Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

不同树种水土保持林对黑土区坡面土壤氮的保持作用

陈桂兰, 卜庆雨, 王秀伟, 谷会岩

陈桂兰, 卜庆雨, 王秀伟, 谷会岩. 不同树种水土保持林对黑土区坡面土壤氮的保持作用[J]. 北京林业大学学报, 2024, 46(7): 27-35. DOI: 10.12171/j.1000-1522.20230293
引用本文: 陈桂兰, 卜庆雨, 王秀伟, 谷会岩. 不同树种水土保持林对黑土区坡面土壤氮的保持作用[J]. 北京林业大学学报, 2024, 46(7): 27-35. DOI: 10.12171/j.1000-1522.20230293
Chen Guilan, Bu Qingyu, Wang Xiuwei, Gu Huiyan. Conservation effects of different tree species of soil and water conservation forests on soil nitrogen on slopes in black soil region of northeastern China[J]. Journal of Beijing Forestry University, 2024, 46(7): 27-35. DOI: 10.12171/j.1000-1522.20230293
Citation: Chen Guilan, Bu Qingyu, Wang Xiuwei, Gu Huiyan. Conservation effects of different tree species of soil and water conservation forests on soil nitrogen on slopes in black soil region of northeastern China[J]. Journal of Beijing Forestry University, 2024, 46(7): 27-35. DOI: 10.12171/j.1000-1522.20230293

不同树种水土保持林对黑土区坡面土壤氮的保持作用

基金项目: 国家重点研发计划(2021YFD150070506),黑龙江省应用技术研究与开发计划项目(GA20B401)。
详细信息
    作者简介:

    陈桂兰。主要研究方向:森林植物资源学。Email:379692001@qq.com 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院

    责任作者:

    谷会岩,教授。主要研究方向:干扰生态学、植物资源学。Email:ghuiyan@nefu.edu.cn 地址:同上。

  • 中图分类号: S727;S157.9

Conservation effects of different tree species of soil and water conservation forests on soil nitrogen on slopes in black soil region of northeastern China

  • 摘要:
    目的 

    探究黑土区不同树种水土保持林对坡面土壤氮的保持作用,为黑土坡面养分流失防控措施选择提供参考。

    方法 

    在黑龙江省西北部的克山农场内,选择坡度、坡向、坡长和林龄基本一致的杨树水土保持林、樟子松水土保持林和耕地坡面为试验区,在3个试验区内沿顺坡向从坡顶至坡底分别布设1条距离为315、319和323 m的样线,每条样线上以坡顶为起点,距离为30 m等间距设置10个样点。每个样点分别采集0 ~ 15 cm和15 ~ 30 cm土壤样品,用于土壤物理特征、全氮、铵态氮、硝态氮和颗粒态有机氮的测定,以耕地为对照,分析不同树种水土保持林对黑土坡面土壤氮的保持作用。

    结果 

    (1)水土保持林的土壤物理特征指标优于耕地。(2)杨树水土保持林土壤全氮含量(1.28 ~ 2.54 g/kg)高于樟子松水土保持林和耕地的全氮含量,樟子松水土保持林土壤全氮含量(1.04 ~ 1.92 g/kg)高于耕地含量(0.62 ~ 1.63 g/kg);铵态氮、颗粒态有机氮在3个试验区土壤内分布情况和全氮一致,皆表现为杨树水土保持林含量最高,耕地含量最低。

    结论 

    两种水土保持林0 ~ 15 cm土层土壤氮含量高于15 ~ 30 cm土层土壤氮含量,两种水土保持林的土壤氮含量高于耕地的氮含量,杨树水土保持林土壤氮含量高于樟子松水土保持林土壤氮含量,且杨树水土保持林对黑土区坡面土壤氮的保持作用优于樟子松水土保持林。从土壤氮保持角度来讲,在杨树和樟子松两种水土保持树种上应优先考虑杨树。

    Abstract:
    Objective 

    This paper explores the conservation effects of different tree species of soil and water conservation forests on slope soil nitrogen in black soil region of northeastern China, so as to provide reference for the selection of prevention and control measures for nutrient loss on black soil slopes.

    Method 

    In the Keshan Farm, northwest of Heilongjiang Province of northeastern China, soil and water conservation forest of Populus spp. and water conservation forest of Pinus sylvestris var. mongolica and cultivated land with the similar slope, aspect, slope length, and forest age were selected as the research area. In the three sites, we set three lines of 315, 319, and 323 m along the downhill slope from top to bottom, respectively. Along the lines, 10 sample points were set at equal intervals with a distance of 30 m from the top of the slope. Soil samples of 0−15 cm and 15−30 cm were collected from each sample point for the measure of soil physical characteristics, total nitrogen, ammonium nitrogen, nitrate nitrogen, and particulate organic nitrogen. Cultivated land was analyzed as a control.

    Result 

    (1) The soil physical characteristics of soil and water conservation forests were better than those of cultivated land. (2) The total nitrogen content of soil and water conservation forest of Populus spp. (1.28−2.54 g/kg) was higher than that of soil and water conservation forest of Pinus sylvestris var. mongolica and cultivated land. The soil total nitrogen content of soil and water conservation forest of Pinus sylvestris var. mongolica (1.04−1.92 g/kg) was higher than that of cultivated land (0.62−1.63 g/kg). The distribution of ammonium nitrogen and particulate organic nitrogen in the soil of three sites was the same as that of total nitrogen, and the content of soil and water conservation forest of Populus spp. was the highest, while that of cultivated land was the lowest.

    Conclusion 

    The soil nitrogen content of 0−15 cm in the two forests is higher than that of 15−30 cm, and the soil nitrogen content in the forests is higher than that in the cultivated land. Soil nitrogen content in the soil and water conservation forest of Populus spp. is higher than that in the forest of Pinus sylvestris var. mongolica, and the conservation effect of soil and water conservation forest of Populus spp. on the slope in black soil area is better than that of Pinus sylvestris var. mongolica. From the perspective of soil nitrogen conservation, Populus spp. should be given priority among the two kinds of soil and water conservation species.

  • 丛枝菌根真菌(arbuscular mycorrhiza fungi,AMF)属于球囊菌门(Glomeromycata),能够与超过80%的陆地植物形成共生关系[1]。AMF从植物中吸收碳水化合物[2],反过来为植物提供磷酸盐、铵和微量营养素等矿物质[3]。AMF在改善植物生长发育的同时已逐渐应用于经济型农作物害虫的综合防治,并且取得了一定的防治效益[4]。除此之外,AMF定殖是否可以提高林木的抗虫性已成当前研究的热点。

    AMF对植食性昆虫的影响存在3种情况,即正效应(约占45%)、负效应(35%)、变化不定和无影响(20%)[5]。例如:Wang等[6]发现摩西管柄囊霉(Glomus mosseae,GM)定殖的长叶车前草(Plantago lanceolata)已被证明可以抑制甜菜夜蛾(Spodoptera exigua)幼虫的相对生长速率,并且通过昆虫的植食作用改变梓醇在环烯醚萜苷水平中所占的比例;而Khaitov等[7]发现GM定殖的菜豆(Phaseolus vulgaris)提高了二斑叶螨(Tetranychus urticae)的繁殖率;Minton等[8]通过研究烟草天蛾(Manduca sexta)取食根内根孢囊霉(Glomus intraradices,GI)定殖的东方龙葵(Solanum ptycanthum)时发现烟草天蛾的体重与对照组无显著差异。菌根定殖对植物抗虫性影响的多态性可能与AMF的种类、昆虫的取食方式、食性广度、寄主植物种类、植物的营养与次生物质代谢等方面有关[9]。此外,昆虫对寄主植物的化学防御具有反防御机制。通常,昆虫在取食植物时会根据食物的质量调节自身的适应能力,尤其在取食一些不利于自身的食物时,其解毒机制被激活[10]。其中,磷酸酯酶可以分为酸性磷酸酯酶(acid phosphatases,ACP)和碱性磷酸酯酶(alkaline phosphatases,AKP),是一种广泛存在于昆虫体内的重要解毒酶,具有代谢一些杀虫剂,解毒部分外源物质的作用[1112]

    青山杨(Populus pseudo-cathayana × P. deltoides)幼苗−舞毒蛾(Lymantria dispar)幼虫互作系统,由于青山杨幼苗的速生特性[1314]和舞毒蛾幼虫的发育特性[1516],是分析木本植物对昆虫抗性的极好模型。本研究以1年生青山杨和舞毒蛾幼虫为研究对象,对青山杨分别接种根内根孢囊霉(GI)和摩西管柄囊霉(GM),通过舞毒蛾幼虫的生长发育、食物利用和解毒酶活性分析GI或GM定殖对青山杨抗虫性的影响,进而为研究AMF对林业害虫的防治提供理论基础。

    供试菌株:根内根孢囊霉(菌株号BJ09)和摩西管柄囊霉(菌株号GZ01A)(由甘肃省农业科学院提供)通过宿主玉米(Zea mays)和三叶草(Trifolium pratense)扩繁完成,菌剂中包含孢子、菌丝、根段和沙子,其中孢子含量15个/g。

    供试植物:1年生青山杨扦插苗(为避免自然环境中菌根侵染样本植株干扰试验研究结果,故供试植物选择1年生青山杨扦插苗)。

    供试土壤:草炭土、蛭石、沙子体积比为1∶1∶1,混合后在121 ℃下高压灭菌2 h。

    供试昆虫:舞毒蛾卵块采自东北林业大学校园,饲料购自中国林业科学院森林生态环境与保护研究所。

    供试试剂盒:总蛋白(TP)、酸性磷酸酯酶(ACP)、碱性磷酸酯酶(AKP)测定试剂盒购自南京建成生物工程研究所。

    高压蒸汽灭菌器,普和希株式会社生物医疗公司(MLS-3781L-PC);光照培养箱,东京理化器械株式会社(MTI-202B);电子分析天平,赛多利斯科学仪器有限公司(QYINTIX224-1CN);高速离心机,长沙湘智离心机仪器有限公司(TGL22M);电热恒温水浴锅,上海森信实验仪器有限公司(DK-S26);紫外可见光分光光度计,安玛西亚中国有限公司(ULtrospec5300pro)。

    试验前将花盆用0.3%KMnO4溶液浸泡2 h进行消毒处理,每盆装入1.3 kg灭菌土壤,放置于东北林业大学育种苗圃温室。试验设置1个对照(CK)组和2个处理组,处理组分别接入丛枝菌根菌GI和GM,每1.3 kg土壤混入菌剂20 g,CK组不加菌剂。每盆移栽1株青山杨扦插苗,每组300盆,共计900盆,定期浇水除草。在开始饲喂昆虫前(青山杨扦插苗栽植80 d后),从每组随机各选取5株样树,每株至少选取50小段须根根样,根据Phillips等[17]方法测定菌根定殖率。

    舞毒蛾卵经10%甲醛溶液浸泡消毒,消除病毒的影响。置于恒温培养箱孵化,温度(25 ± 1) ℃,湿度为(70 ± 1)%,光周期16L∶8D(光照/黑暗时间为8 h/16 h)。待幼虫孵出后用人工饲料喂养至2龄[18]。将刚蜕皮的2龄幼虫分为3组,每组90头,分别摘取栽植80 d后的处理组和对照组叶片进行喂养,每2 d更换一次叶片,观察幼虫的生长发育状况。每组的3、4、5龄幼虫各取30头,测量其体重、体长、头壳宽。用电子分析天平称量每头幼虫体重,将幼虫放在1 mm网格纸上测定幼虫体长和头壳宽,并拍照保存图像。

    在幼虫开始进入3龄、4龄、5龄时,分别从3组中各选取蜕皮不超过24 h的幼虫24头,并将每组所选的幼虫分为3个重复,继续用对应组的叶片饲养48 h,测定各重复组取食前鲜叶、取食后残叶和幼虫粪便的质量(湿质量);计算取食量、食物消耗率、转化率和利用率[19]

    I48=(mImF)/(1L/mI)

    式中:I48为48 h幼虫取食量,g;mI为取食前叶片鲜质量,g;mF为取食后叶片鲜质量,g; L为对照叶片失水量,g。

    EAD=I48/mE×100%

    式中:EAD为食物消耗率,%;mE为排粪质量,g。

    ECI=(mBFmBI)/(I48mE)×100%

    式中:ECI为食物转化率,%;mBF为取食后幼虫体重,g;mBI为取食前幼虫体重,g。

    ECD=(mBFmBI)/I48×100%

    式中:ECD为食物利用率,%。

    试验期间收集各处理组新蜕皮的4龄和5龄幼虫放置于−40 ℃冰箱备用。取3头相同处理的舞毒蛾同龄幼虫放置于玻璃匀浆器中,加入5 mL预冷的生理盐水(0.90%NaCl),在冰浴条件下充分研磨成匀浆后倒入10 mL离心管中,于4 ℃条件下10 000 r/min下离心10 min,上清液即为酶提取液[20]。采用试剂盒测定解毒酶ACP和AKP活力,每组测3个重复。酶液中组织蛋白含量采用总蛋白测定试剂盒(TP)进行测定。酶活计算公式:酸性磷酸酯酶(U/g) = (测定OD值/标准OD值) × 标准管含酚的量/(待测样本蛋白浓度 × 取样量);碱性磷酸酯酶(金氏单位/g) = (测定OD值/标准OD值) × 标准管含酚的量/(待测样本蛋白浓度 × 取样量)。

    各龄期舞毒蛾图像使用Image J-v1.8.0软件测量体长和头壳宽,采用SPSS 19.0对舞毒蛾幼虫体重、体长、头壳宽、取食量、食物消耗率、食物转化率、食物利用率、ACP活性、AKP活性进行单因素方差分析,以LSD法进行多重比较。使用Excel 2016统计数据的平均值和标准误差并做图。

    图1可知AMF在青山杨根系中侵染定殖成功,图中可看到丛枝、泡囊和菌丝结构。在青山杨扦插苗栽植80 d后,其根部GI和GM定殖率如图2所示。GI定殖率为62.1%,GM定殖率为60.8%,未在CK组中检测到菌根定殖。

    图  2  栽植80 d后青山杨扦插苗根部GI、GM的定殖率
    CK.对照;GI.根内根孢囊霉;GM.摩西管柄囊酶。不同小写字母表示不同处理之间差异显著(P < 0.05)。数据均为平均值 ± 标准差(n = 5)。下同。CK, control; GI, Glomus intraradices; GM, Glomus mosseae. Different lowercase letters indicate significant difference among varied groups (P < 0.05). The data annotation in the picture is average value ± SD (n = 5). The same below.
    Figure  2.  Colonization rate of GI and GM at 80 d after planting
    图  1  青山杨根系中AMF的结构
    A.丛枝Arbuscule;B.泡囊Vesicle;C.菌丝Hypha
    Figure  1.  Structure of AMF in the roots of Populus pseudo-cathayana × P. deltoides

    舞毒蛾幼虫取食GI或GM定殖的青山杨叶片对其体重的影响如图3所示。3龄幼虫体重,GI和GM组均显著高于CK组(P < 0.05),同时GI组显著高于GM组(P < 0.05)。4龄幼虫体重,GI、GM组均显著高于CK组(P < 0.05),但GI组和GM组差异不显著(P > 0.05)。5龄幼虫体重,GI组与CK组差异不显著,GM组显著高于CK组(P < 0.05)。

    图  3  各试验组舞毒蛾幼虫的体重
    数据均为平均值 ± 标准差(n = 30);不同小写字母表示同一龄期不同组之间差异显著(P < 0.05)。下同。 The data annotation in the picture is average value ± SD (n = 30); different lowercase letters indicate that there is significant difference among different groups at the same age (P < 0.05). The same below.
    Figure  3.  Larvae body mass of spongy moth in each treatment group

    舞毒蛾幼虫取食GI或GM定殖的青山杨叶片对其体长和头壳宽的影响分别见图4图5。3龄幼虫体长,GI组显著高于CK组和GM组(P < 0.05),GM组与CK差异不显著(P > 0.05)。4龄幼虫体长各组之间均不显著(P > 0.05)。5龄幼虫体长,GI组与CK组差异不显著(P > 0.05),GM组显著高于CK组和GI组(P < 0.05)。3龄幼虫头壳宽,GI组显著高于CK组和GM组(P < 0.05),GM组与CK差异不显著(P > 0.05)。4龄GI组与CK组和GM组差异均不显著(P > 0.05),GM组显著高于CK组(P < 0.05),5龄GI组和CK组差异不显著(P > 0.05),GM组显著高于CK组和GI组(P < 0.05)。

    图  4  各试验组舞毒蛾幼虫的体长
    Figure  4.  Larvae body length of spongy moth in each treatment group
    图  5  各试验组舞毒蛾幼虫的头壳宽
    Figure  5.  Larvae head capsule width of spongy moth in eachtreatment group

    GI或GM定殖的青山杨叶片对舞毒蛾幼虫取食量的影响如图6所示。3龄幼虫取食量,GI组显著高于CK组(P < 0.05),GM组与CK组和GI组差异均不显著(P > 0.05);4龄幼虫取食量,GI组显著低于CK组和GM组(P < 0.05),GM组与CK组差异不显著(P > 0.05)。5龄幼虫取食量,GI组显著低于CK组和GM组(P < 0.05),GM组显著高于CK组(P < 0.05)。

    图  6  各试验组舞毒蛾幼虫的取食量
    数据均为平均值 ± 标准差(n = 3)。The data annotation in the picture is average value ± SD (n = 3).
    Figure  6.  Larvae food intake of spongy moth in each treatment group

    取食GI或GM处理的青山杨叶片对舞毒蛾幼虫食物消耗率的影响如图7所示。3龄幼虫食物消耗率,GI组显著高于GM组和CK组(P < 0.05),GM组与CK组差异不显著(P > 0.05);4龄幼虫食物消耗率,GI组与CK组差异不显著(P > 0.05),GM组显著高于CK组和GI组(P < 0.05);5龄幼虫食物消耗率,各处理组间差异均不显著(P > 0.05)。

    图  7  各试验组舞毒蛾幼虫的食物消耗率
    Figure  7.  Larvae food digestion rate of spongy moth ineach treatment group

    取食GI或GM定殖的青山杨叶片对舞毒蛾幼虫食物转化率的影响如图8所示。3龄幼虫食物转化率,GI组与CK组差异不显著(P > 0.05),GM组显著高于GI组与CK组(P < 0.05);4龄幼虫食物转化率各处理组和对照组差异均不显著(P > 0.05);5龄幼虫食物转化率,GI组与CK组和GM组差异均不显著(P > 0.05),GM组显著高于CK组(P < 0.05)。

    图  8  各试验组舞毒蛾幼虫的食物转化率
    Figure  8.  Larvae food conversion rate of spongy moth in each treatment group

    取食GI或GM定殖的青山杨叶片对舞毒蛾幼虫食物利用率的影响如图9所示。GI组食物利用率,3龄时显著高于CK组(P < 0.05),4龄和5龄时GI组和CK组食物利用率差异不显著(P > 0.05)。GM组食物利用率,3龄、4龄显著高于CK组和GI组(P < 0.05),5龄显著高于CK组(P < 0.05),与GI组差异不显著(P > 0.05)。

    图  9  各试验组舞毒蛾幼虫的食物利用率
    Figure  9.  Larvae food utilization rate of spongy moth ineach treatment group

    舞毒蛾幼虫取食GI或GM定殖的青山杨对其ACP和AKP的影响如图10图11所示。ACP活性,4龄和5龄幼虫GI组显著低于CK组和GM组(P < 0.05),GM组显著高于CK组(P < 0.05)。AKP活性,4龄幼虫GI组显著高于CK组(P < 0.05),GM组显著高于CK组和GI组(P < 0.05);5龄幼虫GI组显著低于CK组(P < 0.05),GM组显著高于CK组和GI组(P < 0.05)。

    图  10  各试验组舞毒蛾幼虫ACP的活性
    Figure  10.  Larvae acid phosphatase activity of spongy moth ineach treatment group
    图  11  各试验组舞毒蛾幼虫AKP的活性
    Figure  11.  Larvae alkaline phosphatase activity of spongy moth ineach treatment group

    菌根定殖下植物对植食性昆虫的生长影响不尽相同[2122]。本研究GI定殖的青山杨对舞毒蛾幼虫的生长发育影响呈阶段特异性,表现为:在3、4龄时呈促进作用,5龄呈中性作用。而GM定殖的青山杨对舞毒蛾幼虫的生长发育表现出一种促进效应,表现为:体重、取食量增加,食物转化率、食物利用率提高。这表明植物对昆虫的生长受菌根的种类特异性影响。

    食物消耗率、食物转换率、食物利用率是表示植食性昆虫对寄主植物取食利用效率的重要营养参数[23]。菌根定殖可能通过改变植物的物质代谢影响昆虫的食物利用。Selvaraj等[24]发现,接种GI的黑吉豆(Vigna mungo)降低了斜纹夜蛾(Spodoptera litura)的食物转化率与食物利用效率,抑制了幼虫的生长。这与我们的发现不同,本研究中GM组舞毒蛾幼虫食物转化率、食物利用率显著提高,这与其体重增长趋势一致,舞毒蛾幼虫生长受到促进的原因可能是GM提高了青山杨叶片的营养,增强了舞毒蛾幼虫的嗜食性。而在GI定殖下的青山杨对舞毒蛾4、5龄幼虫的食物利用和生长表现出一种中性效应,这就凸显了菌根定殖植物后对植食性昆虫影响的特异性。

    目前,大量研究指出,在多种植食性昆虫中,ACP、AKP活性的增强对于提高昆虫应对胁迫压力的能力至关重要[2526]。姜礅[27]研究发现,在Zn胁迫下,4龄和5龄舞毒蛾幼虫体内的ACP、AKP活性均显著高于对照,发育历期没有被延长,解毒酶ACP和AKP能积极响应舞毒蛾幼虫抵御Zn的胁迫。本研究发现,GI组幼虫ACP活性受到抑制,AKP活性在4龄时高于对照但在5龄时AKP低于对照,这可能是GI组幼虫生长发育在4龄后不再显著增长的原因。GM组幼虫ACP与AKP活性均得到显著促进且幼虫生长发育良好,说明舞毒蛾幼虫体内的解毒酶能积极响应取食接种GM的青山杨后的解毒过程。

    同样的菌种对不同树种抗虫性的影响也呈不同的趋势。武帅[28]研究了GI和GM分别定殖银中杨(Populus alba × P. berolinensis)后对舞毒蛾的影响,结果发现:GI和GM均能提高银中杨叶片的防御蛋白活性和次生代谢物含量,但对舞毒蛾的影响却不相同,GI定殖对舞毒蛾的生长发育有促进作用,而GM定殖则抑制了舞毒蛾的生长与取食。而在本研究中,GI定殖对青山杨的抗虫性起中性作用;GM定殖降低了青山杨的抗虫性。表明AMF对植物和植食性昆虫的影响具有种类特异性。本研究结果为今后针对不同树种的AMF菌种选择和植食性昆虫生态防治提供了理论依据。

  • 图  1   试验地取样示意图

    Figure  1.   Schematic diagram of sampling at the experimental site

    图  2   各样地不同土层土壤全氮含量

    不同小写字母代表不同样地在同一坡长处差异显著(P < 0.05)。下同。 Different lowercase letters represent significant differences in the same slope length (P < 0.05). The same below.

    Figure  2.   Soil total nitrogen contents in different soil layers of each sample site

    图  3   各样地不同土层土壤铵态氮含量

    Figure  3.   Soil ammonium nitrogen contents in different soil layers of each sample site

    图  4   各样地不同土层土壤硝态氮含量

    Figure  4.   Soil nitrate nitrogen contents in different soil layers of each sample site

    图  5   各样地不同土层土壤颗粒态有机氮含量

    Figure  5.   Soil particulate organic nitrogen contents in different soil layers of each sample site

    表  1   样地基本信息

    Table  1   Basic information of sample plots

    样地类型
    Sample plot type
    长度
    Length/m
    宽度
    Width/m
    株行距
    Intra-row
    Spacing
    平均树高
    Average
    height/m
    平均胸径
    Average
    DBH/cm
    郁密度
    Depression
    density
    林龄或开垦年限/a
    Forest age or year of
    reclamation/year
    土壤类型
    Soil type
    杨树水土保持林
    Soil and water conservation forest of
    Populus spp.
    315 15 1.5 m × 1.5 m 18 30.07 0.8 25 壤土 Loam
    樟子松水土保持林
    Soil and water conservation forest of
    Pinus sylvestris var. mongolica
    319 10 1.5 m × 2 m 16 21.68 0.8 26 壤土 Loam
    耕地
    Cultivated land
    323 15 60 壤土 Loam
    下载: 导出CSV

    表  2   研究地土壤物理特征

    Table  2   Soil physical characteristics of the study sites

    类型
    Type
    土壤深度
    Soil
    depth/cm
    土壤密度
    Soil bulk density/
    (g·cm−3
    非毛管孔隙度
    Non-capillary
    porosity/%
    毛管孔隙度
    Capillary
    porosity/%
    pH值
    pH value
    耕地 Cultivated land 0 ~ 15 1.31 ± 0.03Aa 2.02 ± 1.30Aa 43.84 ± 3.05Ab 5.66 ± 0.07Bc
    15 ~ 30 1.34 ± 0.07Aa 1.51 ± 0.90Ab 45.24 ± 2.97Ab 5.76 ± 0.05Ac
    杨树水土保持林
    Soil and water conservation forest of Populus spp.
    0 ~ 15 1.16 ± 0.07Ab 2.24 ± 0.79Aa 50.48 ± 4.47Aa 6.13 ± 0.06Ba
    15 ~ 30 1.15 ± 0.07Ac 3.11 ± 1.32Aa 52.25 ± 3.46Aa 6.21 ± 0.05Aa
    樟子松水土保持林
    Soil and water conservation forest of Pinus sylvestris var. mongolica
    0 ~ 15 1.26 ± 0.10Aa 1.43 ± 0.98Aa 44.27 ± 7.49Ab 6.02 ± 0.06Bb
    15 ~ 30 1.24 ± 0.09Ab 1.99 ± 1.86Aab 43.98 ± 9.86Ab 6.13 ± 0.07Ab
    注:数据为平均值 ± 标准差。同列不同大写字母代表同一样地不同土层之间显著差异,同列不同小写字母代表同一土层不同样地间显著差异(P < 0.05)。Notes: values are mean ± standard deviation. Different uppercase letters in the same column represent significant differences between different soil layers in the same sample plot, and different lowercase letters in the same column represent significant differences among different sample plots in the same soil layer (P < 0.05).
    下载: 导出CSV

    表  3   土壤氮组分的主成分分析

    Table  3   Principal component analysis of soil nitrogen components

    指标
    Index
    载荷值 Load value 初始特征值
    Initial eigenvalue
    方差贡献率
    Variance
    contribution
    rate/%
    累计贡献率
    Cumulative
    contribution
    rate/%
    铵态氮
    Ammonium
    nitrogen
    硝态氮
    Nitrate
    nitrogen
    颗粒态有机氮
    Particulate
    organic nitrogen
    全氮
    Total
    nitrogen
    主成分1
    Principal compontent 1
    0.507 −0.320 0.580 0.551 2.306 57.657 57.657
    主成分2
    Principal compontent 2
    0.007 0.927 0.208 0.312 0.865 21.632 79.289
    主成分3
    Principal compontent 3
    0.853 0.190 −0.238 −0.424 0.554 13.844 93.133
    下载: 导出CSV
  • [1]

    Lex B, Kees K G, Klaas W V D H, et al. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900−2050 period[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(52): 20882−20887.

    [2]

    Zhang C C, Wang Y Q, Jia X X, et al. Estimates and determinants of soil organic carbon and total nitrogen stocks up to 5 m depth across a long transect on the Loess Plateau of China[J]. Journal of Soils and Sediments, 2021, 21(2): 748−765. doi: 10.1007/s11368-020-02861-3

    [3] 陈书信, 王国兵, 阮宏华, 等. 苏北沿海不同土地利用方式土壤氮矿化季节变化特征[J]. 生态学杂志, 2014, 33(2): 276−282.

    Chen S X, Wang G B, Ruan H H, et al. Seasonal variations of soil nitrogen mineralization under different land-use types in a coastal area in northern Jiangsu, China[J]. Chinese Journal of Ecology, 2014, 33(2): 276−282.

    [4] 刘婕, 勾晓华, 刘建国, 等. 甘南黄河流域4种典型林分土壤C、N、P化学计量特征[J]. 生态学报, 2023, 43(13): 5627−5637.

    Liu J, Gou X H, Liu J G, et al. The stoichiometric characteristics of soil C, N and P in four typical forest stands in the Yellow River Basin in Gannan[J]. Acta Ecologica Sinica, 2023, 43(13): 5627−5637.

    [5] 许开平, 吴家森, 黄程鹏, 等. 不同植物篱在减少雷竹林氮磷渗漏流失中的作用[J]. 土壤学报, 2012, 49(5): 980−987. doi: 10.11766/trxb201109010332

    Xu K P, Wu J S, Huang C P, et al. Effect of hedgerows reducing of nitrogen and phosphorus leaching loss from Phyllostachys praecox stands[J]. Acta Pedologica Sinica, 2012, 49(5): 980−987. doi: 10.11766/trxb201109010332

    [6] 李怀恩, 邓娜, 杨寅群, 等. 植被过滤带对地表径流中污染物的净化效果[J]. 农业工程学报, 2010, 26(7): 81−86.

    Li H E, Deng N, Yang Y Q, et al. Clarification efficiency of vegetative filter strips to several pollutants in surface runoff[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(7): 81−86.

    [7] 田潇, 周运超, 刘晓芸, 等. 物种配置植物篱对坡耕地营养元素拦截效应[J]. 水土保持研究, 2011, 18(6): 89−93.

    Tian X, Zhou Y C, Liu X Y, et al. Effects of hedgerow of species configuration on the interception of nutrition elements in the sloping cultivated lands[J]. Research of Soil and Water Conservation, 2011, 18(6): 89−93.

    [8] 梁青兰, 韩友吉, 乔艳辉, 等. 干旱胁迫对黑杨派无性系生长及生理特性的影响[J]. 北京林业大学学报, 2023, 45(10): 81−89.

    Liang Q L, Han Y J, Qiao Y H, et al. Effects of drought stress on the growth and physiological characteristics of Sect. Aigeiros clones[J]. Journal of Beijing Forestry University, 2023, 45(10): 81−89.

    [9] 马成忠, 邓继峰, 丁国栋, 等. 不同初植密度樟子松人工林对毛乌素沙地南缘土壤粒度特征的影响[J]. 水土保持学报, 2017, 31(1): 230−235.

    Ma C Z, Deng J F, Ding G D, et al. Effects of different planting densities of Mongolian pine on the soil particle size characteristics in southern Mu Us Desert[J]. Journal of Soil and Water Conservation, 2017, 31(1): 230−235.

    [10] 韩辉, 袁春良, 张学利, 等. 基于林分生长量的沙地樟子松初植造林密度确定[J]. 辽宁林业科技, 2020(6): 1−9, 58. doi: 10.3969/j.issn.1001-1714.2020.06.001

    Han H, Yuan C L, Zhang X L, et al. Confirmation of initial planting density of Pinus sylvestris var. mongolica in sandy land based on stand growth[J]. Journal of Liaoning Forestry Science & Technology, 2020(6): 1−9, 58. doi: 10.3969/j.issn.1001-1714.2020.06.001

    [11] 张楠楠, 关文彬, 谢静, 等. 科尔沁沙地东南缘大青沟自然保护区土壤水分的时空分布特征[J]. 生态学报, 2007, 27(9): 3860−3873. doi: 10.3321/j.issn:1000-0933.2007.09.038

    Zhang N N, Guan W B, Xie J, et al. Temporal and spatial distribution of soil moisture of Daqinggou Nature Reserve in the southeastern margin of Horqin Sandy Land, Inner Mongolia, China[J]. Acta Ecologica Sinica, 2007, 27(9): 3860−3873. doi: 10.3321/j.issn:1000-0933.2007.09.038

    [12] 中国林业科学研究院林业所森林土壤研究室. 森林土壤水分—物理性质的测定: LY/T 1215—1999[S]. 北京: 中国标准出版社, 1999.

    Forest Soil Research Laboratory, Forestry Research Institute, Chinese Academy of Forestry Sciences. Determination of forest soil water-physical properties: LY/T 1215−1999[S]. Beijing: China Standard Press, 1999.

    [13]

    Cambardella C A, Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777−783.

    [14] 任玉连, 陆梅, 曹乾斌, 等. 南滚河国家级自然保护区典型植被类型土壤有机碳及全氮储量的空间分布特征[J]. 北京林业大学学报, 2019, 41(11): 104−115.

    Ren Y L, Lu M, Cao Q B, et al. Spatial distribution characteristics of soil organic carbon and total nitrogen stocks across the different typical vegetation types in Nangunhe National Nature Reserve, southwestern China[J]. Journal of Beijing Forestry University, 2019, 41(11): 104−115.

    [15] 刘冠宏, 李炳怡, 宫大鹏, 等. 林火对北京平谷区油松林土壤化学性质的影响[J]. 北京林业大学学报, 2019, 41(2): 29−40.

    Liu G H, Li B Y, Gong D P, et al. Effects of forest fire on soil chemical properties of Pinus tabuliformis forest in Pinggu District of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(2): 29−40.

    [16] 许书军, 魏世强, 谢德体. 非点源污染影响因素及区域差异[J]. 长江流域资源与环境, 2004, 13(4): 389−393. doi: 10.3969/j.issn.1004-8227.2004.04.018

    Xu S J, Wei S Q, Xie D T. Analysis of non-point source pollution influence factors and their discrepancy[J]. Resources and Environment in the Yangtze Basin, 2004, 13(4): 389−393. doi: 10.3969/j.issn.1004-8227.2004.04.018

    [17] 王恒星, 张建军, 孙若修, 等. 晋西黄土区不同植被格局坡面产流产沙特征[J]. 北京林业大学学报, 2021, 43(3): 85−95. doi: 10.12171/j.1000-1522.20190231

    Wang H X, Zhang J J, Sun R X, et al. Effects of different vegetation slope patterns on infiltration and characteristics of runoff and sediment production in the loess area of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(3): 85−95. doi: 10.12171/j.1000-1522.20190231

    [18] 林超文, 庞良玉, 罗春燕, 等. 平衡施肥及雨强对紫色土养分流失的影响[J]. 生态学报, 2009, 29(10): 5552−5560. doi: 10.3321/j.issn:1000-0933.2009.10.045

    Lin C W, Pang L Y, Luo C Y, et al. Effect of balanced fertilization and rain intensity on nutrient losses from a purple soil in Sichuan[J]. Acta Ecologica Sinica, 2009, 29(10): 5552−5560. doi: 10.3321/j.issn:1000-0933.2009.10.045

    [19] 郭二辉, 方晓, 马丽, 等. 河岸带农田不同恢复年限对土壤碳氮磷生态化学计量特征的影响——以温榆河为例[J]. 生态学报, 2020, 40(11): 3785−3794.

    Guo E H, Fang X, Ma L, et al. Effects of different recovery years on the ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in riparian farmland: a case study of Wenyu River[J]. Acta Ecologica Sinica, 2020, 40(11): 3785−3794.

    [20] 李晓欣, 胡春胜, 程一松. 不同施肥处理对作物产量及土壤中硝态氮累积的影响[J]. 干旱地区农业研究, 2003, 21(3): 38−42. doi: 10.3321/j.issn:1000-7601.2003.03.008

    Li X X, Hu C S, Cheng Y S. Effect of different fertilizers on crop yield and nitrate accumulation[J]. Agricultural Research in the Arid Areas, 2003, 21(3): 38−42. doi: 10.3321/j.issn:1000-7601.2003.03.008

    [21] 冯波, 孔令安, 张宾, 等. 施氮量对垄作小麦氮肥利用率和土壤硝态氮含量的影响[J]. 作物学报, 2012, 38(6): 1107−1114.

    Feng B, Kong L A, Zhang B, et al. Effect of nitrogen application level on nitrogen use efficiency in wheat and soil nitrate-N content under bed planting condition[J]. Acta Agronomica Sinica, 2012, 38(6): 1107−1114.

    [22] 鲁艺, 牟长城, 高旭, 等. 林型和林龄对嫩江沙地人工林生态系统碳储量影响规律研究[J]. 北京林业大学学报, 2023, 45(10): 16−27. doi: 10.12171/j.1000-1522.20220294

    Lu Y, Mu C C, Gao X, et al. Effects of forest type and stand age on ecosystem carbon storage of plantations in Nenjiang Sandy Land of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 16−27. doi: 10.12171/j.1000-1522.20220294

    [23] 曾晓敏, 高金涛, 范跃新, 等. 中亚热带森林转换对土壤磷积累的影响[J]. 生态学报, 2018, 38(13): 4879−4887.

    Zeng X M, Gao J T, Fan Y X, et al. Effect of soil factors after forest conversion on the accumulation of phosphorus species in mid-subtropical forests[J]. Acta Ecologica Sinica, 2018, 38(13): 4879−4887.

    [24] 赵秀云, 韩素芬. 杨树根际固氮菌的分离、筛选和鉴定[J]. 南京林业大学学报, 2000, 24(3): 17−20.

    Zhao X Y, Han S F. Isolation‚selection and identification of nitrogen fixing bacteria in poplar rhizosphere[J]. Journal of Nanjing Forestry University, 2000, 24(3): 17−20.

    [25] 刘晓彤, 李海奎, 曹磊, 等. 广东省森林土壤养分异质性析因[J]. 北京林业大学学报, 2021, 43(2): 90−101.

    Liu X T, Li H K, Cao L, et al. Analysis on the heterogeneity of forest soil nutrients in Guangdong Province of southern China[J]. Journal of Beijing Forestry University, 2021, 43(2): 90−101.

    [26] 方晰, 田大伦, 秦国宣, 等. 杉木林采伐迹地连栽和撂荒对林地土壤养分与酶活性的影响[J]. 林业科学, 2009, 45(12): 65−71. doi: 10.11707/j.1001-7488.20091211

    Fang X, Tian D L, Qin G X, et al. Nutrient contents and enzyme activities in the soil of Cunninghamia lanceolata forests of successive rotation and natural restoration with follow after clear-cutting[J]. Scientia Silvae Sinicae, 2009, 45(12): 65−71. doi: 10.11707/j.1001-7488.20091211

    [27] 冯燕辉, 梁文俊, 魏曦, 等. 关帝山不同海拔梯度华北落叶松林土壤养分特征分析[J]. 西部林业科学, 2020, 49(4): 68−73, 98.

    Feng Y H, Liang W J, Wei X, et al. Analysis of soil nutrient characteristics of Larix principis-rupprechtii forests with different altitude gradients in Guandi Mountain[J]. Journal of West China Forestry Science, 2020, 49(4): 68−73, 98.

    [28] 王凯, 赵成姣, 张日升, 等. 不同密度樟子松人工林土壤碳氮磷化学计量特征[J]. 生态学杂志, 2020, 39(3): 741−748.

    Wang K, Zhao C J, Zhang R S, et al. Soil carbon nitrogen and phosphorus stoichiometry of Pinus sylvestris var. mongolica plantations with different densities[J]. Chinese Journal of Ecology, 2020, 39(3): 741−748.

    [29] 王凯, 雷虹, 石亮, 等. 沙地樟子松带状混交林土壤碳氮磷化学计量特征[J]. 应用生态学报, 2019, 30(9): 2883−2891.

    Wang K, Lei H, Shi L, et al. Soil carbon nitrogen and phosphorus stoichiometry characteristics of Pinus sylvestris var. mongolica belt-mixed forests[J]. Chinese Journal of Applied Ecology, 2019, 30(9): 2883−2891.

    [30] 赵文东, 李凯, 沈健, 等. 坡位和坡度对黑木相思人工林土壤养分空间分布的影响[J]. 东北林业大学学报, 2022, 50(9): 78−84, 104.

    Zhao W D, Li K, Shen J, et al. Effects of slope position and gradient on spatial distribution of soil nutrient in Acacia melanoxylon plantation[J]. Journal of Northeast Forestry University, 2022, 50(9): 78−84, 104.

    [31] 于东伟, 雷泽勇, 张岩松, 等. 沙地樟子松人工林的生长对土壤氮变化的影响[J]. 干旱区资源与环境, 2020, 34(6): 179−186.

    Yu D W, Lei Z Y, Zhang Y S, et al. Plantation on soil nitrogen change in sandy land[J]. Journal of Arid Resources and Environment, 2020, 34(6): 179−186.

    [32] 祁金虎. 辽东山区天然次生栎林土壤有机碳含量及其与理化性质的关系[J]. 水土保持学报, 2017, 31(4): 135−140, 171.

    Qi J H. Content of soil organic carbon and its relations with physicochemical properties of secondary natural oak forests in eastern mountain area of Liaoning Province[J]. Journal of Soil and Water Conservation, 2017, 31(4): 135−140, 171.

    [33] 胡芳, 杜虎, 曾馥平, 等. 典型喀斯特峰丛洼地不同植被恢复对土壤养分含量和微生物多样性的影响[J]. 生态学报, 2018, 38(6): 2170−2179.

    Hu F, Du H, Zeng F P, et al. Dynamics of soil nutrient content and microbial diversity following vegetation restoration in a typical karst peak-cluster depression landscape[J]. Acta Ecologica Sinica, 2018, 38(6): 2170−2179.

    [34] 王宪伟, 孙丽, 杜宇, 等. 大兴安岭多年冻土区泥炭地土壤性质与微生物呼吸活性研究[J]. 湿地科学, 2021, 19(6): 682−690.

    Wang X W, Sun L, Du Y, et al. Soil property and microbial respiration activity of peatland in permafrost region in Greater Hinggan Mountains[J]. Wetland Science, 2021, 19(6): 682−690.

    [35] 段成伟, 李希来, 柴瑜, 等. 不同修复措施对黄河源退化高寒草甸植物群落与土壤养分的影响[J]. 生态学报, 2022, 42(18): 7652−7662.

    Duan C W, Li X L, Chai Y, et al. Effects of different rehabilitation measures on plant community and soil nutrient of degraded alpine meadow in the Yellow River Source[J]. Acta Ecologica Sinica, 2022, 42(18): 7652−7662.

    [36] 李程程, 曾全超, 贾培龙, 等. 黄土高原土壤团聚体稳定性及抗蚀性能力经度变化特征[J]. 生态学报, 2020, 40(6): 2039−2048.

    Li C C, Zeng Q C, Jia P L, et al. Characteristics of soil aggregate stability and corrosion resistance longitude change in the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(6): 2039−2048.

    [37] 李聪, 陆梅, 任玉连, 等. 文山典型亚热带森林土壤氮组分的海拔分布及其影响因子[J]. 北京林业大学学报, 2020, 42(12): 63−73.

    Li C, Lu M, Ren Y L, et al. Distribution of soil nitrogen components of Wenshan typical subtropical forests along an altitude gradient and its influencing factors in Yunnan Province of southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(12): 63−73.

    [38] 刘云霞, 胡亚林, 曾德慧, 等. 科尔沁沙地草地营造樟子松人工林对土壤化学和生物学性状的影响[J]. 应用生态学报, 2010, 21(4): 814−820.

    Liu Y X, Hu Y L, Zeng D H, et al. Effects of grassland afforestation with Mongolian pine on soil chemical and biological properties in Keerqin Sandy Land[J]. Chinese Journal of Applied Ecology, 2010, 21(4): 814−820.

    [39] 张岩松, 雷泽勇, 于东伟, 等. 沙质草地营造樟子松林后土壤容重的变化及其影响因子[J]. 生态学报, 2019, 39(19): 7144−7152.

    Zhang Y S, Lei Z Y, Yu D W, et al. Changes in soil bulk density and its influencing factors after sandy grassland afforestation with Pinus sylvestris var. mongolica[J]. Acta Ecologica Sinica, 2019, 39(19): 7144−7152.

    [40] 李鹏, 陈璇, 杨章旗, 等. 不同密度马尾松人工林枯落物输入对土壤理化性质的影响[J]. 水土保持学报, 2022, 36(2): 368−377.

    Li P, Chen X, Yang Z Q, et al. Effects of litter input on soil physical and chemical properties of Pinus massoniana plantations with different densities[J]. Journal of Soil and Water Conservation, 2022, 36(2): 368−377.

    [41] 胡树平, 包海柱, 孟天天, 等. 深松对土壤物理性质及油用向日葵产量性状的影响[J]. 内蒙古农业大学学报(自然科学版), 2020, 41(3): 4−9.

    Hu S P, Bao H Z, Meng T T, et al. Effect of sub-soiling on soil characteristics and yield characters of oil sunflower[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2020, 41(3): 4−9.

    [42] 杜满聪, 李江涛, 李淑玲, 等. 不同耕作方式对华南坡耕地土壤孔隙结构和抗穿透强度影响[J]. 广州大学学报(自然科学版), 2018, 17(6): 74−80.

    Du M C, Li J T, Li S L, et al. Effects of different tillage methods on soil pore structure and penetration resistance of slope farmland in south China[J]. Journal of Guangzhou University(Natural Science Edition), 2018, 17(6): 74−80.

  • 期刊类型引用(10)

    1. 王蕾,郭秋菊,艾训儒,姚兰,朱江,刘西尧. 林分空间结构对天然林木本植物多样性的影响. 森林与环境学报. 2024(01): 20-27 . 百度学术
    2. 朱临渊,曹受金,颜惠芳,彭翠英,廖德志,梁军生,杨鹏华,龚雄夫,王旭军. 杉木凋落物对魔芋的生长及其生理生化影响研究. 湖南林业科技. 2024(01): 1-9 . 百度学术
    3. 于佳乐,刘志明,王海英. 木醋液对4种蔬菜种子萌发的影响. 中国野生植物资源. 2024(02): 64-72 . 百度学术
    4. 荆蓉,彭祚登,李云,王少明. 刺槐林下凋落物浸提液对刺槐种子萌发和胚生长的化感作用. 浙江农林大学学报. 2023(01): 97-106 . 百度学术
    5. 李梦琪,赵冲,罗航,陈杭,刘博,王正宁. 不同凋落物水浸提液对杉木种子萌发和幼苗早期生长的化感作用. 江苏农业科学. 2023(07): 138-146 . 百度学术
    6. 荆蓉,彭祚登,李云,王少明. 刺槐林下枯落物浸提液对自身幼苗生长的化感效应. 西北林学院学报. 2023(04): 27-33 . 百度学术
    7. 罗合一,李美玄,贠民强,马印玺,赵萧汀,赵蕾,曲同宝. 四种凋落物对入侵植物火炬树种子萌发和幼苗生长的影响. 山东农业科学. 2023(10): 59-65 . 百度学术
    8. 马永林,武利玉,张砡嫣,杨玉凤. 兰州主要阔叶造林树种凋落物对火炬树种子萌发的影响. 草原与草坪. 2022(03): 91-99 . 百度学术
    9. 晋梦然,贾梅花,肖倩茹,刘金福,沈彩霞,施友文,何中声. 林窗凋落物化感作用对格氏栲幼苗生长的影响. 生态学报. 2022(20): 8288-8299 . 百度学术
    10. 徐来仙,姚兰,周大寨,郭秋菊,朱江,邓楚,艾鑫,夏煜轩. 水杉凋落物水浸提液对其种子萌发和生长的化感作用. 广西植物. 2022(11): 1949-1958 . 百度学术

    其他类型引用(4)

图(5)  /  表(3)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  77
  • PDF下载量:  43
  • 被引次数: 14
出版历程
  • 收稿日期:  2023-10-25
  • 修回日期:  2023-12-23
  • 网络出版日期:  2024-06-18
  • 刊出日期:  2024-07-24

目录

/

返回文章
返回