• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

3种玉兰幼苗生长和生理特性对干旱胁迫的响应

冯潇, 田玲, 尹群, 贾忠奎

冯潇, 田玲, 尹群, 贾忠奎. 3种玉兰幼苗生长和生理特性对干旱胁迫的响应[J]. 北京林业大学学报, 2024, 46(9): 57-67. DOI: 10.12171/j.1000-1522.20230312
引用本文: 冯潇, 田玲, 尹群, 贾忠奎. 3种玉兰幼苗生长和生理特性对干旱胁迫的响应[J]. 北京林业大学学报, 2024, 46(9): 57-67. DOI: 10.12171/j.1000-1522.20230312
Feng Xiao, Tian Ling, Yin Qun, Jia Zhongkui. Response of growth and physiological characteristics of three Magnolia spp. seedlings to drought stress[J]. Journal of Beijing Forestry University, 2024, 46(9): 57-67. DOI: 10.12171/j.1000-1522.20230312
Citation: Feng Xiao, Tian Ling, Yin Qun, Jia Zhongkui. Response of growth and physiological characteristics of three Magnolia spp. seedlings to drought stress[J]. Journal of Beijing Forestry University, 2024, 46(9): 57-67. DOI: 10.12171/j.1000-1522.20230312

3种玉兰幼苗生长和生理特性对干旱胁迫的响应

基金项目: 中央高校基本科研业务费专项(BLX202203),红花玉兰新品种温室育苗精准施肥制度研究,国家林业和草原局科技发展中心林业植物新品种与专利保护应用项目(KJZXXP202406)。
详细信息
    作者简介:

    冯潇。主要研究方向:林木种苗培育理论和技术。Email:Yishuhan@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学林学院

    责任作者:

    贾忠奎,教授。主要研究方向:生态林与城市森林培育理论和技术。Email:jiazk@bjfu.edu.cn 地址:同上。

  • 中图分类号: S718.43

Response of growth and physiological characteristics of three Magnolia spp. seedlings to drought stress

  • 摘要:
    目的 

    研究干旱胁迫下天女木兰、望春玉兰、红花玉兰‘娇红2号’的生长和生理变化,揭示3种玉兰幼苗对干旱胁迫的响应机理,评价3种玉兰的抗旱性,为干旱地区引种、推广提供参考。

    方法 

    以3种玉兰的2年生盆栽播种苗为试验材料,设置4个处理水平(土壤相对含水量80% ~ 90%(CK),60% ~ 70%(T1),40% ~ 50%(T2),20% ~ 30%(T3)),干旱胁迫50 d后分析生长、生理等19个指标的变化。

    结果 

    (1)中度和重度干旱胁迫(T2、T3)显著降低了3种玉兰的地径和各器官生物量增长量,显著增大了望春玉兰和红花玉兰‘娇红2号’的根冠比(P < 0.05);重度干旱胁迫下(T3),红花玉兰‘娇红2号’的株高和各器官生物量增长量显著高于望春玉兰(P < 0.05);(2)与CK相比,T1处理时红花玉兰‘娇红2号’叶绿素含量增加,其他干旱水平3种玉兰叶绿素含量逐渐降低;3种玉兰丙二醛含量、可溶性糖含量、可溶性蛋白含量、超氧化物歧化酶和过氧化氢酶活性随干旱加剧逐渐增加,T3与CK均存在显著差异;望春玉兰脯氨酸含量先降低后升高,天女木兰和红花玉兰‘娇红2号’脯氨酸含量随干旱加剧呈上升趋势;3种玉兰过氧化物酶活性随干旱加剧变化规律不同,天女木兰过氧化物酶活性T2处理最高,望春玉兰和红花玉兰‘娇红2号’T3处理最高。(3)红花玉兰‘娇红2号’T1处理净光合速率、胞间CO2浓度、蒸腾速率最高,较CK分别高出2.67%、1.94%、3.09%,气孔导度和水分利用效率随干旱加剧逐渐降低;重度干旱胁迫(T3)显著降低了天女木兰和望春玉兰的净光合速率、胞间CO2浓度、蒸腾速率、气孔导度、水分利用效率(P < 0.05)。(4)隶属函数分析表明,3种玉兰抗旱性强弱为天女木兰 > 红花玉兰‘娇红2号’ > 望春玉兰。

    结论 

    干旱胁迫影响了3种玉兰幼苗的生长和生理活性,使叶片细胞结构受损,植株生长缓慢,但植物能通过调节渗透调节物质含量和自身保护酶活性来抵御干旱,维持自身的正常生理代谢功能。综合各指标可知,天女木兰抗旱性最强,望春玉兰最弱。

    Abstract:
    Objective 

    This study investigated the effects of drought stress on growth and physiological changes of Magnolia sieboldii, M. biondii, M. wufengensis ‘Jiaohong No.2’ to explore the influence mechanism of drought stress on three Magnolia spp. seedlings, evaluate the drought resistance of Magnolia spp. seedlings, and provide a basis for the introduction and promotion of seeds in arid areas.

    Method 

    The 2-year-old potted seedlings of 3 kinds of Magnolia spp. seedlings were used as experimental materials, 4 treatment levels (SWC80%−90% (CK), 60%−70% (T1), 40%−50% (T2), 20%−30% (T3)) were set, and the changes of 19 indexes, including growth and physiology were analyzed after 50 d of drought stress.

    Result 

    (1) Moderate and severe drought stress (T2, T3) significantly decreased the ground diameter increment and biomass increment of 3 kinds of Magnolia spp. seedlings, and significantly increased the root-shoot ratio of M. biondii and M. wufengensis ‘Jiaohong No.2’(P < 0.05). Under severe drought stress (T3), the increment of plant height and biomass of M. wufengensis ‘Jiaohong No.2’ was significantly higher than that of M. biondii (P < 0.05). (2) Compared with CK, T1 increased the chlorophyll contents of M. wufengensis ‘Jiaohong No.2’, and the content of chlorophyll in the 3 kinds of Magnolia spp. seedlings gradually decreased at other drought levels. With the intensification of drought, the content of malondialdehyde, soluble sugar, soluble protein and the activity of superoxide dismutase, catalase of the 3 kinds of Magnolia spp. seedlings gradually increased, and T3 and CK showed significant differences. Proline content of M. biondii decreased first and then increased, and the proline content of M. sieboldii and M. wufengensis ‘Jiaohong No.2’ showed an increasing trend with the intensification of drought. The peroxidase activity of 3 kinds of Magnolia spp. seedlings varied with the intensities of drought. The peroxidase activity of M. sieboldii was the highest at T2, and those of M. biondii and M. wufengensis ‘Jiaohong No.2’ were the highest at T3. (3) The net photosynthetic rate, intercellular CO2 concentration and transpiration rate of M. wufengensis ‘Jiaohong No.2’ were the highest at T1, which were 2.67%, 1.94% and 3.09% higher than CK, respectively. The stomatal conductivity and water use efficiency decreased gradually with the worsening of drought. Severe drought stress (T3) significantly reduced the net photosynthetic rate, intercellular CO2 concentration, transpiration rate, stomatal conductivity and water use efficiency (P < 0.05) of M. sieboldii and M. biondii. (4) The analysis of membership function showed that the drought resistance of 3 kinds of Magnolia spp. seedlings was M. sieboldii > M. wufengensis ‘Jiaohong No.2’ > M. biondii.

    Conclusion 

    Drought stress affects the growth and physiological activities of the 3 kinds of Magnolia spp. seedlings, damages the leaf cell structure and slows plant growth, but the plants could resist drought and maintain their normal physiological metabolic functions by adjusting their own osmoregulatory substance content and protective enzyme activities. Based on the indicators, the drought resistance of M. sieboldii is the strongest, and the drought resistance of M. biondii is the weakest.

  • 图  1   干旱胁迫对3种玉兰幼苗叶绿素含量的影响

    Figure  1.   Effects of drought stress on chlorophyll content of three Magnolia spp. seedlings

    图  2   干旱胁迫对3种玉兰幼苗丙二醛含量的影响

    Figure  2.   Effects of drought stress on malondialdehyde content of three Magnolia spp. seedlings

    图  3   干旱胁迫对3种玉兰幼苗渗透调节物质含量的影响

    Figure  3.   Effects of drought stress on osmoregulating substance content of three Magnolia spp. seedlings

    图  4   干旱胁迫对3种幼苗保护酶活性的影响

    Figure  4.   Effects of drought stress on protecting enzyme activities of three Magnolia spp. seedlings

    图  5   干旱胁迫对3种幼苗光合参数的影响

    Figure  5.   Effects of drought stress on photosynthetic parameters of three Magnolia spp. seedlings

    表  1   干旱胁迫对3种玉兰幼苗株高、地径增长量的影响

    Table  1   Effects of drought stress on height increment and ground diameter increment of three Magnolia spp. seedlings

    树种
    Tree species
    株高增长量 Plant height increment/cm地径增长量 Ground diameter increment/mm
    CKT1T2T3CKT1T2T3
    天女木兰
    Magnolia sieboldii
    7.260 ± 2.352Aa4.080 ± 1.031Ab1.920 ± 1.778Abc1.100 ± 0.768ABb0.740 ± 0.317Aa0.460 ± 0.085Ab0.320 ± 0.068ABb0.190 ± 0.113Ab
    望春玉兰
    M. biondii
    5.620 ± 0.756Aa3.260 ± 0740Ab1.800 ± 0.925Abc0.800 ± 0.592Bb0.740 ± 0.317Aa0.490 ± 0.152Aab0.262 ± 0.058Bbc0.184 ± 0.117Ac
    红花玉兰‘娇红2号’
    M. wufengensis
    ‘Jiaohong No.2’
    5.180 ± 2.466Aa5.660 ± 3.480Aa3.340 ± 2.405Aa2.060 ± 0.953Aa1.180 ± 0.379Aa0.710 ± 0.411Ab0.400 ± 0.125Ab0.330 ± 0.125Ab
    注:不同小写字母表示相同树种中不同干旱处理之间差异显著(P < 0.05);不同大写字母表示相同干旱处理下不同树种之间差异显著(P < 0.05)。下同。Notes: different lowercase letters indicate significant differences between varied drought treatments at the same tree species (P < 0.05); different capital letters indicate significant differences between varied tree species under the same drought treatment (P < 0.05). The same below.
    下载: 导出CSV

    表  2   干旱胁迫对3种玉兰幼苗根、茎增长量的影响

    Table  2   Effects of drought stress on root increment and stem increment of three Magnolia spp. seedlings

    树种
    Tree species
    根增长量 Root increment/g 茎增长量 Stem increment/g
    CK T1 T2 T3 CK T1 T2 T3
    天女木兰
    M. sieboldii
    3.480 ± 0.047Ba 3.470 ± 0.039Aa 2.990 ± 0.056Ab 2.910 ± 0.091Ab 1.400 ± 0.015Ba 1.210 ± 0.117Ba 1.190 ± 0.615Aa 0.516 ± 0.038ABb
    望春玉兰
    M. biondii
    3.320 ± 0.120Ba 3.010 ± 0.100Bb 2.940 ± 0.133Ab 2.620 ± 0.660Bc 1.280 ± 0.053Ca 0.950 ± 0.058Cb 0.650 ± 0.118Ac 0.280 ± 0.167Bd
    红花玉兰
    ‘娇红2号’
    M. wufengensis
    ‘Jiaohong No.2’
    3.670 ± 0.083Aa 3.580 ± 0.091Aa 3.120 ± 0.139Ab 2.790 ± 0.840Ac 1.550 ± 0.043Aa 1.440 ± 0.486Aa 1.040 ± 0.008Ab 0.620 ± 0.103Ac
    下载: 导出CSV

    表  3   干旱胁迫对3种玉兰幼苗叶增长量、根冠比的影响

    Table  3   Effects of drought stress on leaf increment and root-shoot ratio of three Magnolia spp. seedlings

    树种
    Tree species
    叶增长量 Leaf increment/g根冠比 Root-shoot ratio
    CKT1T2T3CKT1T2T3
    天女木兰
    M. sieboldii
    1.660 ± 0.011ABa1.600 ± 0.878Aa0.980 ± 0.257Bb0.690 ± 0.068Bc1.450 ± 0.008Ab1.520 ± 0.007Ab1.660 ± 0.274Ab2.200 ± 0.028Ba
    望春玉兰
    M. biondii
    1.580 ± 0.064Ba1.360 ± 0.057Bb0.830 ± 0.058Cb0.560 ± 0.539Cc1.470 ± 0.019Ad1.590 ± 0.042Ac1.920 ± 0.028Ab2.300 ± 0.128Aa
    红花玉兰
    ‘娇红2号’
    M. wufengensis
    ‘Jiaohong No.2’
    1.760 ± 0.070Aa1.660 ± 0.073Aa1.270 ± 0.047Ab0.930 ± 0.589Ac1.340 ± 0.055Bc1.390 ± 0.087Bc1.610 ± 0.033Ab1.770 ± 0.072Ca
    下载: 导出CSV

    表  4   干旱胁迫下3种玉兰幼苗隶属函数值

    Table  4   Subordinate function values of three Magnolia spp. seedlings under drought stress

    指标
    Index
    天女木兰
    M. sieboldii
    望春玉兰
    M. biondii
    红花玉兰‘娇红2号’
    M. wufengensis ‘Jiaohong No.2’
    株高增长量 Plant height increment 0.238 1.000 0.000
    地径增长量 Ground diameter increment 0.000 1.000 0.067
    根增长量 Root increment 1.000 0.000 0.595
    茎增长量 Stem increment 0.701 0.000 1.000
    叶增长量 Leaf increment 0.361 0.000 1.000
    根冠比 Root-shoot ratio 0.825 1.000 0.000
    叶绿素 Chlorophyll 0.060 1.000 0.000
    可溶性糖 Soluble sugar 0.418 0.000 1.000
    可溶性蛋白 Soluble protein 0.213 0.000 1.000
    脯氨酸 Proline 0.218 0.000 1.000
    丙二醛 Malondialdehyde 1.000 0.518 0.000
    超氧化物歧化酶 Superoxide dismutase 0.000 0.398 1.000
    过氧化物酶 Peroxidase 0.000 0.447 1.000
    过氧化氢酶 Catalase 1.000 0.632 0.000
    净光合速率 Net photosynthetic rate 1.000 0.489 0.000
    胞间 CO2浓度 Intercellular CO2 concentration 1.000 0.000 0.641
    气孔导度 Stomatal conductivity 1.000 0.150 0.000
    蒸腾速率 Transpiration rate 1.000 0.391 0.000
    水分利用效率 Water use efficiency 1.000 0.889 0.000
    平均值 Average value 0.581 0.417 0.437
    抗旱性排序 Drought resistance ranking 1 3 2
    下载: 导出CSV
  • [1] 张强, 姚玉璧, 李耀辉, 等. 中国干旱事件成因和变化规律的研究进展与展望[J]. 气象学报, 2020, 78(3): 500−521. doi: 10.11676/qxxb2020.032

    Zhang Q, Yao Y B, Li Y H, et al. Progress and prospect on the study of causes and variation regularity of droughts in China[J]. Acta Meteorologica Sinica, 2020, 78(3): 500−521. doi: 10.11676/qxxb2020.032

    [2]

    Liu J, Zhang R, Zhang G, et al. Effects of soil drought on photosynthetic traits and antioxidant enzyme activities in Hippophae rhamnoides seedlings[J]. Journal of Forestry Research, 2017, 28(2): 9.

    [3] 马福林, 马玉花. 干旱胁迫对植物的影响及植物的响应机制[J]. 宁夏大学学报(自然科学版), 2022, 43(4): 391−399.

    Ma F L, Ma Y H. Effects of drought stress on plants and plant response mechanisms[J]. Journal of Ningxia University (Natural Science Edition), 2022, 43(4): 391−399.

    [4]

    Sun C H, Li X H, Hu Y L, et al. Proline, sugars, and antioxidant enzymes respond to drought stress in the leaves of strawberry plants[J]. Korean Journal of Horticultural Science & Technology, 2015, 33(5): 625−632.

    [5]

    Kumar M, Patel M K, Kumar N, et al. Metabolomics and molecular approaches reveal drought stress tolerance in plants[J]. International Journal of Molecular Sciences, 2021, 22(17): 9108. doi: 10.3390/ijms22179108

    [6]

    Banik P, Zeng W P, Tai H, et al. Effects of drought acclimation on drought stress resistance in potato (Solanum tuberosum L.) genotypes[J]. Environmental and Experimental Botany, 2016, 126: 76−89. doi: 10.1016/j.envexpbot.2016.01.008

    [7] 王志杰. 天女花生物学特性观察初报[J]. 河北林学院学报, 1996(2): 176−178.

    Wang Z J. Observations on biological characteristics of Magnolia sieboldll[J]. Journal of Heibei Foerstry College, 1996(2): 176−178.

    [8] 郭乐, 康永祥, 邢振杰, 等. 望春玉兰种质资源遗传多样性ISSR分析[J]. 植物研究, 2014, 34(4): 465−473. doi: 10.7525/j.issn.1673-5102.2014.04.007

    Guo L, Kang Y X, Xing Z J, et al. Genetic diversity of Mangolia biondii assessed by ISSR polymorphisms[J]. Bulletin of Botanical Research, 2014, 34(4): 465−473. doi: 10.7525/j.issn.1673-5102.2014.04.007

    [9] 马履一, 王罗荣, 贺随超, 等. 中国木兰科木兰属一新变种(英文)[J]. 植物研究, 2006(5): 516−519. doi: 10.3969/j.issn.1673-5102.2006.05.002

    Ma L Y, Wang L R, He S C, et al. A new variety of Magnolia (Magnoliaceae) from Hubei, China[J]. Bulletin of Botanical Research, 2006(5): 516−519. doi: 10.3969/j.issn.1673-5102.2006.05.002

    [10] 肖爱华. 红花玉兰花被片形态建成及调控机理研究[D]. 北京: 北京林业大学, 2019.

    Xiao A H. Study on the morphogenesis and regulation mechanism of the perianth flakes of Magnolia wufengensis[D]. Beijing: Beijing Forestry University, 2019.

    [11] 桑子阳, 马履一, 陈发菊, 等. 五峰红花玉兰种质资源保护现状与开发利用对策[J]. 湖北农业科学, 2011, 50(8): 1564−1567. doi: 10.3969/j.issn.0439-8114.2011.08.017

    Sang Z Y, Ma L Y, Chen F J. et al. Protection status and utilization countermeasure of germplasm resources of the Magnolia wufengensis in Wufeng County[J]. Hubei Agricultural Sciences, 2011, 50(8): 1564−1567. doi: 10.3969/j.issn.0439-8114.2011.08.017

    [12] 蔡锡安, 孙谷畴, 赵平, 等. 土壤水分对单性木兰幼苗光合特性的影响[J]. 热带亚热带植物学报, 2004, 12(3): 207−212. doi: 10.3969/j.issn.1005-3395.2004.03.003

    Cai X A, Sun G C, Zhao P, et al. The effects of soil water content on photosynthesis in leaves of Kmeria septentrionalis seedlings[J]. Journal of Tropical and Subtropical Botany, 2004, 12(3): 207−212. doi: 10.3969/j.issn.1005-3395.2004.03.003

    [13] 马斌, 张娅, 吴毅, 等. 干旱胁迫对4种木兰科树种生理特性的影响[J]. 中南林业科技大学学报, 2020, 40(11): 93−99.

    Ma B, Zhang Y, Wu Y, et al. Effects of drought stress on physiological characteristics of four Magnoliaceae species[J]. Journal of Central South University of Forestry & Technology, 2020, 40(11): 93−99.

    [14] 张梦飞, 李爽, 李运盛, 等. 9种绿化树种幼苗抗旱性评价[J]. 中国农学通报, 2022, 38(20): 38−46. doi: 10.11924/j.issn.1000-6850.casb2022-0052

    Zhang M F, Li S, Li Y S, et al. Evaluation on the drought resistance of seedlings of nine greening tree species[J]. Chinese Agricultural Science Bulletin, 2022, 38(20): 38−46. doi: 10.11924/j.issn.1000-6850.casb2022-0052

    [15] 张庆宝. 木兰属植物资源收集和天目木兰种苗特性与抗性研究[D]. 杭州: 浙江林学院, 2009.

    Zhang Q B. The resource collection of the Magnolia species and the study on the seedings characteristics and adaption of M. amoena[D]. Hangzhou: Zhejiang Forestry Uuniversity, 2009.

    [16] 赵秀婷, 王延双, 段劼, 等. 盐胁迫对红花玉兰嫁接苗生长和光合特性的影响[J]. 林业科学, 2021, 57(4): 43−53.

    Zhao X T, Wang Y S, Duan J, et al. Effects of salt stress on growth and photosynthetic characteristics of Magnolia wufengensis grafted seedlings[J]. Scientia Silvae Sinicae, 2021, 57(4): 43−53.

    [17] 徐飞, 郭卫华, 徐伟红, 等. 刺槐幼苗形态、生物量分配和光合特性对水分胁迫的响应[J]. 北京林业大学学报, 2010, 32(1): 24−30.

    Xu F, Guo W H, Xu W H, et al. Effects of water stress on morphology biomass allocation and photosynthesis in Robinia pseudoacacia seedlings[J]. Journal of Beijing Forestry University, 2010, 32(1): 24−30.

    [18]

    Oskuei B K, Bandehagh A, Farajzadeh D, et al. Morphological, biochemical, and physiological responses of canola cultivars to drought stress[J]. International Journal of Environmental Science and Technology, 2023, 20(12): 13551−13560. doi: 10.1007/s13762-023-04928-3

    [19] 谢乾瑾, 夏新莉, 刘超, 等. 水分胁迫对不同种源蒙古莸光合特性与生长的影响[J]. 林业科学研究, 2010, 23(4): 567−573.

    Xie Q J, Xia X L, Liu C, et al. Effects of water stress on photosynthetic and growth characteristics of different Caryopteris mongholica provenances[J]. Forest Research, 2010, 23(4): 567−573.

    [20] 张翠梅, 师尚礼, 刘珍, 等. 干旱胁迫对不同抗旱性苜蓿品种根系形态及解剖结构的影响[J]. 草业学报, 2019, 28(5): 79−89. doi: 10.11686/cyxb2018314

    Zhang C M, Shi S L, Liu Z, et al. Effects of drought stress on the root morphplogy and anatomical strecture of Medicago sativa varieties with differing drought-tolerance[J]. Acta Prataculturae Sinica, 2019, 28(5): 79−89. doi: 10.11686/cyxb2018314

    [21] 邵畅畅, 罗仙英, 丁贵杰, 等. 干旱对马尾松茎叶水力特征及解剖特性的影响[J]. 植物生理学报, 2022, 58(5): 937−945.

    Shao C C, Luo X Y, Ding G J, et al. Effffects of drought on hydraulic and anatomical characteristics of stem and leaf in Pinus massoniana[J]. Plant Physiology Journal, 2022, 58(5): 937−945.

    [22]

    Levitt J. Response of plants to environmental stress. vol 1[J]. Journal of Range Management, 1973, 1(5): 3642−3645.

    [23] 何小三. 不同油茶品种对干旱胁迫的响应机制[D]. 南京: 南京林业大学, 2019.

    He X S. Camellia oleifera’s response mechanism to drought stress[D]. Nanjing: Nanjing Forestry University, 2019.

    [24] 王宇超, 王得祥, 彭少兵, 等. 干旱胁迫对木本滨藜生理特性的影响[J]. 林业科学, 2010, 46(1): 61−67. doi: 10.11707/j.1001-7488.20100110

    Wang Y C, Wang D X, Peng S B, et al. Effects of drought stress on physiological characteristics of woody saltbush[J]. Scientia Silvae Sinicae, 2010, 46(1): 61−67. doi: 10.11707/j.1001-7488.20100110

    [25]

    Gill S S, Anjum N A, Gill R, et al. Superoxide dismutase-mentor of abiotic stress tolerance in crop plants[J]. Environmental Science and Pollution Research, 2015, 22(14): 10375−10394. doi: 10.1007/s11356-015-4532-5

    [26]

    Zwetsloot M J, Bauerle T L. Repetitive seasonal drought causes substantial species: pecific shifts in fine-root longevity and spatio-temporal production patterns in mature temperate forest trees[J]. New Phytologist, 2021, 231(3): 974−986. doi: 10.1111/nph.17432

    [27]

    Olmo M, Lopez-Lglesias B, Villar R. Drought changes the structure and elemental composition of very fine roots in seedlings of ten woody tree species: implications for a drier climate[J]. Plant and Soil, 2014, 384(1/2): 113−129.

    [28]

    Zhu L, Li A, Sun H, et al. The effect of exogenous melatonin on root growth and lifespan and seed cotton yield under drought stress[J]. Industrial Crops and Products, 2023, 204: 117344. doi: 10.1016/j.indcrop.2023.117344

    [29] 周自云, 梁宗锁, 刘启明. 不同土壤水分条件对酸枣生物量与耗水特性的影响[J]. 西北农林科技大学学报, 2010, 38(8): 90−96.

    Zhou Z Y, Liang Z S, Liu Q M. Effects of soil water content on biomass and water consumption characteristics of wild jujube (Zizyphus jujuba Mill var. spinosus (Bunge) Hu ex H. F. Chou)[J]. Journal of Northwest A&F University, 2010, 38(8): 90−96.

    [30] 侯立伟, 鲁绍伟, 李少宁, 等. 城市绿化灌木耐旱性评价及灌溉制度研究进展[J]. 世界林业研究, 2023, 36(1): 45−51.

    Hou L W, Lu S W, Li S N, et al. Review of research on drought tolerance evaluation and irrigation regime of urban greening shrubs[J]. World Forestry Research, 2023, 36(1): 45−51.

    [31] 喻晓丽, 邸雪颖, 宋丽萍. 水分胁迫对火炬树幼苗生长和生理特性的影响[J]. 林业科学, 2007, 43(11): 57−61. doi: 10.11707/j.1001-7488.20071110

    Yu X L, Di X Y, Song L P. Effects of water stress on the growth and eco-physiology of seedlings of the Rhus typhina[J]. Scientia Silvae Sinicae, 2007, 43(11): 57−61. doi: 10.11707/j.1001-7488.20071110

    [32] 彭远英, 颜红海, 郭来春, 等. 燕麦属不同倍性种质资源抗旱性状评价及筛选[J]. 生态学报, 2011, 31(9): 2478−2491.

    Peng Y Y, Yan H H, Guo L C, et al. Evaluation and selectionon drought-resistance of germplasm resources of Avena species with different types of ploidy[J]. Acta Ecologica Sinica, 2011, 31(9): 2478−2491.

    [33]

    Toscano S, Ferrante A, Tribuloto A, et al. Leaf physiological and anatomical responses of Lantana and Ligustrum species under different water availability[J]. Plant Physiology and Biochemistry, 2018, 127: 380−392. doi: 10.1016/j.plaphy.2018.04.008

    [34] 梁建萍, 贾小云, 刘亚令, 等. 干旱胁迫对蒙古黄芪生长及根部次生代谢物含量的影响[J]. 生态学报, 2016, 36(14): 4415−4422.

    Liang J P, Jia X Y, Liu Y L, et al. Effects of drought stress on seedling growth and accumulation of secondary metabolites in the roots of Astragalus membranaceus var. mongholicus[J]. Acta Ecologica Sinica, 2016, 36(14): 4415−4422.

    [35] 吴永波, 叶波. 高温干旱复合胁迫对构树幼苗抗氧化酶活性和活性氧代谢的影响[J]. 生态学报, 2016, 36(2): 403−410.

    Wu Y B, Ye B. Effects of combined elevated temperature and drought stress on anti-oxidative enzyme activities and reactive oxygen species metabolism of Broussonetia papyrifera seedlings[J]. Acta Ecologica Sinica, 2016, 36(2): 403−410.

    [36]

    Xiong S F, Wang Y D, Chen Y C, et al. Effects of drought stress and rehydration on physiological and biochemical properties of four oak species in China[J]. Plants, 2022, 11(5): 679. doi: 10.3390/plants11050679

    [37] 张婵, 洪希群, 吴承祯, 等. 干旱胁迫对闽北几种乡土树种耗水及光合特性的影响[J]. 应用与环境生物学报, 2023, 29(1): 212−219.

    Zhang C, Hong X Q, Wu C Z, et al. Effects of drought stress on water consumption and photosynthetic characteristics of native tree species in northern Fujian[J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(1): 212−219.

    [38] 朱婧, 聂水, 刘思, 等. 4种木本园林植物水分胁迫生理响应及耐旱性评价[J]. 分子植物育种, 2023, 21(23): 7867−7883.

    Zhu J, Nie S, Liu S, et al. Physiological response and drought tolerance evaluation of seedlings of four woody garden plants under water stress[J]. Molecular Plant Breeding, 2023, 21(23): 7867−7883.

    [39] 杨虎臣. 干旱胁迫对幼苗期甜菜脯氨酸(Pro)代谢通路的影响[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Yang H C. The effect of drought stress influence in the proline metabolism pathways of seedling period of sugay beet[D]. Harbin: Harbin Institute of Technology, 2016.

    [40] 周玲, 王乃江. 干旱胁迫下文冠果幼苗叶片的生理响应[J]. 西北林学院学报, 2012, 27(3): 7−11. doi: 10.3969/j.issn.1001-7461.2012.03.02

    Zhou L, Wang N J. Physiological responses of Xanthoceras sorbifolia seedling leaves under soil drought stress[J]. Journal of Northwest Forestry University, 2012, 27(3): 7−11. doi: 10.3969/j.issn.1001-7461.2012.03.02

    [41] 颜淑云, 周志宇, 邹丽娜, 等. 干旱胁迫对紫穗槐幼苗生理生化特性的影响[J]. 干旱区研究, 2011, 28(1): 139−145. doi: 10.3724/SP.J.1148.2011.00139

    Yan S Y, Zhou Z Y, Zou L N, et al. Effect of drought stress on physiological and biochemical properties of Amorpha fruticosa seedlings[J]. Arid Zone Research, 2011, 28(1): 139−145. doi: 10.3724/SP.J.1148.2011.00139

    [42] 郭春爱, 刘芳, 许晓明. 叶绿素b缺失与植物的光合作用[J]. 植物生理学通讯, 2006, 42(5): 967−973.

    Guo C A, Liu F, Xu X M. Chlorophyll-b deficient and photosynthesis in plants[J]. Plant Physiology Journal, 2006, 42(5): 967−973.

    [43]

    Yamaguchi-Shinozaki S K. Gene networks involved in drought stress response and tolerance[J]. Journal of Experimental Botany, 2007, 58(2): 221.

    [44]

    Chen W, Feng C, Guo W, et al. Comparative effects of osmotic-, salt- and alkali stress on growth, photosynthesis, and osmotic adjustment of cottonplants[J]. Photosynthetica, 2011, 49(3): 417−425.

  • 期刊类型引用(1)

    1. 徐媛,陈锦玲,陈玉梅,李璐璐,李惠敏,秦新民. 干旱胁迫下花生转录组与miRNA测序及相关基因的表达. 贵州农业科学. 2021(01): 1-9 . 百度学术

    其他类型引用(3)

图(5)  /  表(4)
计量
  • 文章访问数:  252
  • HTML全文浏览量:  44
  • PDF下载量:  19
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-11-07
  • 修回日期:  2023-12-26
  • 录用日期:  2024-06-27
  • 网络出版日期:  2024-09-09
  • 刊出日期:  2024-09-24

目录

    /

    返回文章
    返回