Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

不同水分条件下氨基酸添加对温带暗棕壤碳氮含量和甲烷排放的影响

李颖, 郭亚芬, 崔晓阳

李颖, 郭亚芬, 崔晓阳. 不同水分条件下氨基酸添加对温带暗棕壤碳氮含量和甲烷排放的影响[J]. 北京林业大学学报, 2024, 46(5): 103-113. DOI: 10.12171/j.1000-1522.20230290
引用本文: 李颖, 郭亚芬, 崔晓阳. 不同水分条件下氨基酸添加对温带暗棕壤碳氮含量和甲烷排放的影响[J]. 北京林业大学学报, 2024, 46(5): 103-113. DOI: 10.12171/j.1000-1522.20230290
Li Ying, Guo Yafen, Cui Xiaoyang. Effects of amino acid addition on carbon and nitrogen content and CH4 emission in temperate dark brown soil under different water conditions[J]. Journal of Beijing Forestry University, 2024, 46(5): 103-113. DOI: 10.12171/j.1000-1522.20230290
Citation: Li Ying, Guo Yafen, Cui Xiaoyang. Effects of amino acid addition on carbon and nitrogen content and CH4 emission in temperate dark brown soil under different water conditions[J]. Journal of Beijing Forestry University, 2024, 46(5): 103-113. DOI: 10.12171/j.1000-1522.20230290

不同水分条件下氨基酸添加对温带暗棕壤碳氮含量和甲烷排放的影响

基金项目: 国家自然科学基金项目(31370617)。
详细信息
    作者简介:

    李颖。主要研究方向:森林土壤学。Email:1919782323@qq.com 地址:150040 黑龙江省哈尔滨市和兴路26号东北林业大学林学院

    责任作者:

    郭亚芬,博士,教授。主要研究方向:森林土壤学与植物营养学。Email:guoyafen@sohu.com 地址:同上。

  • 中图分类号: S714

Effects of amino acid addition on carbon and nitrogen content and CH4 emission in temperate dark brown soil under different water conditions

  • 摘要:
    目的 

    解析土壤pH值与土壤氮以及CH4排放速率与土壤碳氮含量间的相互关系,为明确碳氮转化及温室气体排放规律、优化温带森林暗棕壤的水分管理提供依据。

    方法 

    以温带森林暗棕壤为研究对象,采用室内培养法,设置水分条件为土壤饱和持水量(WHC)的40%、60%、90%,通过向温带暗棕壤中添加两种不同性质的氨基酸,探讨其对土壤碳氮含量及CH4排放的潜在影响,运用Pearson相关分析法分析土壤碳氮含量、pH值及CH4排放速率间的相关性。

    结果 

    (1)氨基酸处理显著增加了土壤可溶性有机碳(DOC)含量、铵态氮(NH+4-N)含量及CH4排放速率。亮氨酸处理使DOC、NH+4-N含量分别升高21.39%、45.10%,CH4排放速率较CK升高3.20倍,甲硫氨基酸使DOC、NH+4-N含量分别升高21.39%、72.71%,CH4排放速率较CK升高7.00倍;(2)不同氨基酸对土壤硝态氮(NO3-N)含量的影响存在差异。亮氨酸处理使土壤NO3-N含量升高了8.41%,但其对于土壤硝化作用的影响可能存在滞后性,而甲硫氨基酸能够显著抑制土壤硝化作用,NO3-N含量显著降低了37.90%;(3)土壤不同水分条件对土壤DOC、NH+4-N、NO3-N含量及CH4排放速率均存在显著影响。90%WHC使DOC含量升高11.95% ~ 19.91%,使NH+4-N升高19.83% ~ 35.46%,使NO3-N降低10.05% ~ 23.79%,使CH4排放速率升高至另外两种水分条件的1.48 ~ 2.06倍。60%WHC条件使NH+4-N升高13.05%,使NO3-N含量升高24.62%。60%WHC可能是温带暗棕壤硝化作用的最适含水量,90%WHC条件有利于DOC积累,同时对NO3-N的产生存在明显抑制作用;(4)土壤pH与NH+4-N含量呈极显著正相关,与NO3-N含量呈正相关。CH4排放速率与NO3-N含量呈极显著负相关,与NH+4-N含量呈负相关,与DOC含量呈极显著正相关。

    结论 

    不同性质氨基酸添加在温带森林暗棕壤碳氮含量及CH4排放中发挥的作用不尽相同。一定范围内,土壤水分含量的升高有利于土壤NH+4-N、NO3-N、DOC的积累及CH4的排放,但土壤高含水量条件对NO3-N的产生具有抑制作用。因此,在研究温带森林暗棕壤碳含量、CH4排放及氮转化机制时,建议关注不同氨基酸的差异性作用,同时考虑水分的变化。

    Abstract:
    Objective 

    To clarify the response of carbon and nitrogen content and CH4 emission to different soil moisture conditions and the additions of amino acid in the dark brown soil of temperate forests, this study analyzed the relationship between soil pH and nitrogen, CH4 emission rate and soil carbon and nitrogen content, to assist related research on water management, carbon and nitrogen transformation, and greenhouse gas emission in temperate forest dark brown soil.

    Method 

    In this study, an indoor soil incubation was conducted with 40%, 60%, and 90% of the soil water holding capacity (WHC). Additionally, the potential effects of adding two amino acids on soil carbon and nitrogen content and CH4 emissions were explored. The Pearson correlation analysis was used to analyze the correlation between soil carbon and nitrogen content, pH and methane emission rate.

    Result 

    (1) Amino acid addition increased soil dissolved organic carbon (DOC) content, and meanwhile significantly increased NH+4-N content and CH4 emission rate. Leucine treatment increased the contents of DOC and NH+4-N by 21.39%−45.10%, respectively, and the CH4 emission rate was 3.20 times higher than that of CK, methionine treatment increased the contents of DOC and NH+4-N by 21.39%−72.71%, respectively. and the CH4 emission rate was 7.00 times higher than that of CK. (2) The influence of different amino acids on soil NO3-N content was different. Leucine treatment increased NO3-N content in soil by 8.41%, but its effect on nitrification in soil may have a lag, while methionine can significantly inhibit nitrification in soil, and NO3-N content was significantly reduced by 37.90%. (3) Different soil moisture conditions had significant effects on soil DOC, NH+4-N, NO3-N and CH4 emission rates. 90% WHC increased DOC content by 11.95%−19.91%, NH+4-N by 19.83%−35.46%, NO3-N by 10.05%−23.79%, and CH4 emission rate increased to 1.48−2.06 times of the other two water conditions. Under 60% WHC condition, NH+4-N increased by 13.05%, NO3-N content increased by 24.62%. 60% WHC may be the optimum water content for nitrification in temperate dark brown soil. The 90% WHC condition was conducive to the accumulation of DOC, and had an obvious inhibitory effect on NO3-N production. (4) Soil pH was significantly positively correlated with NH+4-N content, positively correlated with NO3-N content. The CH4 emission rate was significantly negatively correlated with NO3-N content and NH+4-N content, and significantly positively correlated with DOC content.

    Conclusion 

    Addition of different types of amino acids plays different roles on the carbon and nitrogen content and CH4 emissions of dark brown soil in temperate forests. Within a certain range, the increase of soil moisture content is beneficial to soil NH+4-N, NO3-N, DOC accumulation and CH4 emission, but high soil moisture content inhibits the production of NO3-N. Therefore, the role of amino acids and changes in moisture should be considered when studying carbon content, CH4 emissions and nitrogen transformation mechanisms in temperate forest dark brown soils.

  • 图  1   不同水分条件下不同氨基酸处理土壤DOC含量变化

    CK. 对照;Leu. 亮氨酸;Met. 甲硫氨基酸。WHC. 土壤饱和持水量。不同字母代表同一时间不同处理间存在显著差异(P < 0.05);ns代表无显著差异(P > 0.05)。误差线代表标准偏差。下同。CK, control; Leu, leucine; Met, methionine. WHC, water holding capacity. Different letters indicate significant differences between treatments at the same time (P < 0.05); ns indicates no significant differences between treatments at the same time (P > 0.05). Error bars show standard deviation. The same below.

    Figure  1.   Changes of soil DOC content under different water conditions and varied amino acid treatments

    图  2   不同水分条件下不同氨基酸处理土壤NH+4-N含量变化

    Figure  2.   Changes of soil ammonium nitrogen content under different water conditions and different amino acid treatments

    图  3   不同水分条件不同氨基酸处理土壤NO3-N含量变化

    Figure  3.   Changes of soil nitrate nitrogen content under different water conditions and varied amino acid treatments

    图  4   不同水分条件不同氨基酸处理土壤pH的变化

    Figure  4.   Changes of soil pH under different water conditions and varied amino acid treatments

    图  5   不同水分条件下各处理土壤CH4排放速率的变化

    Figure  5.   Changes of soil CH4 emission rate under different water conditions and varied amino acid treatments

    图  6   土壤碳氮含量、pH值及CH4排放速率的相关关系

    CH4. CH4排放速率;***表示在0.001水平(双侧)上显著相关,*表示在0.05水平(双侧)上显著相关。红色和蓝色椭圆分别代表正相关和负相关,颜色越深,相关系数值越大。n = 162。CH4, methane emission rate; *** means significantly correlated at 0.001 level (bilateral), * means significantly correlated at 0.05 level (bilateral). Red and blue of the ellipse represent positive and negative correlation, respectively. The darker the color is, the larger the correlation coefficient value is. n = 162.

    Figure  6.   Correlations between soil carbon and nitrogen content, pH and methane emission rate conditions

    表  1   氨基酸基本理化性质

    Table  1   Physicochemical characteristics of amino acids

    氨基酸名称
    Amino acid name
    含氮量
    Nitrogen content/%
    C/N 等电点
    Iso-electric point
    侧链结构性质
    Side-chain chemistry
    性质
    Property
    亮氨酸
    Leucine
    10.7 5.14 5.98 1氨基1羧基
    An amino group and a carboxyl group
    中性
    Neutral
    甲硫氨基酸
    Methionine
    9.4 4.29 5.74 1氨基1羧基(含S)
    An amino group and a carboxyl group (including sulphur)
    含硫类
    Sulfur-containing
    下载: 导出CSV

    表  2   不同氨基酸处理对土壤碳氮含量、pH及CH4排放速率的影响

    Table  2   Effects of different amino acid treatments on carbon and nitrogen content, pH and CH4 emission rate in soil

    处理 Treatment 可溶性有机碳
    DOC/(g·kg−1
    铵态氮
    NH+4-N/(mg·kg−1
    硝态氮
    NO3-N/(mg·kg−1
    pH 甲烷排放速率
    CH4 emission rate/(mg·kg−1·d−1
    CK 2.01 ± 0.86b 31.33 ± 9.48c 24.25 ± 12.24b 5.36 ± 0.06c 0.05 ± 0.65c
    Leu 2.44 ± 0.96a 45.46 ± 15.39b 26.29 ± 14.17a 5.45 ± 0.09b 0.21 ± 0.72b
    Met 2.44 ± 1.05a 54.11 ± 21.59a 15.06 ± 8.00c 5.52 ± 0.12a 0.40 ± 0.72a
    注:不同字母代表同一列不同处理间存在显著差异(P < 0.05)。Note: different letters indicate significant differences between varied treatments in the same column (P < 0.05).
    下载: 导出CSV

    表  3   不同水分条件对土壤碳氮含量、pH及CH4排放速率的影响

    Table  3   Effects of different water conditions on carbon and nitrogen content, pH and CH4 emission rate in soil

    WHC/% 可溶性有机碳
    DOC/(g·kg−1
    铵态氮
    NH+4-N/(mg·kg−1
    硝态氮
    NO3-N/(mg·kg−1
    pH 甲烷排放速率
    CH4 emission rate/(mg·kg−1·d−1
    40 2.26 ± 0.77b 37.56 ± 12.48c 21.30 ± 10.96b 5.43 ± 0.11b 0.18 ± 0.67b
    60 2.11 ± 1.02c 42.46 ± 16.08b 25.14 ± 15.01a 5.42 ± 0.11b 0.25 ± 0.71ab
    90 2.53 ± 1.08a 50.88 ± 23.50a 19.16 ± 11.06c 5.47 ± 0.12a 0.37 ± 0.76a
    注:表中数据为平均值 ± 标准差。不同字母代表同一列不同水分条件间存在显著差异(P < 0.05)。Notes: data in the table are mean ± standard deviation. Different letters indicate significant differences between varied moisture conditions in the same column (P < 0.05).
    下载: 导出CSV

    表  4   氨基酸、土壤水分、培养时间对土壤碳氮含量、pH及CH4排放速率影响的方差分析

    Table  4   ANOVA analysis for the effects of amino acids, soil moisture, and incubation time on soil carbon and nitrogen content, pH, and CH4 emission rate

    因素 Factor 可溶性有机碳
    DOC
    铵态氮
    NH+4-N
    硝态氮
    NO3-N
    pH 甲烷排放速率
    CH4 emission rate
    F P F P F P F P F P
    氨基酸 Amino acid 164.02 0.000 22 906.28 0.000 498.88 0.000 136.26 0.000 16.32 0.000
    水分 Moisture 120.15 0.000 7 860.17 0.000 128.37 0.000 15.29 0.000 3.41 0.038
    培养时间 Time 1 161.09 0.000 19 664.03 0.000 917.56 0.000 57.33 0.000 106.20 0.000
    氨基酸 × 水分
    Amino acid × moisture
    14.34 0.000 1 130.46 0.000 12.58 0.000 1.20 0.317 0.14 0.968
    氨基酸 × 培养时间
    Amino acid × time
    17.67 0.000 681.05 0.000 42.84 0.000 4.89 0.000 0.80 0.603
    水分 × 培养时间
    Moisture × time
    46.48 0.000 1 064.08 0.000 25.32 0.000 3.54 0.000 0.40 0.919
    氨基酸 × 水分 × 培养时间
    Amino acid × moisture × time
    22.184 0.000 65.55 0.000 4.68 0.000 0.42 0.986 0.07 1.000
    下载: 导出CSV
  • [1] 陈伏生, 曾德慧, 何兴元. 森林土壤氮素的转化与循环[J]. 生态学杂志, 2004, 23(5): 126−133.

    Chen F S, Zeng D H, He X Y. Soil nitrogen transformation and cycling in forest ecosystem[J]. Chinese Journal of Ecology, 2004, 23(5): 126−133.

    [2] 郑利霞, 刘学军, 张福锁. 大气有机氮沉降研究进展[J]. 生态学报, 2007, 27(9): 3828−3834.

    Zheng L X, Liu X J, Zhang F S. Atmospheric deposition of organic nitrogen: a review[J]. Acta Ecologica Sinica, 2007, 27(9): 3828−3834.

    [3]

    Campbell C A, Zentner R P, Knipfel J E, et al. Thirty-year crop rotations and management practices effects on soil and amino nitrogen[J]. Soil Science Society of America Journal, 1991, 55(3): 739−745. doi: 10.2136/sssaj1991.03615995005500030017x

    [4]

    Jones D L, Kielland K. Amino acid, peptide and protein mineralization dynamics in a taiga forest soil[J]. Soil Biology and Biochemistry, 2012, 55: 60−69. doi: 10.1016/j.soilbio.2012.06.005

    [5]

    Trenberth K E, Dai A, van der Schrier G, et al. Global warming and changes in drought[J]. Nature Climate Change, 2014, 4: 17−22.

    [6] 周世兴, 邹秤, 肖永翔, 等. 模拟氮沉降对华西雨屏区天然常绿阔叶林土壤微生物生物量碳和氮的影响[J]. 应用生态学报, 2017, 28(1): 12−18.

    Zhou S X, Zou C, Xiao Y X, et al. Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in natural evergreen broad-leaved forest in the Rainy Area of West China[J]. Chinese Journal of Applied Ecology, 2017, 28(1): 12−18.

    [7]

    Deforest J L, Zak D R, Pregitzer K S, et al. Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest[J]. Soil Biology and Biochemistry, 2004, 36(6): 965−971. doi: 10.1016/j.soilbio.2004.02.011

    [8] 颜辰亦, 龚吉蕊, 张斯琦, 等. 氮添加对内蒙古温带草原土壤活性有机碳的影响[J/OL]. 植物生态学报, 2024: 1−13[2024−05−04]. https://kns-cnki-net.webvpn.nefu.edu.cn/kcms/detail/11.3397.q.20240227.1351.002.html.

    Yan C Y, Gong J R, Zhang S Q, et al. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China[J/OL]. Chinese Journal of Plant Ecology, 2024: 1−13[2024−05−04]. https://kns-cnki-net.webvpn.nefu.edu.cn/kcms/detail/11.3397.q.20240227.1351.002.html.

    [9] 裴广廷, 马红亮, 林伟, 等. 氨基酸添加对亚热带森林红壤氮素转化的影响[J]. 生态学报, 2015, 35(23): 7774−7784.

    Pei G T, Ma H L, Lin W, et al. Effects of amino acid additions on nitrogen transformation in subtropical forest soil[J]. Acta Ecologica Sinica, 2015, 35(23): 7774−7784.

    [10] 朱灵, 张梦瑶, 高永恒. 高寒草原土壤有机碳矿化对水氮添加的响应[J]. 水土保持通报, 2020, 40(1): 30−37.

    Zhu L, Zhang M Y, Gao Y H. Response of soil organic carbon mineralization to water and nitrogen addition in alpine steppe[J]. Bulletin of Soil and Water Conservation, 2020, 40(1): 30−37.

    [11] 黄思彤, 马亚培, 李宇轩, 等. 氮沉降背景下生物炭输入对土壤可溶性有机质和无机氮的影响[J]. 亚热带资源与环境学报, 2023, 18(2): 56−61.

    Huang S T, Ma Y P, Li Y X, et al. Effects of biochar input on soil soluble organic matter and inorganic nitrogen under the background of nitrogen deposition[J]. Journal of Subtropical Resources and Environment, 2023, 18(2): 56−61.

    [12] 魏春兰, 马红亮, 高人, 等. 模拟氮沉降对森林土壤可溶性有机碳的影响[J]. 亚热带资源与环境学报, 2013, 8(4): 16−24.

    Wei C L, Ma H L, Gao R, et al. Effects of nitrogen deposition on soluble organic carbon: a simulation study in subtropical forest soils[J]. Journal of Subtropical Resources and Environment, 2013, 8(4): 16−24.

    [13] 陈香碧, 王嫒华, 胡乐宁, 等. 红壤丘陵区水田和旱地土壤可溶性有机碳矿化对水分的响应[J]. 应用生态学报, 2014, 25(3): 752−758.

    Chen X B, Wang Y H, Hu Y N, et al. Response of mineralization of dissolved organic carbon to soil moisture in paddy and upland soils in hilly red soil region[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 752−758.

    [14] 郝静, 郭亚芬, 高雷. 小兴安岭典型森林土壤中外源丙氨酸的潜在周转差异[J]. 应用生态学报, 2022, 33(12): 3237−3244.

    Hao J, Guo Y F, Gao L. Potential turnover differences of exogenous alanine in soils of typical forests in the Xiaoxing’an Mountains, China[J]. Chinese Journal of Applied Ecology, 2022, 33(12): 3237−3244.

    [15] 于淑华, 张丽霞, 谢雪迎, 等. 不同水分模式对山东茶园土壤氮素动态的影响 [J]. 水土保持学报, 2021, 35(4): 289−298.

    Yu S H, Zhang L X, Xie X Y, et al. Effects of water regimes on soil nitrogen dynamics in tea garden in Shandong Province[J]. Journal of Soil and Water Conservation, 2021, 35(4): 289−298.

    [16] 刘超, 王宪伟, 宋艳宇, 等. 增温对冻土区泥炭沼泽土壤孔隙水甲烷关联微生物和溶解性有机碳的影响[J]. 生态学报, 2021, 41(1): 184−193.

    Liu C, Wang X W, Song Y Y, et al. Effects of warming on abundances of methane-related microorganisms and concentration of dissolved organic carbon in soil pore water of permafrost peat swamp in Daxing’anling[J]. Acta Ecologica Sinica, 2021, 41(1): 184−193.

    [17] 张艺, 王春梅, 许可, 等. 若尔盖湿地土壤温室气体排放对模拟氮沉降增加的初期响应[J]. 北京林业大学学报, 2016, 38(8): 54−63.

    Zhang Y, Wang C M, Xu K, et al. Short-term effect of increasing nitrogen deposition on greenhouse gas emissions in Zoige Wetland, western China[J]. Journal of Beijing Forestry University, 2016, 38(8): 54−63.

    [18] 李平, 魏玮, 郎漫. 不同水分对半干旱地区砂壤土温室气体排放的短期影响[J]. 农业环境科学学报, 2021, 40(5): 1124−1132.

    Li P, Wei W, Lang M. Short-term effects of different soil moisture contents on greenhouse gas emissions from sandy loam soil in semi-arid regions[J]. Journal of Agro-Environment Science, 2021, 40(5): 1124−1132.

    [19]

    Castro M S, Steudler P A, Melillo J M, et al. Factors controlling atmospheric methane consumption by temperate forest soils[J]. Global Biogeochemical Cycles, 1995, 9(1): 1−10. doi: 10.1029/94GB02651

    [20] 张涵, 唐常源, 禤映雪, 等. 珠江口红树林土壤甲烷和二氧化碳通量特征及其影响因素研究[J]. 生态环境学报, 2022, 31(5): 939−948.

    Zhang H, Tang C Y, Xuan Y X, et al. The regular pattern and influencing factors of CO2 and CH4 fluxes from mangrove soil[J]. Ecology and Environment Science, 2022, 31(5): 939−948.

    [21]

    Noll L, Zhang S, Wanek W. Novel high-throughput approach to determine key processes of soil organic nitrogen cycling: gross protein depolymerization and microbial amino acid uptake[J]. Soil Biology and Biochemistry, 2019, 130: 73−81. doi: 10.1016/j.soilbio.2018.12.005

    [22]

    Hill P W, Jones D L. Plant-microbe competition: does injection of isotopes of C and N into the rhizosphere effectively characterise plant use of soil N?[J]. New Phytologist, 2019, 221(2): 796−806. doi: 10.1111/nph.15433

    [23]

    Ma Q, Wen Y, Wang D, et al. Farmyard manure applications stimulate soil carbon and nitrogen cycling by boosting microbial biomass rather than changing its community composition[J/OL]. Soil Biology and Biochemistry, 2020, 144: 107760[2023−12−21]. https://doi.org/10.1016/j.soilbio.2020.107760.

    [24] 高雷. 东北八种森林类型土壤有效氮、动态及植物吸收特征[D]. 哈尔滨: 东北林业大学, 2021.

    Gao L. Pool size and dynamics of soil available nitrogen and plant uptake characteristics in eight forest types in northeast China[D]. Harbin: Northeast Forestry University, 2021.

    [25]

    Ma H L, Imran S, Gao R, et al. Contrasting effects of alanine and methionine on nitrogen ammonification and nitrification, and nitrous oxide emissions in subtropical forest soil[J]. Journal of Soil Science and Plant Nutrition, 2021, 21: 2967−2979.

    [26]

    Li S, Zhang S, Pu Y, et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain[J]. Soil and Tillage Research, 2016, 155: 289−297. doi: 10.1016/j.still.2015.07.019

    [27] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

    Lu R K. Methods of soil agricultural chemical analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000.

    [28] 翁晓虹, 隋心, 李梦莎, 等. 模拟氮沉降对三江平原小叶章湿地土壤微生物碳源利用能力的影响[J]. 环境科学, 2022, 43(9): 4674−4683.

    Weng X H, Sui X, Li M S, et al. Effects of simulated nitrogen deposition on soil microbial carbon metabolism in Calamagrostis angustifolia wetland in Sanjiang Plain[J]. Environmental Sciences, 2022, 43(9): 4674−4683.

    [29] 元晓春, 陈岳民, 袁硕, 等. 氮沉降对杉木人工幼林土壤溶液可溶性有机物质浓度及光谱学特征的影响[J]. 应用生态学报, 2017, 28(1): 1−11.

    Yuan X C, Chen Y M, Yuan S, et al. Effects of nitrogen deposition on the concentration and spectral characteristics of dissolved organic matter in soil solution in a young Cunninghamia lanceolata plantation[J]. Chinese Journal of Applied Ecology, 2017, 28(1): 1−11.

    [30]

    Wang M T, Liao Q X, Zhao C, et al. The fate of litter-derived dissolved organic carbon in forest soils: results from an incubation experiment[J]. Biogeochemistry, 2019, 144(2): 133−147. doi: 10.1007/s10533-019-00576-3

    [31]

    Gao W L, Zhao W, Yang H, et al. Effects of nitrogen addition on soil inorganic N content and soil N mineralization of a cold-temperate coniferous forest in Great Xing’an Mountains[J]. Acta Ecologica Sinica, 2015, 35(5): 130−136. doi: 10.1016/j.chnaes.2015.07.003

    [32] 李琛琛, 刘宁, 郭晋平, 等. 氮沉降对华北落叶松叶特性和林下土壤特性的短期影响[J]. 生态环境学报, 2014, 23(12): 1924−1932.

    Li C C, Liu N, Guo J P, et al. Short term effect of nitrogen deposition on needle of Larix and forest soil[J]. Ecology and Environmental Sciences, 2014, 23(12): 1924−1932.

    [33] 沈月, 依艳丽. 不同因素交互作用对棕壤硝态氮累积及pH值的影响[J]. 植物营养与肥料学报, 2013, 19(5): 1174−1182.

    Shen Y, Yi Y L. Effects of interaction of different factors on nitrate nitrogen accumulation and pH of brown soil[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(5): 1174−1182.

    [34]

    Francisco S S, Urrutia O, Martin V, et al. Efficiency of urease and nitrification inhibitors in reducing ammonia volatilization from diverse nitrogen fertilizers applied to different soil types and wheat straw mulching[J]. Journal of the Science of Food and Agriculture, 2011, 91(9): 1569−1575. doi: 10.1002/jsfa.4349

    [35]

    Kader M A, Sleutel S, Begum S A, et al. Nitrogen mineralization in sub-tropical paddy soils in relation to soil mineralogy, management, pH, carbon, nitrogen and iron contents[J]. European Journal of Soil Science, 2013, 64(1): 47−57.

    [36]

    Chen Z, Ding W, Xu Y, et al. Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil: Evidences from a 15N tracing study to literature synthesis[J]. Soil Biology and Biochemistry, 2015, 91: 65−75. doi: 10.1016/j.soilbio.2015.08.026

    [37]

    Wolf I, Brumme R. Dinitrogen and nitrous oxide formation in beech forest floor and mineral soils[J]. Soil Science Society of America Journal, 2003, 67(6): 1862−1868. doi: 10.2136/sssaj2003.1862

    [38]

    Wang D, Chadwick D R, Hill P W, et al. Tracing the mineralization rates of C, N and S from cysteine and methionine in a grassland soil: A 14C and 35S dual-labelling study[J]. Soil Biology and Biochemistry, 2023, 177: 108906. doi: 10.1016/j.soilbio.2022.108906

    [39]

    He X Q, Li M X, Zhou M H, Gross nitrogen transformations and ammonia oxidizers affected by nitrification inhibitors and/or organic amendments in a calcareous soil: a 15N tracing study[J]. Applied Soil Ecology, 2023, 188: 104926.

    [40]

    Lisa Y S, Daniel J A. Ammonium limitation results in the loss of ammonia-oxidizing activity in Nitrosomonas europaea[J]. Applied and Environmental Microbiology, 1998, 64(4): 1514−1521. doi: 10.1128/AEM.64.4.1514-1521.1998

    [41] 栗方亮, 李忠佩, 刘明, 等. 氮素浓度和水分对水稻土硝化作用和微生物特性的影响[J]. 中国生态农业学报, 2012, 20(9): 1113−1118.

    Li F L, Li Z P, Liu M, et al. Effects of different concentrations of nitrogen and soil moistures on paddy soil nitrification and microbial characteristics[J]. Chinese Journal of Eco-Agriculture, 2012, 20(9): 1113−1118.

    [42]

    Marcos M S, Bertiller M B, Cisneros H S, et al. Nitrification and ammonia-oxidizing bacteria shift in response to soil moisture and plant litter quality in arid soils from the Patagonian Monte[J]. Pedobiologia, 2016, 59(1−2): 1−10. doi: 10.1016/j.pedobi.2015.11.002

    [43]

    Smith K A, Ball T, Conen F, et al. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes[J]. European Journal of Soil Science, 2018, 69(1): 10−20. doi: 10.1111/ejss.12539

    [44]

    Liu J, Xue D, Chen H, et al. Effects of nitrogen addition on anaerobic oxidation of methane in Zoige Plateau peatlands[J]. Ecological Indicators, 2021, 129(11−12): 108018.

    [45] 包振宗. 水分变化和模拟氮沉降对高寒湿地土壤CH4、CO2和N2O排放的影响[D]. 乌鲁木齐: 新疆农业大学, 2018.

    Bao Z Z. Effect of water changes and nitrogen deposition on CH4, CO2 and N2O emission in alpine wetland soil[D]. Urumqi: Xinjiang Agricultural University, 2018.

    [46]

    Praeg N, Wagner A O, Illmer P. Effects of fertilisation, temperature and water content on microbial properties and methane production and methane oxidation in subalpine soils[J]. European Journal of Soil Biology, 2014, 65: 96−106. doi: 10.1016/j.ejsobi.2014.10.002

    [47] 李平, 郎漫, 李淼, 等. 不同施肥处理对东北黑土温室气体排放的短期影响[J]. 环境科学, 2018, 39(5): 2360−2367.

    Li P, Lang M, Li M, et al. Short-term effects of different fertilization treatments on greenhouse gas emissions from northeast black soil[J]. Environmental Science, 2018, 39(5): 2360−2367.

  • 期刊类型引用(6)

    1. 赵尧,付伟莲,关惠元. T型圆竹家具构件力学性能研究. 林产工业. 2024(10): 42-46 . 百度学术
    2. 朱旭,吴新凤,郝景新,徐大鹏. 无框瓦楞夹芯板极限抗拔力及家具角部结合性能的研究. 林产工业. 2024(11): 20-25 . 百度学术
    3. 马青原,王华. 板式家具五金件的发展与应用. 家具. 2023(04): 7-10+6 . 百度学术
    4. 陈炳睿,胡文刚. 一种可拆装式椭圆榫节点的设计与性能分析. 木材科学与技术. 2022(02): 65-70+86 . 百度学术
    5. 胡强利,纪佳俊,冉雪蕾,王梦蕾. 杨木和辐射松树脂浸渍材金属空套螺母抗拔力研究. 中国人造板. 2022(06): 16-20 . 百度学术
    6. 胡文刚,白珏,关惠元. 一种速生材榫接合节点增强方法. 北京林业大学学报. 2017(04): 101-107 . 本站查看

    其他类型引用(10)

图(6)  /  表(4)
计量
  • 文章访问数:  268
  • HTML全文浏览量:  52
  • PDF下载量:  31
  • 被引次数: 16
出版历程
  • 收稿日期:  2023-10-23
  • 修回日期:  2023-11-30
  • 网络出版日期:  2024-05-14
  • 刊出日期:  2024-05-19

目录

    /

    返回文章
    返回