碳网结构的充分生长[35]。随着活化时间延长至40 min,3种炭化温度下的La110值仅略微降低,表明该阶段微晶的横向结构基本稳定,这可能是由于此时乱层石墨结构的生长已趋于饱和,主要以碳原子的活化热解为主。

    对于500和700 ℃炭化样品,d002值随活化时间的延长呈增大趋势,其中,ALWCFs-500-40的d002值较LWCFs-500增加了4.6%,ALWCFs-700-40的d002值较LWCFs-700增加了2.8%,可见活化作用没有使乱层石墨结构变得更为致密,这是由于活化过程中挥发物的蒸发以及孔结构的形成使微晶结构变得松散。而ALWCFs-900-40的d002值大幅减少,较LWCFs-900减少了2.8%,表明高温活化下,轴向微晶结构已经高度分散,并产生了塌陷或紧缩。轴向石墨层数Lc002/d002的减小与Lc002值的变化趋势相符,这进一步验证了活化过程是对轴向乱层石墨片层结构的侵蚀,且在900 ℃活化过程中侵蚀最为剧烈。

    图5为不同炭化–活化过程中ALWCFs的N2吸附/脱附等温曲线。从中可以看出:ALWCFs的等温线类型均属于Ⅰ型,表明微孔结构占据主导地位。表3列出了不同炭化–活化过程中ALWCFs的孔结构参数。从中可以看出:炭化温度的提高有利于ALWCFs孔结构的形成。较样品ALWCFs-500-20,ALWCFs-700-20和ALWCFs-900-20的SBET分别增加了12.5%和4.3%,Vt分别增加了15.9%和2.6%;较样品ALWCFs-500-40,ALWCFs-700-40和ALWCFs-900-40的SBET分别增加了7.9%和18.6%,ALWCFs-900-40 的Vt增加了12.5%。其中,炭化温度的提高对ALWCFs微孔结构形成有明显的促进作用,且活化时间越长,微孔结构增加越显著。较样品ALWCFs-500-20,ALWCFs-700-20和ALWCFs-900-20的Smi分别提高了8.1%和5.0%,Vmi分别提高了8.9%和4.6%;较样品ALWCFs-500-40,ALWCFs-700-40和ALWCFs-900-40的Smi分别提高了19.9%和25.1%,Vmi分别提高了17.3%和25.5%。结合微晶分析结果可以得出:水蒸气对乱层石墨轴向微晶内部的侵蚀是形成微孔结构主要途径。低炭化温度样品微晶结构有序化程度较低,水蒸气会优先侵蚀其微晶缺陷和初始孔隙处,这一定程度上减缓了水蒸气对轴向微晶内部的侵蚀。而高的炭化温度形成的微晶有序化程度较高,有助于加快水蒸气进入轴向微晶内部的速率。

    图  5  不同活化时间制备的ALWCFs在−196 ℃下的N2吸附/脱附等温线
    Figure  5.  Nitrogen adsorption/desorption isotherms at −196 ℃ for ALWCFs prepared by different activation time
    表  3  不同活化时间制备的ALWCFs的孔结构参数
    Table  3.  Pore structure parameters for ALWCFs prepared by different activation time
    样品名称
    Sample name
    SBET/
    (m2·g−1)
    Vt/
    (cm3·g−1)
    Smi/
    (m2·g−1)
    Vmi/
    (cm3·g−1)
    VBJH/
    (cm3·g−1)
    DHK/nmDa/nm
    ALWCFs-500-20 861 0.464 650 0.259 0.230 0.443 2.15
    ALWCFs-700-20 969 0.538 703 0.282 0.284 0.428 2.22
    ALWCFs-900-20 898 0.476 683 0.271 0.226 0.448 2.12
    ALWCFs-500-40 1 068 0.590 793 0.318 0.314 0.458 2.21
    ALWCFs-700-40 1 152 0.562 951 0.373 0.241 0.463 1.95
    ALWCFs-900-40 1 267 0.664 992 0.399 0.373 0.468 2.09
    注:SBET为比表面积;Vt为总孔容;Smi为微孔比表面积;Vmi为微孔孔容;VBJH为中孔孔容;DHK为峰值孔径;Da为平均孔径。Notes:SBET is the specific surface area, Vt is the total pore volume, Smi is the micropore specific surface area, Vmi is the micropore volume, VBJH is the mesopore volume, DHK is the peak pore width, and Da is the average pore width.
    下载: 导出CSV 
    | 显示表格

    ALWCFs中孔结构随着炭化温度升高呈现不同的变化趋势。对于500和700 ℃炭化样品,活化初期的中孔结构主要来源于水蒸气对晶体缺陷或初始孔隙处的活化作用,活化20 min时,两者VBJH均高于ALWCFs-900-20。随着活化时间延长至40 min,ALWCFs-700-40的VBJH急剧下降,ALWCFs-900-40的VBJH明显提高,这是由于水蒸气对轴向微晶内部的侵蚀加重,前者的中孔结构受到破坏,而后者微孔结构进一步扩大。

    ALWCF孔径大小和分布变化趋势进一步证实了以上结果。图6为不同活化时间ALWCF的DHKDa的变化趋势图。3种炭化温度下,DHK均随着活化时间的延长而增大,且900 ℃炭化–活化样品的DHK最高,表明了900 ℃炭化样品在活化过程微孔结构扩大最显著。Da的变化表明,仅500 ℃炭化–活化样品的Da随活化时间的延长而增加,700 ℃炭化–活化样品的Da随活化时间的延长下降最为显著。图7为不同活化时间下的ALWCFs的DFT孔径大小分布图。从中可以观察到:当活化20 min时,ALWCFs中多数为孔径小于1 nm的微孔。这些微孔的孔径大小分布随着炭化温度的升高而逐渐扩宽。当活化40 min时,炭化温度的升高使孔径大小分布在0.6 ~ 1.5 nm的微孔范围内和2 ~ 2.5 nm的中孔范围内的逐渐扩大,样品ALWCFs-900-40的孔径大小分布扩大最为明显,这是由于随着活化时间的延长,轴向微晶的侵蚀加重促进了孔结构的形成与扩大,同时,碳基体中的孔隙通道变多变宽,水蒸气更容易到达活化位点,这进一步加剧了孔径的扩大。

    图  6  不同活化时间制备的ALWCFs的DHKDa变化图
    Figure  6.  Changes of DHK and Da values for ALWCFs prepared by different activation time
    图  7  不同活化时间下ALWCFs的DFT孔径分布图
    Figure  7.  Pore size distribution obtained by DFT method for ALWCFs activated for different time

    本研究通过500 ~ 900 ℃炭化过程得到不同微晶结构的LWCFs,并将这些LWCFs经800 ℃水蒸气活化20 ~ 40 min,考察了不同炭化–活化过程中ALWCFs的元素组成、微晶结构和孔结构的变化,探讨了微晶结构对ALWCFs孔结构形成的作用机制及影响,揭示了微晶结构演变规律以及ALWCFs孔结构形成路径。得到如下结论:

    (1)随着炭化温度的升高,LWCFs碳元素质量分数逐渐升高,氢、氧元素质量分数减少,高于700 ℃以后氢、氧元素质量分数减少显著;ALWCFs碳元素质量分数逐渐增加,氢、氧元素质量分数逐渐减少。以上表明,炭化温度的提高促进了非碳元素的挥发,且有利于活化过程中碳元素的富集。

    (2)炭化温度的升高使LWCFs的乱层石墨微晶轴向尺寸逐渐增大,结构更加致密,900 ℃时横向微晶发生了生长。在活化过程中,高的炭化温度能够显著促进水蒸气对轴向微晶的侵蚀,且随着活化时间的延长,侵蚀程度加重。此外,活化初期微晶间进行碰撞产生横向重排,乱层石墨网络横向尺寸显著增大,炭化温度的升高利于活化过程中横向微晶的生长,而进一步延长活化时间横向微晶结构无显著变化。

    (3)炭化温度的升高提高了ALWCFs的比表面积和总孔容,对微孔结构形成有明显的促进作用,且活化时间越长,微孔结构增加越显著。水蒸气对乱层石墨轴向微晶内部的侵蚀是形成微孔结构的主要途径。低的炭化温度(500和700 ℃)有利于ALWCFs在活化初期中孔结构的形成,主要来源于水蒸气对晶体缺陷或初始孔隙处的活化作用;随着活化时间的延长,轴向微晶的侵蚀加重,初期中孔发生了瓦解。高温(900 ℃)炭化样品在活化初期中孔结构较少,但随着活化时间的延长,微孔结构的逐步扩大导致了中孔结构明显增多。ALWCFs孔径大小和分布变化趋势进一步证实了上述结论。

  • 图  1   测量期间采样点日最高温度变化

    Figure  1.   Change of the maximum daily temperature at samping site during measurement period

    图  2   连香树叶片光合参数和叶绿素含量差异

    *表示雌雄株差异显著(P < 0.05),**表示雌雄株差异极显著(P < 0.01),ns表示雌雄株差异不显著 。下同。* means significant difference between male and female plants (P < 0.05), ** means extremly significant difference between male and female plants (P < 0.01), ns means non-significant difference between male and female plants. The same below.

    Figure  2.   Differences in photosynthetic parameters and chlorophyll contents of C. japonicum leaves

    图  3   连香树叶绿素荧光参数差异

    Fv/Fm. 最大光化学产量 Maximal photochemical quantum yield;qP. 光化学猝灭系数 Photochemical quenching;NPQ. 非光化学猝灭系数 Non-photochemical quenching

    Figure  3.   Differences in chlorophyll fluorescence parameters of C. japonicum leaves

    图  4   连香树叶片化学计量特征差异

    Figure  4.   Differences in stoichiometric characteristics in leaves of C. japonicum

    图  5   连香树叶片防御物质相关指标差异

    POD.过氧化物酶Peroxidase;SOD.超氧化物歧化酶Superoxide dismutase;ANTH.花青素指数Anthocyanin index;FLAV.类黄酮指数Flavonoid index

    Figure  5.   Differences in leaf defense substance contents of C. japonicum leaves

    表  1   北京市国家植物园雌雄连香树生长状况

    Table  1   Growth of female and male Cercidiphyllum japonicum in the Beijing National Botanical Garden

    性别
    Gender
    DBH/cm 树高
    Tree
    height/m
    冠幅
    Crown
    breadth/m
    单叶面积
    Single leaf
    area/cm2
    比叶重
    Specific leaf
    mass/(g·cm−2
    一年生小枝长
    1-year-old
    branchlet
    length/cm
    展叶效率
    Leaf display
    efficiency/
    (cm2·cm−1
    叶片干物质含量
    Leaf dry matter
    content/%
    虫食率
    Herbivory
    rate/%
    雌株
    Female plant
    22.38 ± 2.17 a 7.28 ± 0.24 a 6.43 ± 4.11 a 42.12 ± 3.25 a 0.78 ± 0.12 a 17.81 ± 1.89 a 23.27 ± 2.98 a 43.16 ± 9.33 a 6.33 ± 1.02 a
    雄株
    Male plant
    16.84 ± 5.79 b 7.11 ± 0.26 a 4.43 ± 0.28 b 36.23 ± 2.08 b 0.89 ± 0.06 b 14.37 ± 2.21 b 18.54 ± 3.01 b 51.74 ± 11.28 b 4.11 ± 0.89 b
    注:不同小写字母表示同一指标雌雄株间差异显著 (P < 0.05)。下同。Notes: different lowercase letters indicate significant differences between male and female plants (P < 0.05). The same below.
    下载: 导出CSV

    表  2   连香树叶片各特征间的相关性分析

    Table  2   Correlation analysis between features of C. japonicum leaves

    指标
    Index
    Pn Chl a Chl b Car Fv/Fm qP NPQ N P FLAV ANTH SOD POD
    Pn 1
    Chl a 0.314** 1
    Chl b 0.474 0.996** 1
    Car 0.465 0.986** 0.984** 1
    Fv/Fm 0.755** 0.482 0.493 0.461 1
    qP 0.967** −0.333 −0.378 −0.398 0.401 1
    NPQ 0.896** −0.951** −0.959** −0.915** −0.118 −0.027 1
    N 0.571* 0.986** 0.327* 0.804** −0.620 0.040 0.889** 1
    P 0.755* 0.422** 0.755** 0.720** −0.516 0.060 0.891** 0.955** 1
    FLAV −0.759* 0.909** 0.920** 0.870** −0.250* −0.267 −0.572 −0.759* −0.243* 1
    ANTH 0.180 0.697 0.722* 0.766* 0.349 0.295 0.255 0.006 0.112 0.118 1
    SOD 0.428 0.355 0.278 0.212 0.040 0.202 0.311 0.123 0.041 0.0327 0.364 1
    POD 0.121 0.175 0.329 0.47 0.028 0.006 0.324 0.265 0.355 0.087 0.098 0.273 1
    注:Pn. 净光合速率;Chl a. 叶绿素a含量;Chl b. 叶绿素b含量;Car. 类胡萝卜素含量;P. 全磷含量; N. 全氮含量。*表示显著相关(P < 0.05);**表示极显著相关(P < 0.01)。Notes: Pn, net photosynthetic rate; Chl a, chlorophyll a content; Chl b, chlorophyll b content; Car, carotenoid content; P, total phosphorus content; N, total nitrogen content. * means significant correlation (P < 0.05); ** means extremly significant correlation (P < 0.01).
    下载: 导出CSV
  • [1]

    Renner S S. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database[J]. American Journal of Botany, 2014, 101(10): 1588−1596. doi: 10.3732/ajb.1400196

    [2]

    Hultine K R, Grady K C, Wood T E, et al. Climate change perils for dioecious plant species[J]. Nature Plants. 2016, 2(8) :16109.

    [3] 彭丹,武志强. 植物雌雄异株性别决定研究进展[J]. 生物多样性, 2022, 30(3): 132−143.

    Peng D, Wu Z Q. Progress on sex determination of dioecious plants[J]. Biodiversity Science, 2022, 30(3): 132−143.

    [4] 朱栗琼, 邓冬丽, 招礼军, 等. 罗汉松雌雄株叶形态结构的比较研究[J]. 西北植物学报, 2019, 39(12): 2179−2186.

    Zhu L Q, Deng D L, Zhao L J, et al. Comparison on leaf morphological structure of the dioecious Podocarpus macrophyllus[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(12): 2179−2186.

    [5] 韩丽冬, 沃晓棠, 张苏, 等. 环境胁迫下雌雄异株植物的生理差异响应特征[J]. 中国林副特产, 2021(5): 75−77.

    Han L D, Wo X T, Zhang S, et al. Physiological differential response characteristics of dioecious plants under environmental stress[J]. Forest by-Product and Speciality in China, 2021(5): 75−77.

    [6]

    Kader A, Sinha S N. Sex-related differences of Excoecaria agallocha L. with a view to defence and growth[J]. Tropical Life Sciences Research, 2022, 33(2): 55−74. doi: 10.21315/tlsr2022.33.2.4

    [7]

    Stevens M T, Esser S M. Growth-defense tradeoffs differ by gender in dioecious trembling aspen (Populus tremuloides)[J]. Biochemical Systematics and Ecology, 2009, 37(5): 567−573. doi: 10.1016/j.bse.2009.09.005

    [8]

    Yang G, Xu Q, Li W, et al. Sex-related differences in growth, herbivory, and defense of two Salix species[J]. Forests, 2020, 11(4): 450. doi: 10.3390/f11040450

    [9]

    Zhu S, Chen J, Zhao J, et al. Genomic insights on the contribution of balancing selection and local adaptation to the long-term survival of a widespread living fossil tree, Cercidiphyllum japonicum[J]. New Phytologist, 2020, 228(5): 1674−1689. doi: 10.1111/nph.16798

    [10]

    Monson R K, Trowbridge A M, Lindroth R L, et al. Coordinated resource allocation to plant growth-defense tradeoffs[J]. New Phytologist, 2022, 233(3): 1051−1066. doi: 10.1111/nph.17773

    [11]

    Jiang H, Zhang S, Lei Y, et al. Alternative growth and defensive strategies reveal potential and gender specific trade-offs in dioecious plants Salix paraplesia to nutrient availability[J]. Frontiers in Plant Science, 2016, 7: 1064.

    [12] 叶威, 李强, 陈颖, 等. 雌、雄株和金叶银杏光合生理及黄酮成分年动态变化研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 77−86.

    Ye W, Li Q, Chen Y, et al. Annual dynamic changes in photosynthetic physiology and flavonoid components in female, male and golden-leaf Ginkgo biloba trees[J]. Journal of Nanjing Forestry University, 2022, 46(4): 77−86.

    [13] 翟飞飞, 毛金梅, 李海栋, 等. 蒿柳1年生雌雄株幼苗的生长与防御差异研究[J]. 西北农林科技大学学报(自然科学版), 2022, 50(8): 46−54.

    Zhai F F, Mao J M, Li H D, et al. Gender-specific differences in growth and defense of one-year-old Salix viminalis seedlings[J]. Journal of Northwest A & F University(Natural Science Edition), 2022, 50(8): 46−54.

    [14]

    Bai Q, Ma Z, Zhang Y, et al. The sex expression and sex determining mechanism in Pistacia species[J]. Breeding Science, 2019, 69(2): 205−214. doi: 10.1270/jsbbs.18167

    [15]

    Yu L, Han Y, Jiang Y, et al. Sex-specific responses of bud burst and early development to nongrowing season warming and drought in Populus cathayana[J]. Canadian Journal of Forest Research, 2018, 48(1): 68−76. doi: 10.1139/cjfr-2017-0259

    [16]

    Selakovic S, Stanisavljevic N, Vujic V, et al. Light and sex interplay: differential herbivore damage in sun and shade in dioecious Mercurialis perennis[J]. Archives of Biological Sciences, 2018, 70(3): 469−479. doi: 10.2298/ABS171207007S

    [17]

    He M, Shi D, Wei X, et al. Gender-related differences in adaptability to drought stress in the dioecious tree Ginkgo biloba[J]. Acta physiologiae Plantarum, 2016, 38(5): 1.

    [18] 郭海燕, 段婧, 刘金平, 等. 温度对雌雄葎草生理代谢及保护酶系统影响的性别差异[J]. 草业学报, 2017, 26(10): 198−206. doi: 10.11686/cyxb2016493

    Guo H Y, Duan J, Liu J P, et al. Gender differences in physiology and enzyme activity in response to temperature in Humulus scandens[J]. Acta Prataculturae Sinica, 2017, 26(10): 198−206. doi: 10.11686/cyxb2016493

    [19] 陈娟, 李春阳. 环境胁迫下雌雄异株植物的性别响应差异及竞争关系[J]. 应用与环境生物学报, 2014, 20(4): 743−750.

    Chen J, Li C Y. Sex-specific responses to environmental stresses and sexual competition of dioecious plants[J]. Chinese Journal of Applied & Environmental Biology, 2014, 20(4): 743−750.

    [20] 胥晓, 杨帆, 尹春英, 等. 雌雄异株植物对环境胁迫响应的性别差异研究进展[J]. 应用生态学报, 2007, 18(11): 2626−2631.

    Xu X, Yang F, Yin C Y, et al. Research advances in sex-specific responses of dioecious plants to environmental stresses[J]. Chinese Journal of Applied Ecology, 2007, 18(11): 2626−2631.

    [21]

    Alsterberg C, Eklöf J S, Gamfeldt L, et al. Consumers mediate the effects of experimental ocean acidification and warming on primary producers[J]. Proceedings of the National Academy of Sciences, 2013, 110(21): 8603−8608. doi: 10.1073/pnas.1303797110

    [22]

    Sakio H, Kubo M. Flowering and fruiting of the dioecious canopy tree Cercidiphyllum japonicum over an 8-year period in central Japan[J]. Journal of Forest Research, 2022, 27(1): 45−52. doi: 10.1080/13416979.2021.1991551

    [23]

    Qin H, Duan N, Wang M, et al. Complete chloroplast genome of Cercidiphyllum japonicum (Cercidiphyllaceae), a tertiary relic endangered tree[J]. Conservation Genetics Resources, 2019, 11(2): 113−115. doi: 10.1007/s12686-017-0973-0

    [24]

    Marini R P, Barden J A. Seasonal correlations of specific leaf weight to net photosynthesis and dark respiration of apple leaves[J]. Photosynth Res, 1981, 2(4): 251−258. doi: 10.1007/BF00056262

    [25] 黄雪梅, 马永红, 董廷发. 连香树雌雄植株叶片碳氮磷化学计量特征[J]. 西华师范大学学报(自然科学版), 2019, 40(4): 332−338.

    Huang X M, Ma Y H, Dong T F. Stoichiometric characteristics of C, N and P in the leaf of dioecious plant Cercidiphyllum japonicum[J]. Journal of China West Normal University (Natural Science), 2019, 40(4): 332−338.

    [26] 马文宝, 廖成云, 姬慧娟, 等. 濒危连香树种群性比和雌雄株功能性状的差异[J]. 生态学杂志, 2019, 38(8): 2414−2419.

    Ma W B, Liao C Y, Ji H J, et al. Sex ratio and sexual difference of functional traits in the endangered plant Cercidiphyllum japonicum[J]. Chinese Journal of Ecology, 2019, 38(8): 2414−2419.

    [27] 孟秋实, 秦倩倩, 刘艳红. 氮添加对东北红豆杉幼苗生长发育及生理特征的影响[J]. 生态学杂志, 2022, 41(12): 2325−2334.

    Meng Q S, Qin Q Q, Liu Y H. Effects of nitrogen addition on growth, development, and physiological characteristics of Taxus cuspidlata seedlings[J]. Chinese Journal of Ecology, 2022, 41(12): 2325−2334.

    [28] 张诗行, 刘艳红. 东北红豆杉幼苗黄酮类化合物含量变化及其对气候因子的响应[J]. 生态学杂志, 2020, 39(1): 73−81.

    Zhang S H, Liu Y H. Variation of flavonoid content in Taxus cuspidata seedlings and its responses to climate factors[J]. Chinese Journal of Ecology, 2020, 39(1): 73−81.

    [29]

    Manea A, Tabassum S, Leishman M R. Eucalyptus species maintain secondary metabolite production under water stress conditions at the expense of growth[J]. Austral Ecology, 2021, 46(7): 1030−1038. doi: 10.1111/aec.13035

    [30]

    Kazemi O B, Bandehagh A, Farajzadeh D, et al. Morphological, biochemical, and physiological responses of canola cultivars to drought stress[J]. International Journal of Environmental Science and Technology, 2023(20): 13551–13560.

    [31] 张娅, 施树倩, 李亚萍, 等. 不同盐胁迫下小麦叶片渗透性调节和叶绿素荧光特性[J]. 应用生态学报, 2021, 32(12): 4381−4390.

    Zhang Y, Shi S Q, Li Y P, et al. Osmotic regulation and chlorophyll fluorescence characteristics in leaves of wheat seedlings under different salt stresses[J]. Chinese Journal of Applied Ecology, 2021, 32(12): 4381−4390.

    [32]

    Ding L, Lu Z, Gao L, et al. Is nitrogen a key determinant of water transport and photosynthesis in higher plants upon drought stress?[J]. Frontiers in Plant Science, 2018, 9: 1143. doi: 10.3389/fpls.2018.01143

    [33]

    Rezai S, Etemadi N, Nikbakht A, et al. Effect of light intensity on leaf morphology, photosynthetic capacity, and chlorophyll content in sage (Salvia officinalis L.)[J]. Weon’ye Gwahag Gi’sulji, 2018, 36(1): 46−57.

    [34]

    Lauriks F, Salomon R L, de Roo L, et al. Leaf and tree responses of young European aspen trees to elevated atmospheric CO2 concentration vary over the season[J]. Tree Physiology, 2021, 41(10): 1877−1892. doi: 10.1093/treephys/tpab048

    [35]

    Fang X, Wang K, Sun X, et al. Characteristics of chlorophyll fluorescence in ten garden shrub species under flooding stress[J]. Biológia, 2022, 77(2): 339−350.

    [36] 李豪, 马如玉, 强波, 等. 胡杨当年生小枝茎构型对展叶效率的影响[J]. 植物生态学报, 2021, 45(11): 1251−1262. doi: 10.17521/cjpe.2020.0425

    Li H, Ma R Y , Qiang B, et al. Effect of current-year twig stem configuration on the leaf display efficiency of Populus eu-phratica[J]. Chinese Journal of Plant Ecology, 2021, 45(11): 1251−1262. doi: 10.17521/cjpe.2020.0425

    [37] 白文玉, 铁烈华, 冯茂松, 等. 不同种源桤木嫁接幼苗光合和叶绿素荧光特征[J]. 四川农业大学学报, 2020, 38(6): 670−676, 692.

    Bai W Y, Tie L H, Feng M S, et al. Photosynthesis and chlorophyll fluorescence characteristics of grafted Alnus cremastogyne seedlings from different provenances[J]. Journal of Sichuan Agricultural University, 2020, 38(6): 670−676, 692.

    [38] 魏晓东, 陈国祥, 施大伟, 等. 干旱胁迫对银杏叶片光合系统Ⅱ荧光特性的影响[J]. 生态学报, 2022, 32(23): 7492−7500.

    Wei X D, Chen G X, Shi D W, et al. Effects of drought on fluorescence characteristics of photosystem Ⅱ in leaves of Ginkgo biloba[J]. Acta Ecologica Sinica, 2022, 32(23): 7492−7500.

    [39]

    Ma S, He F, Tian D, et al. Variations and determinants of carbon content in plants: a global synthesis[J]. Biogeosciences, 2018, 15(3): 693−702. doi: 10.5194/bg-15-693-2018

    [40] 熊星烁, 蔡宏宇, 李耀琪, 等. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138−1153. doi: 10.17521/cjpe.2020.0105

    Xiong X S, Cai H Y, Li Y Q, et al. Seasonal dynamics of leaf C, N and P stoichiometry in plants of typical steppe in Nei Mongol, China[J]. Chinese Journal of Plant Ecology, 2020, 44(11): 1138−1153. doi: 10.17521/cjpe.2020.0105

    [41] 吴统贵, 陈步峰, 肖以华, 等. 珠江三角洲3种典型森林类型乔木叶片生态化学计量学[J]. 植物生态学报, 2010, 34(1): 58−63.

    Wu T G , Chen B F , Xiao Y H , et al. Leaf stoichiometry of trees in three forest types in Pearl River Delta, South China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 58−63.

    [42]

    Vallicrosa H, Sardans J, Maspons J, et al. Global distribution and drivers of forest biome foliar nitrogen to phosphorus ratios (N∶P)[J]. Global Ecology and Biogeography, 2022, 31(5): 861−871. doi: 10.1111/geb.13457

    [43] 邓斌, 曾德慧. 植物防卫的碳–养分平衡假说[J]. 生态学杂志, 2006, 25(4): 449−455.

    Deng B, Zeng D H. Carbon-nutrient balance hypothesis on plant defense[J]. Chinese Journal of Ecology, 2006, 25(4): 449−455.

    [44] 周瑞莲, 逄金强, 宋玉. 海岸抗风植物黑松对净风和风沙流的生理响应[J]. 生态学报, 2021, 41(5): 2033−2044.

    Zhou R L, Pang J Q, Song Y. Physiologial response of Pinus thunbergii Parl in wind resistant to coastal wind blowing and win-drift blowing[J]. Acta Ecologica Sinica, 2021, 41(5): 2033−2044.

    [45] 肖珍. 黄酮醇和花青素在植物抗逆中的功能差异研究[D]. 济南: 山东大学, 2018.

    Xiao Z. Study on the functional difference of flavnol and anthocyanins in the abioc torance in plants[D]. Jinan: Shandong University, 2018.

    [46] 陶应时, 廖咏梅, 黎云祥, 等. 连香树雌雄株叶片形态及生理生化指标比较[J]. 东北林业大学学报, 2013, 41(3): 18−19, 39. doi: 10.3969/j.issn.1000-5382.2013.03.005

    Tao Y S, Liao Y M, Li Y X, et al. Morphological characteristics and physiological-biochemical indexes of male and female Cercidiphyllum japonicum[J]. Journal of Northeast Forestry University, 2013, 41(3): 18−19, 39. doi: 10.3969/j.issn.1000-5382.2013.03.005

    [47] 黄云浩, 辛本花, 王娟. 雌雄异株植物鼠李生殖分配与生殖耗费补偿机制[J]. 北京林业大学学报, 2019, 41(11): 31−36.

    Huang Y H, Xin B H, Wang J. Reproductive allocation and compensation mechanism for reproductive costs of dioecious shrub Rhamnus davurica[J]. Journal of Beijing Forestry University, 2019, 41(11): 31−36.

    [48] 朱燕艳, 王娟, 赵秀海, 等. 雄全异株植物白牛槭功能性状与碳素含量关联性研究[J]. 西北植物学报, 2015, 35(10): 2089−2095. doi: 10.7606/j.issn.1000-4025.2015.10.2089

    Zhu Y Y, Wang J, Zhao X H, et al. Correlation of functional traits and carbon contents in androdioecy plant Acer mandshuricum[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(10): 2089−2095. doi: 10.7606/j.issn.1000-4025.2015.10.2089

    [49]

    Laporte M M, Delph L F. Sex-specific physiology and source-sink relations in the dioecious plant Silene latifolia[J]. Oecologia, 1996, 106: 63−72. doi: 10.1007/BF00334408

  • 期刊类型引用(1)

    1. 李凤春,宋大北,孟兆民,谭瑞虹,刘志君,张继敏,郭丽明,王文杰,焦志远. 油松轻基质网袋育苗技术集成. 现代农业研究. 2025(01): 98-102 . 百度学术

    其他类型引用(0)

图(5)  /  表(2)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  23
  • PDF下载量:  29
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-03-13
  • 修回日期:  2024-11-10
  • 录用日期:  2024-12-05
  • 网络出版日期:  2024-12-05
  • 刊出日期:  2024-12-24

目录

/

返回文章
返回