Processing math: 100%
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

基于结构方程模型的兴安落叶松天然林碳汇量驱动因素

梅雪松, 董灵波, 陈冠谋

梅雪松, 董灵波, 陈冠谋. 基于结构方程模型的兴安落叶松天然林碳汇量驱动因素[J]. 北京林业大学学报, 2024, 46(9): 1-10. DOI: 10.12171/j.1000-1522.20230284
引用本文: 梅雪松, 董灵波, 陈冠谋. 基于结构方程模型的兴安落叶松天然林碳汇量驱动因素[J]. 北京林业大学学报, 2024, 46(9): 1-10. DOI: 10.12171/j.1000-1522.20230284
Mei Xuesong, Dong Lingbo, Chen Guanmou. Driving factors of carbon sink in natural Larix gmelinii forests based on structural equation models[J]. Journal of Beijing Forestry University, 2024, 46(9): 1-10. DOI: 10.12171/j.1000-1522.20230284
Citation: Mei Xuesong, Dong Lingbo, Chen Guanmou. Driving factors of carbon sink in natural Larix gmelinii forests based on structural equation models[J]. Journal of Beijing Forestry University, 2024, 46(9): 1-10. DOI: 10.12171/j.1000-1522.20230284

基于结构方程模型的兴安落叶松天然林碳汇量驱动因素

基金项目: “十四五”国家重点研发计划(2022YFD2200502),中央高校基本科研业务费专项(2572022CG07)。
详细信息
    作者简介:

    梅雪松。主要研究方向:森林可持续经营。Email:mxs18832604392@163.com 地址:150040 黑龙江省哈尔滨市和兴路26号东北林业大学林学院

    责任作者:

    董灵波,博士,副教授。主要研究方向:森林可持续经营。Email:Farrell0503@162.com 地址:同上。

  • 中图分类号: S791.222;S75

Driving factors of carbon sink in natural Larix gmelinii forests based on structural equation models

  • 摘要:
    目的 

    探究兴安落叶松天然林碳汇量及其驱动机制,为提升该地区的碳汇功能提供理论依据。

    方法 

    基于黑龙江省大兴安岭地区第7次和第8次国家森林资源连续清查获取的264块固定样地调查数据,考虑林木生长、枯损、进界和采伐4个碳库,分别从林分、气候、多样性、土壤、地形和采伐6个方面选取24项指标,通过逐步回归和结构方程模型,量化了各指标对兴安落叶松天然林碳汇量的影响。

    结果 

    (1)2005—2010年间,该地区兴安落叶松天然林的平均碳汇量为(1.17 ± 0.71) t/(hm2·a)。(2)逐步回归模型的确定系数(R2)、均方根误差(RMSE)和平均绝对误差(MAE)分别为0.60、0.60 t/(hm2·a)和0.45 t/(hm2·a),表明所建模型精度较高。模型筛选出的变量包括Shannon-Wiener指数、郁闭度、土壤全氮、土壤全钾、优势木平均胸径、年平均降水量、坡度和林分平均年龄。(3)结构方程模型中各变量对林分碳汇量的路径系数依次为Shannon-Wiener指数(0.462) > 郁闭度(0.357) > 优势木平均胸径(0.313) > 土壤全氮(0.286) > 土壤全钾(−0.142) >年平均降水量(−0.107) > 坡度(−0.069)。

    结论 

    Shannon-Wiener指数、优势木平均胸径、郁闭度和土壤条件是影响碳汇量的重要驱动因子,可在后续经营中通过合理抚育间伐或冠下补植来调整林分的树种组成、郁闭度和土壤肥力,以达到提升兴安落叶松天然林碳汇功能的目的。

    Abstract:
    Objective 

    This study aimed to clarify the driving mechanism of carbon sink formation in natural Larix gmelinii forest, and to provide theoretical basis for improving the carbon sink function of natural L. gmelinii forest in this area.

    Method 

    Based on the survey data of 264 fixed plots from the 7th and 8th continuous national forest resource inventory in Daxing’anling region of Heilongjiang Province, northeastern China, this study selected 24 indexes from 6 aspects, namely stand, climate, diversity, soil, topography and cutting, considering 4 carbon pools of tree growth, mortality, ingrowth and cutting. The effects of each index on carbon sink in natural L. gmelinii forest were quantified by stepwise regression and structural equation model.

    Result 

    (1) The average carbon sink of natural forest of L. gmelinii from 2005 to 2010 was (1.17 ± 0.71) t/(ha·year). (2) The determination coefficient (R2), root mean square error (RMSE) and mean absolute error (MAE) of the stepwise regression model were 0.60, 0.60 t/(ha·year) and 0.45 t/(ha·year), respectively, indicating that the model was highly accurate. The variables selected by the model included Shannon-Wiener index, canopy density, soil total nitrogen, soil total potassium, average DBH of dominant trees, annual mean precipitation, slope and average age of stands. (3) In the structural equation model, the path coefficients of Shannon-Wiener index (0.462) > canopy density (0.357) > average DBH of dominant trees (0.313) > soil total nitrogen (0.286) > soil total potassium (−0.142) > annual mean precipitation (−0.107) > slope (−0.069).

    Conclusion 

    Shannon-Wiener index, canopy density and soil conditions are important driving factors affecting carbon sink. Tree species composition, average DBH of dominant trees, canopy density and soil fertility can be adjusted through rational thinning or undercrown replanting in subsequent management to improve the carbon sink function of natural forest of L. gmelinii.

  • 活性碳纤维作为一种新型吸附材料,以比表面积高、吸附容量大、吸附脱附速率快、耐热耐酸碱等优点,被广泛应用于环境净化、催化剂载体、储能材料等领域[1-2]。活性碳纤维的孔隙结构是影响各项性能的关键因素。在活化过程中,碳基体与活化剂之间的反应导致大量孔隙的生成,而不仅仅是纤维表面的烧失,这表明活化反应具有选择性。作为活化前驱体,炭化过程的产物碳纤维由乱层石墨多晶结构组成[3],其微观晶体结构对活化孔结构形成具有重要的影响。在活化过程中,活化剂优先侵蚀碳纤维的无定形区、晶胞缺陷处、晶界处和初始孔隙处,而后进入有序化较高的微晶区域。上述位置的碳基体以不同的速率与活化剂反应,从而形成孔洞,随着活化继续进行,孔结构进一步变深、扩宽[4-5]

    近年,为缓解石化资源危机,利用林业生物质资源制备活性碳纤维受到了广泛关注。其中,基于木材液化物制备的活性碳纤维具有丰富的孔隙结构[6-7],且在污染物净化[8-10]、抗菌性能[11-14]、电化学特性[15-17]等方面表现出优良的性能。目前,针对木材液化物纤维在炭化、活化过程中微晶结构的变化已进行了一系列研究。马晓军等[18]研究表明:800 ~ 1 000 ℃炭化温度下,木材液化物原丝形成大量多苯稠环结构,碳网重组并进行有序化生长,石墨化程度显著提高。赵广杰[19]指出:木材苯酚液化物原丝分子网状交联结构在300 ~ 600 ℃炭化过程中被破坏并发生重排,进而形成初步的碳网结构;700 ℃以上,碳网继续生长,聚合度逐渐提高。Liu等[20]指出:较高的活化温度或较长的活化时间会导致木材液化物活性碳纤维乱层石墨结构的破坏,使其结晶化程度降低。Li等[21]研究了CO2活化过程中木材液化物活性碳纤维的微晶结构随着活化温度升高的变化规律,由微晶尺寸数据推断600 ℃之前微晶结构正在经历芳环结构向多层石墨堆叠结构的转变,而600 ℃以后,石墨网有序化程度逐步提高,乱层石墨晶体结构逐渐稳定,晶胞尺寸逐渐增大。Liu等[22]比较了利用木材液化物原丝和碳纤维分别制备的活性碳纤维微晶结构的区别,得出:前者具有更大的晶体尺寸和更致密的乱层石墨结构,而后者微孔数量较多,微孔孔径较大。Ma等[23]通过添加木炭制备中孔木材液化物活性碳纤维,微晶结构研究表明:木炭的添加打断了活性碳纤维的碳平面,限制了乱层石墨片层的生长和排列,进而影响了乱层石墨片层的发育和有序堆积,导致了中孔结构的增加。Liu等[24]研究指出:木材液化物活性碳纤维中孔结构源于纤维缺陷的扩大,中孔结构的形成加剧了乱层石墨微晶结构的瓦解。以上研究充分证实了不同炭化与活化过程中纤维微晶结构变化与孔结构形成的相关性,然而尚未详细阐明微晶结构演变对孔结构形成的作用及影响规律。

    为进一步揭示木材液化物活性碳纤维孔结构形成机制,本研究通过控制炭化温度获得具有不同微晶结构的杉木液化物碳纤维,并以水蒸气作为活化剂在800 ℃下进行活化,采用元素分析仪、X射线衍射仪和氮气吸附仪分别考察了随着活化时间延长,杉木液化物活性碳纤维元素组成、微晶结构和孔结构的变化,探讨了微晶结构演变和孔结构形成两者之间的作用机制及影响规律。

    将杉木(Cunninghamia lanceolata)木粉粉碎至20 ~ 80目,并在(105 ± 5) ℃下干燥24 h。苯酚(分析纯)为北京笃信精细制剂厂生产。磷酸(分析纯),质量分数37%,北京化工厂生产。六次甲基四胺(分析纯)为西陇化工股份有限公司生产。甲醛(分析纯),质量分数37%,广东光华科技股份有限公司生产。盐酸(分析纯),质量分数37%,北京化工厂生产。

    将20 g杉木木粉与苯酚按质量比1∶6混合加入三口烧瓶中,并加入苯酚质量8%的磷酸作为催化剂进行杉木木粉液化工艺。开启冷凝器,在1 053 r/min的搅拌速率下,液化混合物以5 ℃/min的升温速率在油浴中加热至160 ℃并保温2.5 h。而后撤去油浴,待三口烧瓶冷却至室温,撤去冷凝器,将液化产物通过50 mL砂芯漏斗(直径为8 cm,G3型,孔径为15 ~ 40 μm),抽真空过滤制得杉木苯酚液化物。

    将10 g杉木苯酚液化物和0.5 g六次甲基四胺混合加入纺丝管,开启搅拌器,以5 ℃/min的升温速率在空气中加热至(175 ± 2) ℃,并保温20 min合成纺丝液,而后在120 ~ 130 ℃进行纺丝制备初始纤维。将得到的初始纤维浸入含有7.4 mL甲醛、6 mL盐酸和1.4 mL蒸馏水的酸溶液中,以0.25 ℃/min的升温速率加热至90 ℃,保温2 h进行固化工艺。待固化结束后取出纤维,经蒸馏水洗涤后放入(85 ± 2) ℃烘箱干燥2 h,得到原丝。

    将约5 g的原丝以2 ℃/min的升温速率在N2保护下分别加热至设定的炭化温度(500、700、900 ℃)并保温1 h。之后以4 ℃/min的速率将温度调整至800 ℃,结束炭化过程。待炭化产物冷却至室温,取出炭化产物得到杉木苯酚液化物碳纤维(liquefied wood carbon fibers,LWCFs)。LWCFs-500、LWCFs-700和LWCFs-900分别代表炭化温度为500、700、900 ℃的LWCFs。

    将约5 g的前驱体纤维以2 ℃/min的升温速率在N2保护下分别加热至设定的炭化温度(500、700、900 ℃)并保温1 h。之后以4 ℃/min的速率将温度调整至800 ℃,此时开启水蒸气(流量为6.69 g/min),活化20、40 min制备活性碳纤维。待活化产物冷却至室温,取出活化产物得到杉木苯酚液化物活性碳纤维(activated liquefied wood carbon fibers,ALWCFs)。ALWCFs-500-20代表炭化温度为500 ℃,活化时间为20 min的ALWCFs,其他样品名称含义与之相同。

    采用美国公司(Thermo)生产的A FLASH EA1112型元素分析仪对所有样品的碳、氢、氮元素质量分数进行测试。测试条件为:以He为载气,碳、氢、氮元素分解温度为950 ℃。氧元素质量分数计算公式如下:

    WO=(1WCWHWN)×100%

    式中:WCWHWN分别表示碳、氢、氮元素的质量分数。

    采用日本公司(SHIMAZU)生产的XRD-6000型X射线衍射仪采集样品的X射线衍射图谱。具体操作如下:将约0.5 g的干燥样品在研钵中研磨15 min,放入样品台中压实后开始检测。铜靶辐射(辐射管额定电压为40 kV,额定电流为30 mA,波长为0.154 nm),扫描频率为2 (°)/min,2θ角扫描区间值为15° ~ 60°,测量步长为0.2°。

    样品的石墨层间距(d002)、石墨层堆叠厚度(Lc002)由(002)衍射面求得,石墨网横向尺寸(La110)由(110)衍射面求得,依据Scherrer公式[25]计算。

    d002=λ/(2sinθ002)
    Lc002=0.94λ/(βcosθ002)
    La110=1.84λ/(βcosθ110)

    式中:λ表示入射X射线的波长,取0.154 nm;β表示该晶面衍射峰的半峰宽;θ为该衍射峰所对应的衍射角。

    采用美国公司(Quantachrome)生产的Autosorb iQ型氮气吸附分析仪进行测定。将0.0500 g的ALWCFs待测样品装入干燥的测试管,经300 ℃脱气3 h,在−196 ℃下测定不同相对压强下的N2吸附/脱附等温线。采用Brunauer-Emmett-Teller法[26]计算BET比表面积SBET;由相对压力约为0.99时的液氮吸附量换算成液氮体积,得到总孔容Vt;采用t-plot法[27]计算微孔比表面积Smi和微孔孔容Vmi;采用Barrett, Joyner & Halenda(BJH)法[28]计算中孔孔容VBJH;采用Horvath-Kawazoe(HK)法[29]计算峰值孔径DHK;由BET法计算平均孔径Da;由Density Functional Theory(DFT)法[30]计算孔径大小与分布。

    不同炭化–活化过程中LWCFs与ALWCFs的元素质量分数及变化趋势分别见表1图1。在炭化样品中,随着炭化温度升高,碳元素质量分数逐渐增加,氢、氧元素质量分数减少。其中,炭化温度由700 ℃升高至900 ℃过程中,氢、氧元素质量分数的减少十分明显,这表明脂肪族官能团和含氧官能团的热解在高于700 ℃以后变得剧烈。在同一活化时间下,随着炭化温度升高,碳元素质量分数逐渐增加,氢、氧元素质量分数逐渐减少。综上可知,炭化温度的提高促进了非碳元素的挥发,且有利于活化过程中碳元素的富集。

    表  1  不同炭化–活化过程中LWCFs和ALWCFs的元素质量分数变化
    Table  1.  Changes of element percentage compositions for LWCFs and ALWCFs by different carbonization-activation processes
    样品名称 Sample name质量分数 Mass fraction/%
    CHNO
    LWCFs-500 88.76 1.15 0.61 9.49
    LWCFs-700 89.21 1.17 0.64 9.00
    LWCFs-900 91.71 0.84 0.64 6.82
    ALWCFs-500-20 91.25 1.04 0.58 7.14
    ALWCFs-700-20 93.23 1.03 0.62 5.12
    ALWCFs-900-20 94.31 0.79 0.6 4.30
    ALWCFs-500-40 93.45 1.14 0.57 4.86
    ALWCFs-700-40 94.25 0.99 0.64 4.13
    ALWCFs-900-40 95.10 0.69 0.57 3.64
    下载: 导出CSV 
    | 显示表格
    图  1  不同炭化–活化过程中LWCFs和ALWCFs的元素质量分数变化图
    LWCFs对应的活化时间为0 min,ALWCFs对应的是活化时间为20 ~ 40 min。LWCFs correspond to the activation time of 0 min, and ALWCFs correspond to the activation time of 20–40 min.
    Figure  1.  Changes of element percentage compositions for LWCFs and ALWCFs by different carbonization-activation processes

    图2为不同炭化–活化过程中LWCFs与ALWCFs的XRD衍射图谱。从图中可以看出:LWCFs与ALWCFs在2θ为19° ~ 21°和44°附近均出现衍射峰,分别对应于石墨碳层的(002)衍射面和(110)衍射面[31-32]。这两处衍射峰和形态特点说明LWCFs与ALWCFs的微晶结构均由乱层石墨微晶堆叠而成,属于多晶乱层石墨结构。

    图  2  不同炭化–活化过程LWCFs和ALWCFs的X射线衍射图谱
    Figure  2.  X ray diffraction patterns for LWCFs and ALWCFs prepared by different carbonization-activation processes

    不同炭化–活化过程中LWCFs与ALWCFs的微晶结构参数见表2。相关微晶结构参数在不同炭化–活化过程中的变化趋势分别见图3图4。LWCFs的d002值均大于石墨微晶的层间距(0.335 4 nm),表明石墨化程度较低[33-34]

    表  2  不同炭化–活化过程LWCFs和ALWCFs的微晶结构参数
    Table  2.  Microcrystalline structure parameters for LWCFs and ALWCFs prepared by different carbonization-activation processes
    样品名称
    Sample name
    2θ/(°)d002/nmLc002/nmLc002/d002La110/nmLa110/Lc002
    LWCFs-500 20.3 0.437 0.505 1.16 1.683 3.33
    LWCFs-700 20.8 0.427 0.509 1.19 1.606 3.16
    LWCFs-900 20.8 0.427 0.515 1.21 1.651 3.21
    ALWCFs-500-20 20.6 0.430 0.512 1.19 2.365 4.62
    ALWCFs-700-20 20.6 0.430 0.512 1.19 2.274 4.44
    ALWCFs-900-20 19.9 0.446 0.501 1.12 2.870 5.72
    ALWCFs-500-40 19.4 0.457 0.538 1.18 2.245 4.17
    ALWCFs-700-40 20.2 0.439 0.464 1.06 2.217 4.78
    ALWCFs-900-40 21.4 0.415 0.447 1.08 2.779 6.23
    注:θ为衍射峰所对应的衍射角,d002为墨层间距,Lc002为石墨层堆叠厚度,La110为石墨网横向尺寸。Notes:θ is the diffraction angle corresponding to the diffraction peak, d002 is the spacing between graphite layers, Lc002 is the stacking thickness of graphite layers, and La110 is the transverse size of graphite network.
    下载: 导出CSV 
    | 显示表格
    图  3  LWCFs和ALWCFs的Lc002值和La110值变化图
    Figure  3.  Changes of Lc002 and La110 values for LWCFs and ALWCFs
    图  4  LWCFs和ALWCFs的d002值和Lc002/d002变化图
    Figure  4.  Changes of d002 and Lc002/d002 values for LWCFs and ALWCFs

    随着炭化温度升高,LWCFs(002)衍射峰的2θ角从20.3°偏移至20.8°,d002值减少0.01 nm,Lc002值增加0.01 nm,轴向石墨层数Lc002/d002增加0.05。可见,炭化温度的升高使LWCFs的乱层石墨微晶结构更加致密,微晶间排列更趋于规整,且轴向尺寸逐渐增大。LWCFs的La110值与La110/Lc002随着炭化温度由500 ℃升至700 ℃逐渐减小,在此过程中LWCFs的化学结构因热解产生破坏并逐步向多层堆叠的乱层石墨结构转变。当炭化温度升高至900 ℃,LWCFs的La110值与La110/Lc002增大,此时乱层石墨微晶结构更趋有序、规整,横向微晶发生了生长。

    活化过程中,当炭化温度为700和900 ℃时,Lc002值随着活化时间延长呈减小趋势,在活化时间高于20 min时,Lc002值的减少尤为明显,其中,ALWCFs-700-40的Lc002值较LWCFs-700减小了8.8%,ALWCFs-900-40的Lc002值较LWCFs-900减小了13.2%,这是由活化过程中水蒸气对乱层石墨轴向微晶的侵蚀所致,且随着活化时间的延长,侵蚀程度明显加重。与上述情况相反,当炭化温度为500 ℃时,Lc002随着活化时间的延长呈增加趋势,ALWCFs-500-40的Lc002值较LWCFs-500增加了6.5%。这是由于LWCFs-500纤维结构中有较多的晶体缺陷和较大的初始孔隙,活化反应优先在这些缺陷和孔隙处发生,以至于水蒸气没有充分进入微晶内部[4]

    随着活化时间延长至20 min,La110值增加显著,其中,900 ℃炭化时的增加率最高,ALWCFs-900-20较LWCFs-900增加了73.8%。La110值的升高表明乱层石墨网络横向尺寸的增大,这是源于微晶间碰撞所产生的横向重排,在900 ℃下最为剧烈,这与上文中LWCFs横向微晶结构的变化趋势一致,进一步证实900 ℃下乱层石墨碳网结构的充分生长[35]。随着活化时间延长至40 min,3种炭化温度下的La110值仅略微降低,表明该阶段微晶的横向结构基本稳定,这可能是由于此时乱层石墨结构的生长已趋于饱和,主要以碳原子的活化热解为主。

    对于500和700 ℃炭化样品,d002值随活化时间的延长呈增大趋势,其中,ALWCFs-500-40的d002值较LWCFs-500增加了4.6%,ALWCFs-700-40的d002值较LWCFs-700增加了2.8%,可见活化作用没有使乱层石墨结构变得更为致密,这是由于活化过程中挥发物的蒸发以及孔结构的形成使微晶结构变得松散。而ALWCFs-900-40的d002值大幅减少,较LWCFs-900减少了2.8%,表明高温活化下,轴向微晶结构已经高度分散,并产生了塌陷或紧缩。轴向石墨层数Lc002/d002的减小与Lc002值的变化趋势相符,这进一步验证了活化过程是对轴向乱层石墨片层结构的侵蚀,且在900 ℃活化过程中侵蚀最为剧烈。

    图5为不同炭化–活化过程中ALWCFs的N2吸附/脱附等温曲线。从中可以看出:ALWCFs的等温线类型均属于Ⅰ型,表明微孔结构占据主导地位。表3列出了不同炭化–活化过程中ALWCFs的孔结构参数。从中可以看出:炭化温度的提高有利于ALWCFs孔结构的形成。较样品ALWCFs-500-20,ALWCFs-700-20和ALWCFs-900-20的SBET分别增加了12.5%和4.3%,Vt分别增加了15.9%和2.6%;较样品ALWCFs-500-40,ALWCFs-700-40和ALWCFs-900-40的SBET分别增加了7.9%和18.6%,ALWCFs-900-40 的Vt增加了12.5%。其中,炭化温度的提高对ALWCFs微孔结构形成有明显的促进作用,且活化时间越长,微孔结构增加越显著。较样品ALWCFs-500-20,ALWCFs-700-20和ALWCFs-900-20的Smi分别提高了8.1%和5.0%,Vmi分别提高了8.9%和4.6%;较样品ALWCFs-500-40,ALWCFs-700-40和ALWCFs-900-40的Smi分别提高了19.9%和25.1%,Vmi分别提高了17.3%和25.5%。结合微晶分析结果可以得出:水蒸气对乱层石墨轴向微晶内部的侵蚀是形成微孔结构主要途径。低炭化温度样品微晶结构有序化程度较低,水蒸气会优先侵蚀其微晶缺陷和初始孔隙处,这一定程度上减缓了水蒸气对轴向微晶内部的侵蚀。而高的炭化温度形成的微晶有序化程度较高,有助于加快水蒸气进入轴向微晶内部的速率。

    图  5  不同活化时间制备的ALWCFs在−196 ℃下的N2吸附/脱附等温线
    Figure  5.  Nitrogen adsorption/desorption isotherms at −196 ℃ for ALWCFs prepared by different activation time
    表  3  不同活化时间制备的ALWCFs的孔结构参数
    Table  3.  Pore structure parameters for ALWCFs prepared by different activation time
    样品名称
    Sample name
    SBET/
    (m2·g−1)
    Vt/
    (cm3·g−1)
    Smi/
    (m2·g−1)
    Vmi/
    (cm3·g−1)
    VBJH/
    (cm3·g−1)
    DHK/nmDa/nm
    ALWCFs-500-20 861 0.464 650 0.259 0.230 0.443 2.15
    ALWCFs-700-20 969 0.538 703 0.282 0.284 0.428 2.22
    ALWCFs-900-20 898 0.476 683 0.271 0.226 0.448 2.12
    ALWCFs-500-40 1 068 0.590 793 0.318 0.314 0.458 2.21
    ALWCFs-700-40 1 152 0.562 951 0.373 0.241 0.463 1.95
    ALWCFs-900-40 1 267 0.664 992 0.399 0.373 0.468 2.09
    注:SBET为比表面积;Vt为总孔容;Smi为微孔比表面积;Vmi为微孔孔容;VBJH为中孔孔容;DHK为峰值孔径;Da为平均孔径。Notes:SBET is the specific surface area, Vt is the total pore volume, Smi is the micropore specific surface area, Vmi is the micropore volume, VBJH is the mesopore volume, DHK is the peak pore width, and Da is the average pore width.
    下载: 导出CSV 
    | 显示表格

    ALWCFs中孔结构随着炭化温度升高呈现不同的变化趋势。对于500和700 ℃炭化样品,活化初期的中孔结构主要来源于水蒸气对晶体缺陷或初始孔隙处的活化作用,活化20 min时,两者VBJH均高于ALWCFs-900-20。随着活化时间延长至40 min,ALWCFs-700-40的VBJH急剧下降,ALWCFs-900-40的VBJH明显提高,这是由于水蒸气对轴向微晶内部的侵蚀加重,前者的中孔结构受到破坏,而后者微孔结构进一步扩大。

    ALWCF孔径大小和分布变化趋势进一步证实了以上结果。图6为不同活化时间ALWCF的DHKDa的变化趋势图。3种炭化温度下,DHK均随着活化时间的延长而增大,且900 ℃炭化–活化样品的DHK最高,表明了900 ℃炭化样品在活化过程微孔结构扩大最显著。Da的变化表明,仅500 ℃炭化–活化样品的Da随活化时间的延长而增加,700 ℃炭化–活化样品的Da随活化时间的延长下降最为显著。图7为不同活化时间下的ALWCFs的DFT孔径大小分布图。从中可以观察到:当活化20 min时,ALWCFs中多数为孔径小于1 nm的微孔。这些微孔的孔径大小分布随着炭化温度的升高而逐渐扩宽。当活化40 min时,炭化温度的升高使孔径大小分布在0.6 ~ 1.5 nm的微孔范围内和2 ~ 2.5 nm的中孔范围内的逐渐扩大,样品ALWCFs-900-40的孔径大小分布扩大最为明显,这是由于随着活化时间的延长,轴向微晶的侵蚀加重促进了孔结构的形成与扩大,同时,碳基体中的孔隙通道变多变宽,水蒸气更容易到达活化位点,这进一步加剧了孔径的扩大。

    图  6  不同活化时间制备的ALWCFs的DHKDa变化图
    Figure  6.  Changes of DHK and Da values for ALWCFs prepared by different activation time
    图  7  不同活化时间下ALWCFs的DFT孔径分布图
    Figure  7.  Pore size distribution obtained by DFT method for ALWCFs activated for different time

    本研究通过500 ~ 900 ℃炭化过程得到不同微晶结构的LWCFs,并将这些LWCFs经800 ℃水蒸气活化20 ~ 40 min,考察了不同炭化–活化过程中ALWCFs的元素组成、微晶结构和孔结构的变化,探讨了微晶结构对ALWCFs孔结构形成的作用机制及影响,揭示了微晶结构演变规律以及ALWCFs孔结构形成路径。得到如下结论:

    (1)随着炭化温度的升高,LWCFs碳元素质量分数逐渐升高,氢、氧元素质量分数减少,高于700 ℃以后氢、氧元素质量分数减少显著;ALWCFs碳元素质量分数逐渐增加,氢、氧元素质量分数逐渐减少。以上表明,炭化温度的提高促进了非碳元素的挥发,且有利于活化过程中碳元素的富集。

    (2)炭化温度的升高使LWCFs的乱层石墨微晶轴向尺寸逐渐增大,结构更加致密,900 ℃时横向微晶发生了生长。在活化过程中,高的炭化温度能够显著促进水蒸气对轴向微晶的侵蚀,且随着活化时间的延长,侵蚀程度加重。此外,活化初期微晶间进行碰撞产生横向重排,乱层石墨网络横向尺寸显著增大,炭化温度的升高利于活化过程中横向微晶的生长,而进一步延长活化时间横向微晶结构无显著变化。

    (3)炭化温度的升高提高了ALWCFs的比表面积和总孔容,对微孔结构形成有明显的促进作用,且活化时间越长,微孔结构增加越显著。水蒸气对乱层石墨轴向微晶内部的侵蚀是形成微孔结构的主要途径。低的炭化温度(500和700 ℃)有利于ALWCFs在活化初期中孔结构的形成,主要来源于水蒸气对晶体缺陷或初始孔隙处的活化作用;随着活化时间的延长,轴向微晶的侵蚀加重,初期中孔发生了瓦解。高温(900 ℃)炭化样品在活化初期中孔结构较少,但随着活化时间的延长,微孔结构的逐步扩大导致了中孔结构明显增多。ALWCFs孔径大小和分布变化趋势进一步证实了上述结论。

  • 图  1   各龄组碳储量与碳汇量的动态变化

    Figure  1.   Dynamic changes of carbon storage and carbon sink in each age group

    图  2   林分碳汇量与各显著因子的关系

    图中阴影部区域为拟合的95%置信区间。The shaded area in figure represents the fitted 95% confidence interval.

    Figure  2.   Relationship between forest carbon sink and various significant factors

    图  3   碳汇量结构方程模型

    虚线箭头显示负相关,实线箭头表示正相关,箭头中的值为归一化路径系数。*. P < 0.05,**. P < 0.01,***. P < 0.001。The dotted arrow shows negative correlations, the solid arrows show positive correlations and the value in arrow is normalized path coefficient. * means P < 0.05, ** means P < 0.01, *** means P < 0.001.

    Figure  3.   Structural equation model of carbon sink

    表  1   各树种生物量模型及含碳系数

    Table  1   Biomass models and carbon content coefficients of various tree species

    树种
    Tree species
    生物量模型
    Biomass model
    含碳率
    Carbon content rate
    落叶松 Larix gmelinii WT = 0.046238D2H0.905 002WR=WT/4.81 0.521 1
    云杉 Picea asperata WT = 0.067 732(D2H0.865949WR = 0.008 8D2.538 27 0.520 8
    樟子松 Pinus sylvestris var. mongolica WS = 0.336 4D2.006 7WB = 0.298 3D1.144
    WL = 0.293 1D0.848 6WR = WS + WB + WLWR = WT/3.14
    0.5223
    桦木 Betula sp. WT = 0.027 860 1(D2H0.993 386WR = WT/2.89 0.4914
    其他硬阔叶树种 Other hard broadleaved tree species WS = 0.044(D2H0.916 9WP = 0.023(D2H0.711 5
    WB = 0.010 4(D2H0.999 4WL = 0.018 8(D2H0.802 4
    WT = WS + WP + WB + WLWR = 0.019 7(D2H0.896 3
    0.5004
    其他软阔叶树种 Other soft broadleaved tree species WT = 0.049 550 2(D2H0.952 453WR = WT/3.85 0.4956
    注:D为胸径;H为树高;WS为树干生物量;WP为树皮生物量;WB为树枝生物量;WL为树叶生物量;WT为地上部分总生物量;WR为地下部分生物量。Notes: D is DBH; H is tree height; WS is stem biomass; WP is bark biomass; WB is branch biomass; WL is leaf biomass; WT is total aboveground biomass; WR is underground biomass.
    下载: 导出CSV

    表  2   样地信息

    Table  2   Information of sample plots

    指标类别
    Index type
    指标
    Index
    平均值
    Mean
    范围
    Range
    标准差
    SD
    碳库信息
    Carbon pool information
    碳枯损量/(t·hm−2·a−1
    Carbon mortality/(t·ha−1·year−1
    0.420 ~ 27.143.65
    碳进界量/(t·hm−2·a−1
    Carbon ingrowth/(t·ha−1·year−1
    0.140 ~ 6.971.01
    碳采伐量/(t·hm−2·a−1
    Carbon harvesting volume/(t·ha−1·year−1
    4.150 ~ 100.8612.82
    碳净生长量/(t·hm−2·a−1
    Net carbon growth/(t·ha−1·year−1
    −0.22−101.83 ~ 12.9914.27
    碳汇量/(t·hm−2·a−1
    Carbon sink/(t·ha−1·year−1
    1.170.03 ~ 3.290.71
    林分特征
    Stand characteristics
    平均年龄/a
    Average age/year
    85.3423.00 ~ 195.0040.29
    株数密度/(株·hm−2
    Plant density/(plant·ha−1
    1 040.00133.00 ~ 3 883.00601.84
    DBH/cm13.026.30 ~ 23.83.40
    蓄积/(m3·hm−2
    Volume/(m3·ha−1
    89.034.90 ~ 265.7053.30
    优势木平均胸径 Mean DBH of dominant tree/cm15.536.30 ~ 35.005.66
    平均树高 Mean tree height/m13.784.20 ~ 23.003.82
    郁闭度 Canopy density0.480.20 ~ 0.930.16
    林分断面积/(m2·hm−2
    Stand basal area/(m2·ha−1
    13.101.17 ~ 33.447.22
    树种多样性
    Tree species diversity
    丰富度 Richness2.531.00 ~ 6.001.01
    Simpson指数 Simpson index0.260 ~ 0.620.17
    Shannon-Wiener指数 Shannon-Wiener index0.450 ~ 1.120.29
    Pielou均匀度指数 Pielou evenness index0.460 ~ 0.890.26
    土壤条件
    Soil condition
    土壤 pH Soil pH5.905.70 ~ 6.130.09
    土壤全磷 Soil total P/(g·kg−10.500.36 ~ 0.680.06
    土壤全钾 Soil total K/(g·kg−114.4911.13 ~ 19.441.35
    土壤全氮 Soil total N/(g·kg−11.951.50 ~ 2.930.31
    土壤有机质 Soil organic matter/%28.4021.73 ~ 42.793.50
    立地条件
    Site condition
    海拔 Altitude/m673.45253.00 ~ 1 153.00197.66
    坡向指数 Aspect index0.400 ~ 1.000.35
    坡位 Slope position2.331 ~ 4.000.99
    坡度 Slope/(°)7.840 ~ 28.995.67
    气候条件
    Climatic condition
    年均温 Annual mean temperature/℃−2.45−4.87 ~ −0.020.93
    年均降水 Annual mean precipitation/mm452.76331.00 ~ 543.0030.67
    无霜期 Frost-free period/d129.99105.00 ~ 155.008.74
    平均最暖月温度
    Mean warmest monthly temperature/℃
    18.4216.23 ~ 20.300.73
    平均最冷月温度
    Mean coldest monthly temperature/℃
    −25.57−28.33 ~ −22.721.16
    采伐 Harvesting采伐强度 Harvesting intensity/%6.890 ~ 83.6318.28
    下载: 导出CSV

    表  3   碳汇量与各因子逐步回归

    Table  3   Stepwise regression of carbon sink and each factor

    影响因子
    Influencing factor
    平方和
    Sum of squares
    标准误差
    Stand error
    方差膨胀因子
    VIF
    参数估计值
    Parameter estimate
    T
    P
    平均年龄 Average age 4.885 0.001 1.766 −0.004 −4.879 < 0.001
    优势木平均胸径 Mean DBH of dominant tree 8.211 0.006 1.482 0.038 6.325 < 0.001
    郁闭度 Canopy density 13.338 0.191 1.242 1.539 8.061 < 0.001
    坡度 Slope 2.536 0.006 1.344 −0.020 −3.515 < 0.001
    年均降水量 Annual mean precipitation 1.337 0.001 1.120 −0.002 −2.552 0.011
    Shannon-Wiener指数 Shannon-Wiener index 3.192 0.117 1.463 0.462 3.944 < 0.001
    土壤全钾 Soil total K 4.570 0.024 1.382 −0.114 −4.719 < 0.001
    土壤全氮 Soil total N 7.808 0.106 1.350 0.652 6.168 < 0.001
    下载: 导出CSV

    表  4   各变量对碳汇量影响

    Table  4   Effects of each variable on carbon sink

    变量 Variable 总影响 Total effect 直接影响 Direct effect 间接影响 Indirect effect
    优势木平均胸径 Mean DBH of dominant tree 0.313 0.306 0.007
    Shannon-Wiener指数 Shannon-Wiener index 0.462 0.190 0.272
    郁闭度 Canopy density 0.357 0.357 0
    平均年龄 Average age −0.244 −0.258 0.014
    土壤全氮 Soil total N 0.286 0.286 0
    土壤全钾 Soil total K −0.142 −0.220 0.078
    坡度 Slope −0.069 −0.162 0.093
    年均降水量 Annual mean precipitation −0.107 −0.107 0
    下载: 导出CSV
  • [1]

    Stocker T F, Qin D, Plattner G K, et al. IPCC, 2013: climate change 2013: the physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[J]. Computational Geometry, 2013, 18(2): 95−123.

    [2]

    Houghton R A, Hall F, Goetz S J. Importance of biomass in the global carbon cycle[J]. Journal of Geophysical Research-Biogeosciences, 2009, 114: G00E03.

    [3]

    Yu G R, Chen Z, Piao S L, et al. High carbon dioxide uptake by subtropical forest ecosystems in the east Asian monsoon region[J]. Proceedings of the National Academy of Science of the United States of America, 2014, 111(13): 4910−4915. doi: 10.1073/pnas.1317065111

    [4]

    Xu B, Pan Y, Plante A F, et al. Decadal change of forest biomass carbon stocks and tree demography in the Delaware River Basin[J]. Forest Ecology and Management, 2016, 374: 1−10. doi: 10.1016/j.foreco.2016.04.045

    [5]

    Ruiz-Benito P, Gómez-Aparicio L, Paquette A, et al. Diversity increases carbon storage and tree productivity in Spanish forests[J]. Global Ecology and Biogeography, 2014, 23(3): 311−322. doi: 10.1111/geb.12126

    [6]

    Shamim R Z, Rezaul K, Fahmida S, et al. Multiple drivers of tree and soil carbon stock in the tropical forest ecosystems of Bangladesh[J]. Tress, Forests and People, 2021, 5: 100108. doi: 10.1016/j.tfp.2021.100108

    [7] 沈浩, 姜姜, 周晨, 等. 江西石城不同起源阔叶林碳储量驱动因子分析[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 185−190.

    Shen H, Jiang J, Zhou C, et al. Research on factors driving carbon storage in broad-leaved forests of different origins from Shicheng, Jiangxi Province[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(4): 185−190.

    [8]

    Mora F, Jaramillo V J, Bhaskar R, et al. Carbon accumulation in neotropical dry secondary forests: the roles of forest age and tree dominance and diversity[J]. Ecosystems, 2018, 21: 536−550. doi: 10.1007/s10021-017-0168-2

    [9] 何潇, 李海奎, 曹磊, 等. 退化森林生态系统中林分碳储量的驱动因素: 以内蒙古大兴安岭为例[J]. 林业科学研究, 2020, 33(2): 69−76.

    He X, Li H K, Cao L, et al. Drivers of carbon stocks in degraded forest ecosystems: a case study of the Great Xing’an Mountains in Inner Mongolia[J]. Forest Research, 2020, 33(2): 69−76.

    [10] 董灵波, 田栋元, 陈莹, 等. 基于结构方程模型的兴安落叶松天然林更新影响因素[J]. 应用生态学报, 2021, 32(8): 2763−2772.

    Dong L B, Tian D Y, Chen Y, et al. Clarifying the factors affecting Larix gmelinii forest regeneration based on structural equation model[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2763−2772.

    [11] 张会儒, 雷相东, 张春雨, 等. 森林质量评价及精准提升理论与技术研究[J]. 北京林业大学学报, 2019, 41(5): 1−18.

    Zhang H R, Lei X D, Zhang C Y, et al. Research on theory and technology of forest quality evaluation and precision improvement[J]. Journal of Beijing Forestry University, 2019, 41(5): 1−18.

    [12] 李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京: 中国林业出版社, 2010.

    Li H K, Lei Y C, Estimation and evaluation of forest biomass storage in China[M]. Beijing: China Forestry Publishing House, 2010.

    [13]

    Zhu Y H, Zhao B Q, Zhu Z T, et al. The effects of crop tree thinning intensity on the ability of dominant tree species to sequester carbon in a temperate deciduous mixed forest, northeastern China[J]. Forest Ecology and Management, 2022, 505: 119893. doi: 10.1016/j.foreco.2021.119893

    [14] 车盈, 金光泽. 物种多样性和系统发育多样性对阔叶红松林生产力的影响[J]. 应用生态学报, 2019, 30(7): 2241−2248.

    Che Y, Jin G Z. Effects of species diversity and phylogenetic diversity on productivity of a mixed broadleaved-Korean pine forest[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2241−2248.

    [15]

    Hair J F, Howard M C, Nitzl C. Assessing measurement model quality in PLS-SEM using confirmatory composite analysis[J]. Journal of Business Research, 2020, 109: 101−110. doi: 10.1016/j.jbusres.2019.11.069

    [16]

    Tilman D, Knops J, Wedin D, et al. The influence of functional diversity and composition on ecosystem processes[J]. Science, 1997, 277: 1300−1320. doi: 10.1126/science.277.5330.1300

    [17]

    Hooper D U, Dukes J S. Overyielding among plant functional groups in a long-term experiment[J]. Ecology Letters, 2004, 7: 95−105.

    [18]

    Jucker T, Bouriaud O, Coomes D A. Crown plasticity enables trees to optimize canopy packing in mixed species forests[J]. Functional Ecology, 2015, 29(8): 1078−1086. doi: 10.1111/1365-2435.12428

    [19]

    Binkley D, Campoe O C, Gspaltl M, et al. Light absorption and use efficiency in forests: why patterns differ for trees and stands[J]. Forest Ecology and Management, 2013, 288: 5−13.

    [20]

    Hardiman B S, Bohrer G, Gough C M, et al. The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest[J]. Ecology, 2011, 92: 1818−1827.

    [21]

    Scherer-Lorenzen M, Bonilla J L, Potvin C. Tree species richness affects litter production and decomposition rates in a tropical biodiversity experiment[J]. Oikos, 2007, 116(12): 2108−2124.

    [22]

    Yuan Z Q, Arshad A, Anvar S, et al. Few large trees, rather than plant diversity and composition, drive the above-ground biomass stock and dynamics of temperate forests in northeast China[J]. Forest Ecology and Management, 2021, 481: 118698. doi: 10.1016/j.foreco.2020.118698

    [23]

    Grime J P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects[J]. Journal of Ecology, 1998, 86(6): 902−910. doi: 10.1046/j.1365-2745.1998.00306.x

    [24] 王瑞华, 葛晓敏, 唐罗忠. 林下植被多样性、生物量及养分作用研究进展[J]. 世界林业研究, 2014, 27(1): 43−48.

    Wang R H, Ge X M, Tang L Z. A review of diversity, biomass and nutrient effect of understory vegetation[J]. World Forestry Research, 2014, 27(1): 43−48.

    [25] 樊雨时. 青海典型人工林林分结构特征因子对林下植物多样性的影响[D]. 北京: 北京林业大学, 2019.

    Fan Y S. Effects of structural characteristics of typical artificial forest stands on the diversity of understory plants in Qinghai[D]. Beijing: Beijing Forestry University, 2019.

    [26]

    Yang Y H, Luo Y Q, Finzi A C. Carbon and nitrogen dynamics during forest stand development: a global synthesis[J]. New Phytologist, 2011, 190(4): 977−989. doi: 10.1111/j.1469-8137.2011.03645.x

    [27] 彭娓, 李凤日, 贾炜玮, 等. 大兴安岭地区天然落叶松林乔木碳增量的研究[J]. 植物研究, 2015, 35(4): 564−571. doi: 10.7525/j.issn.1673-5102.2015.04.015

    Peng W, Li F R, Jia W W, et al. Tree carbon storage increment of natural larch forest in Daxing’an Mountains[J]. Bulletin of Botanical Research, 2015, 35(4): 564−571. doi: 10.7525/j.issn.1673-5102.2015.04.015

    [28]

    Gower S T, McMurtrie R E, Murty D. Aboveground net primary production decline with stand age: potential causes[J]. Trends in Ecology & Evolution, 11(9): 378-382.

    [29]

    Tang J W, Luyssaert S, Richardson A D, et al. Steeper declines in forest photosynthesis than respiration explain age driven decreases in forest growth[J]. Proceedings of the National Academy of Science of the United States of America, 2014, 111: 8856−8860. doi: 10.1073/pnas.1320761111

    [30] 朱夕平, 杨连清. 浅谈连续清查中固定样地林分平均年龄的计算[J]. 林草资源研究, 1987(1): 67−70.

    Zhu X P, Yang L Q. A brief discussion on the calculation of average age of stand of fixed plot in continuous inventory[J]. Forest and Grassland Resources Research, 1987(1): 67−70.

    [31]

    Mayer M, Prescott C E, Abaker W E A, et al. Influence of forest management activities on soil organic carbon stocks: a knowledge synthesis[J]. Forest Ecology Management, 2020, 466: 118127. doi: 10.1016/j.foreco.2020.118127

    [32]

    Manning P, Saunders M, Bardgett R D, et al. Direct and indirect effects of nitrogen deposition on litter forest decomposition[J]. Soil Biology & Biochemistry, 2008, 40: 688−698.

    [33]

    Gilliam F S. Excess nitrogen in temperate forest ecosystems decreases herbaceous layer diversity and shifts control from soil to canopy structure[J]. Forests, 2019, 10(1): 66. doi: 10.3390/f10010066

    [34] 姜小蕾, 刘傲, 卢慧翠. 环境因子和林分结构对青岛黑松更新幼苗密度的影响[J]. 山东农业大学学报(自然科学版), 2021, 52(4): 552−558.

    Jiang X L, Liu A, Lu H C. Effects of site conditions and stand structure on seedling regeneration of Pinus thunbergii secondary forest in Qingdao[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2021, 52(4): 552−558.

    [35]

    Jonathan B, Brian H, Andrew W, et al. Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland[J]. Ecological Modelling, 2008, 216: 47−59. doi: 10.1016/j.ecolmodel.2008.04.010

    [36]

    Anvar S, Mohammad A Z C, Arshad A, et al. Abiotic and biotic drivers of aboveground biomass in semi-steppe rangelands[J]. Science of the Total Environment, 2018, 615: 895−905. doi: 10.1016/j.scitotenv.2017.10.010

    [37]

    Mitchard E T A. The tropical forest carbon cycle and climate change[J]. Nature, 2018, 559: 527−534. doi: 10.1038/s41586-018-0300-2

    [38] 黄超, 贺红士, 梁宇, 等. 气候变化、林火和采伐对大兴安岭森林碳储量的影响[J]. 应用生态学报, 2018, 29(7): 2088−2100.

    Huang C, He H S, Liang Y, et al. Effects of climate change, fire and harvest on carbon storage of boreal forests in the Great Xing’an Mountains, China[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2088−2100.

    [39]

    Lenoir J, Gégout J C, Marquet P, et al. A significant upward shift in plant species optimum elevation during the 20th century[J]. Science, 2008, 320: 1768−1771. doi: 10.1126/science.1156831

    [40]

    Reyer C, Lasch B P, Suckow F, et al. Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide[J]. Annals of Forest Science, 2014, 71: 211−225. doi: 10.1007/s13595-013-0306-8

    [41] 孔蕊, 张增信, 张凤英, 等. 长江流域森林碳储量的时空变化及其驱动因素分析[J]. 水土保持研究, 2020, 27(4): 60−66.

    Kong R, Zhang Z X, Zhang F Y, et al. Spatial and temporal dynamics of forest carbon storage and its driving factors in the Yangtze River Basin[J]. Research of Soil Water Conservation, 2020, 27(4): 60−66.

    [42]

    Geng Y, Yue Q, Zhang C Y, et al. Dynamics and drivers of aboveground biomass accumulation during recovery from selective harvesting in an uneven-aged forest[J]. European Journal of Forest Research, 2021, 140(5): 1163−1178. doi: 10.1007/s10342-021-01394-9

    [43]

    Saarinen N, Kankare V, Yrttimaa T, et al. Assessing the effects of thinning on stem growth allocation of individual Scots pine trees[J]. Forest Ecology and Management, 2020, 474: 118344. doi: 10.1016/j.foreco.2020.118344

  • 期刊类型引用(1)

    1. 李凤春,宋大北,孟兆民,谭瑞虹,刘志君,张继敏,郭丽明,王文杰,焦志远. 油松轻基质网袋育苗技术集成. 现代农业研究. 2025(01): 98-102 . 百度学术

    其他类型引用(0)

图(3)  /  表(4)
计量
  • 文章访问数:  620
  • HTML全文浏览量:  180
  • PDF下载量:  100
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-10-22
  • 修回日期:  2024-04-14
  • 录用日期:  2024-05-19
  • 网络出版日期:  2024-05-23
  • 刊出日期:  2024-09-24

目录

/

返回文章
返回