• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

加纳木霉ACCC30153对山新杨幼苗促生抗病功能分析

黄颖, 苗嘉琪, 遇文婧, 刁桂萍

黄颖, 苗嘉琪, 遇文婧, 刁桂萍. 加纳木霉ACCC30153对山新杨幼苗促生抗病功能分析[J]. 北京林业大学学报, 2024, 46(12): 103-113. DOI: 10.12171/j.1000-1522.20230346
引用本文: 黄颖, 苗嘉琪, 遇文婧, 刁桂萍. 加纳木霉ACCC30153对山新杨幼苗促生抗病功能分析[J]. 北京林业大学学报, 2024, 46(12): 103-113. DOI: 10.12171/j.1000-1522.20230346
Huang Ying, Miao Jiaqi, Yu Wenjing, Diao Guiping. Growth promotion and disease resistance function of Trichoderma ghanaiana ACCC30153 on Populus davidiana × P. bolleana seedlings[J]. Journal of Beijing Forestry University, 2024, 46(12): 103-113. DOI: 10.12171/j.1000-1522.20230346
Citation: Huang Ying, Miao Jiaqi, Yu Wenjing, Diao Guiping. Growth promotion and disease resistance function of Trichoderma ghanaiana ACCC30153 on Populus davidiana × P. bolleana seedlings[J]. Journal of Beijing Forestry University, 2024, 46(12): 103-113. DOI: 10.12171/j.1000-1522.20230346

加纳木霉ACCC30153对山新杨幼苗促生抗病功能分析

基金项目: 中央高校基本科研业务费专项(2572022DS07),黑龙江省省属科研院所科研业务费项目(LKSB2024-2、CZKYF2022-1-C048),黑龙江省博士后出站基金项目(2023)。
详细信息
    作者简介:

    黄颖,博士。主要研究方向:森林保护。Email:729218328@qq.com 地址:150040 黑龙江省哈尔滨市和兴路 26 号东北林业大学林学院

    责任作者:

    刁桂萍,博士,副教授。主要研究方向:森林保护。Email:dgp2003@126.com 地址:同上。

  • 中图分类号: S792.13

Growth promotion and disease resistance function of Trichoderma ghanaiana ACCC30153 on Populus davidiana × P. bolleana seedlings

  • 摘要:
    目的 

    探索并分析加纳木霉ACCC30153的促生抗病功能,为该菌株的田间应用提供理论依据和技术支持。

    方法 

    利用加纳木霉 ACCC30153分生孢子悬浮液灌施山新杨幼苗,对山新杨幼苗的生长指标、生理指标和光合作用进行了研究;通过加纳木霉 ACCC30153与病原菌对峙试验及分析相关抗病基因表达差异,明确加纳木霉ACCC30153抗病功能。

    结果 

    (1)灌施不同孢子浓度加纳木霉ACCC30153分生孢子悬浮液能够促进山新杨幼苗的生长。与对照相比,灌施1.5 × 107 cfu/mL孢子浓度60 d后幼苗平均株高增加了63.99%。生理指标测定显示,灌施处理显著提高叶绿素含量、净光合速率、蒸腾速率、气孔导度和胞间CO2浓度,且显著高于对照组(P < 0.05)。(2)加纳木霉ACCC30153处理显著提高了山新杨叶片内防御酶的活性,包括苯丙氨酸解氨酶(PAL)、过氧化物酶(POD)、过氧化氢酶(CAT)和超氧化物歧化酶(SOD),表明加纳木霉通过提高防御酶活性增强了山新杨的抗病能力。(3)对峙试验结果表明,加纳木霉ACCC30153对多种病原真菌具有显著的拮抗作用。实时荧光定量RT-qPCR结果表明,加纳木霉ACCC30153分泌的溶解酶和蛋白水解酶在其拮抗病原真菌过程中发挥了重要作用。

    结论 

    本研究明确了加纳木霉ACCC30153能够通过提高山新杨叶片内叶绿素含量、增强其光合速率促进山新杨幼苗的生长,并显著提高山新杨幼苗防御酶活性;同时能够分泌溶解酶及蛋白水解酶参与其对病原菌的拮抗作用。

    Abstract:
    Objective 

    To provide a theoretical basis and technical support for the field application of Trichoderma ghanense ACCC30153, its growth-promoting and disease-resistance functions were analyzed.

    Method 

    The study investigated the effects of irrigating poplar seedlings with a conidial suspension of T. ghanense ACCC30153 on growth indicators, physiological indicators, and photosynthesis. The disease resistance function of T. ghanense ACCC30153 was determined through pathogen confrontation tests and by analyzing the expression patterns of disease resistance genes.

    Result 

    (1) Irrigating with different concentrations of T. ghanense ACCC30153 conidial suspension promoted the growth of poplar seedlings. Compared with the control, the average height of poplar seedlings increased by 63.99% after 60 days of irrigation with a conidial suspension of T. ghanense ACCC30153 at a concentration of 1.5 × 107 cfu/mL. Additionally, physiological measurements demonstrated a significant increase in chlorophyll, net photosynthetic rate, transpiration rate, stomatal conductance and intercellular CO2 concentration in leaves compared to the control group (P < 0.05). (2) Comparison of disease resistance in poplar leaves irrigated with or without T. ghanense ACCC30153 conidial suspension revealed a significant improvement in disease resistance after treatment. Enzymatic activity of defense-related enzymes, including phenylalanine ammonia-lyase (PAL), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), indicated that T. ghanense ACCC30153 enhanced disease resistance by increasing the activity of these defense enzymes in the leaves (P < 0.05). (3)The confrontation experiment showed that T. ghanense ACCC30153 exhibited significant antagonistic effects on against various pathogenic fungi. Furthermore, real-time fluorescence quantitative RT-qPCR analysis revealed that lysozymes and proteolytic enzymes secreted by T. ghanense ACCC30153 played critical roles in its antagonistic effects against pathogenic fungi.

    Conclusion 

    This study demonstrated that T. ghanense ACCC30153 can promote the growth of poplar seedlings by increasing chlorophyll content, enhancing photosynthetic rates, and it significantly increased the activity of defense enzymes. Moreover, the T. ghanense ACCC30153 can secrete lytic enzymes and proteolytic enzymes to participate in its antagonism against pathogenic organisms.

  • 图  1   加纳木霉ACCC30153对山新杨幼苗促生作用

    CK.对照;T1.孢子浓度1.5 × 103 cfu/mL;T2.孢子浓度1.5 × 105 cfu/mL;T3.孢子浓度1.5 × 107 cfu/mL。不同小写字母表示同一时间不同处理之间差异显著(P < 0.05)。CK, control; T1, spore concentration of 1.5 × 103 cfu/mL; T2, spore concentration of 1.5 × 105 cfu/mL; T3, spore concentration of 1.5 × 107 cfu/mL. Different lowercase letters indicate significant differences in same time under varied treatments (P < 0.05).

    Figure  1.   Promotion function of Trichoderma ghanense ACCC30153 on growth of P. davidiana × P. bolleana seedlings

    图  2   不同处理下山新杨移栽苗净光合速率(Pn)日变化特性

    Figure  2.   Diurnal variation characteristics of net photosynthetic rates (Pn) in P. davidiana × P. bolleana under different treatments

    图  3   不同处理下山新杨移栽苗的净光合速率(Pn)、蒸腾速率(E)、气孔导度(Gs)和胞间CO2浓度(Ci

    不同小写字母表示同一时间不同处理间的显著性差异(P < 0.05)。Different lowercase letters indicate significant differences between varied processes at the same time (P < 0.05).

    Figure  3.   Net photosynthetic rate (Pn), transpiration rate (E), stomatal conductance (Gs) and intercellular CO2 concentration(Ci) of transplanted P. davidiana × P. bolleana seedlings under different treatments

    图  4   山新杨幼苗叶片生理酶活性

    Figure  4.   Leaf physiological enzyme activity of P. davidiana × P. bolleana seedlings

    图  5   对峙试验

    T.加纳木霉ACCC30153;A.叶枯病病原菌;T-A.加纳木霉ACCC30153与叶枯病病原菌对峙;C.烂皮病病原菌;T-C.加纳木霉ACCC30153与烂皮病病原菌对峙。T, T. ghanense ACCC30153; A, A. alternate; T-A, confrontation test of T. ghanense ACCC30153 and A. alternate; C, C. chrysosperma; T-C, confrontation test of T. ghanense ACCC30153 and C. chrysosperma.

    Figure  5.   Confrontation test

    图  6   加纳木霉ACCC30153不同诱导下溶解酶基因表达量

    MM. 微量无机盐基础培养基Mineral inorganic salt medium;CA. 细链格孢菌细胞壁 Cell walls of A. alternata;CC. 金黄壳囊孢菌细胞壁 Cell walls of C. chrysosperma;FA. 细链格孢菌发酵液 Fermentation supernatant of A. alternata;FC. 金黄壳囊孢菌发酵液 Fermentation supernatant of C. chrysosperma

    Figure  6.   Expression levels of lytic enzyme gene of T. ghanense ACCC30153 under different treatments

    表  1   引物设计

    Table  1   Primer design

    基因编号 Gene No. 引物序列(5′—3′) Primer sequence (5′—3′)
    TghECh F:GCGACCTGCTCCAGAGATTGAG R:GCCCGTGTTTGTCACCTCCA
    TghChi F:GGCACTTGGTACGAGCCATTCA R:CCGCTTGTAGTCCTCGCCATT
    TghAsp F:AGGCGTCCAGGTCATCGTAGA R:CGGATCGAGCAGCGAGTTGTT
    TghAse F:TGGACTCTGGATGTGCGTCAAC R:GCCGATCCATGTGCCTTCTTCT
    TghXyn F:TTGTCACTTTCTCCGGCGTCG R:CCGTGTTCTTGGCCGTAACGA
    TghNac F:CTTTGTCGGCGGCAAGGGAT R:CGATGATGGACGGCTGGTTGA
    TghSep F:CCGTCGTCTACTGCCTCAACAA R:GCTCTACGATGCTGCGGTGAA
    TghGlu F:CGGCATCCACAAGCGACACA R:TCATCGTCTTCGTCCTCGTCCT
    TghEgl F:GAGTTCAACGCCCGCAACCA R:CGCTCCGGCATTGACCTTCTT
    TghGTP F:CTTTGTCGGCGGCAAGGGAT R:CGATGATGGACGGCTGGTTGA
    actin F:AAGGAGTCCGTCGTCGAGGTT R:AGTTGAGGGCGGAGCGGATA
    α-tublin F:CTGGTCACGGCTGGACTACAAG R:GCATCAAGTCGTCGTCGTCGT
    β-tublin F:GTTACCTGACGTGCTCCACCAT R:CGGAACATGGCGGTGAACTGT
    下载: 导出CSV

    表  2   不同处理60 d后山新杨移栽苗的生长状况

    Table  2   Growth of P. davidiana × P. bolleana seedlings under different treatments after 60 days

    生长指标 Growth indicators CK T1 T2 T3
    茎粗 Stem diameter/cm 0.21 ± 0.004a 0.26 ± 0.011a 0.38 ± 0.005b 0.55 ± 0.010b
    根长 Root length/cm 2.26 ± 0.261a 2.29 ± 0.142a 5.26 ± 0.166b 6.11 ± 0.211b
    叶片数 Leaf number 13.6 ± 0.050a 15.2 ± 0.115a 22.6 ± 0.168b 23.8 ± 0.008b
    鲜质量 Fresh mass/g 6.05 ± 0.035a 6.79 ± 0.122a 9.28 ± 0.135b 11.55 ± 0.256b
    干质量 Dry mass/g 1.03 ± 0.056a 2.34 ± 0.045a 4.54 ± 0.246b 5.08 ± 0.002b
    注:同行不同小写字母表示不同处理下同一生长指标的差异显著(P < 0.05)。Note: different lowercase letters in the same line indicate significant differences in same growth index under varied treatments (P < 0.05).
    下载: 导出CSV

    表  3   不同处理下山新杨叶片叶绿素a含量

    Table  3   Contents of chlorophyll a in leaves of P. davidiana × P. bolleana under different treatments μg/g

    处理
    Treatment
    0 h 1 h 3 h 6 h 12 h 1 d 5 d 10 d 15 d
    CK 0.84a 1.07b 2.72b 2.11b 3.53b 3.61b 3.65b 3.68b 3.39b
    T1 0.94a 2.81b 2.55b 3.82ab 3.42b 4.16ab 4.35b 5.46a 6.31a
    T2 0.97a 2.85b 3.78ab 5.83a 5.29a 7.11a 7.67a 6.02a 7.72a
    T3 0.94a 5.98a 4.71a 4.16ab 4.53ab 5.95ab 5.68ab 5.80a 6.74a
    注:同列不同小写字母表示不同处理之间差异显著(P < 0.05)。下同。Notes: different lowercase letters in the same column indicate significant differences under varied treatments (P < 0.05). The same below.
    下载: 导出CSV

    表  4   不同处理下山新杨叶片叶绿素b含量

    Table  4   Contents of chlorophyll b in leaves of P. davidiana × P. bolleana under different treatments μg/g

    处理
    Treatment
    0 h 1 h 3 h 6 h 12 h 1 d 5 d 10 d 15 d
    CK 0.81a 0.24b 1.85 1.88b 2.08b 2.08b 3.68b 2.07b 3.33b
    T1 0.77a 4.93a 4.63a 4.95a 4.93a 4.90a 4.94ab 5.46ab 5.32a
    T2 0.91a 3.73a 2.65b 4.23a 4.48a 5.04a 5.71a 6.66a 6.16a
    T3 1.21a 3.67a 3.92ab 4.40a 4.99a 4.82a 5.36a 6.21a 6.15a
    下载: 导出CSV

    表  5   不同处理下山新杨叶片叶绿素总含量

    Table  5   Total contents of chlorophyll in leaves of P. davidiana × P. bolleana under different treatments μg/g

    处理
    Treatment
    0 h1 h3 h6 h12 h1 d5 d10 d15 d
    CK1.64a1.30c4.57b3.99b5.62b5.69b7.33b5.75b6.72b
    T11.71a7.74b7.18a8.77ab8.35ab9.06ab9.28ab10.93ab11.63ab
    T21.87a6.57b6.43ab10.07a9.78a12.15a13.38a12.68a13.88a
    T32.14a9.65a8.64a8.56ab9.51a10.76ab11.04ab12.01a12.90a
    下载: 导出CSV
  • [1]

    Hanada R E, Pomella A W V, Soberanis W, et al. Biocontrol potential of Trichoderma martiale against the black-pod disease (Phytophthora palmivora) of cacao[J]. Biological Control, 2009, 50(2): 143−149. doi: 10.1016/j.biocontrol.2009.04.005

    [2]

    Olson H A, Benson D M. Induced systemic resistance and the role of binucleate Rhizoctonia and Trichoderma hamatum 382 in biocontrol of Botrytis blight in geranium[J]. Biological Control, 2007, 42(2): 233−241. doi: 10.1016/j.biocontrol.2007.05.009

    [3]

    Chen L, Yang X, Raza W, et al. Solid-state fermentation of agro-industrial wastes to produce bioorganic fertilizer for the biocontrol of Fusarium wilt of cucumber in continuously cropped soil[J]. Bioresource Technolology, 2011, 102(4): 3900−3910. doi: 10.1016/j.biortech.2010.11.126

    [4]

    Wijesinghe C J, Wijeratnam R S W, Samarasekara J K R R, et al. Biological control of Thielaviopsis paradoxa on pineapple by an isolate of Trichoderma asperellum[J]. Biological Control, 2010, 53(3): 285−290. doi: 10.1016/j.biocontrol.2010.02.009

    [5]

    Sant D, Casanova E, Segarra G, et al. Effect of Trichoderma asperellum strain T34 on Fusarium wilt and water usage in carnation grown on compost-based growth medium[J]. Biological Control, 2010, 53(3): 291−296. doi: 10.1016/j.biocontrol.2010.01.012

    [6]

    Viterbo A, Landau U, Kim S, et al. Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203[J]. FEMS Microbiology Letters, 2010, 305(1): 42−48. doi: 10.1111/j.1574-6968.2010.01910.x

    [7]

    Robischon M, Du J, Miura E, et al. The Populus class Ⅲ HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems[J]. Plant Physiology, 2010, 155(3): 1214−1225.

    [8] 赛牙热木·哈力甫, 邓勋, 宋小双, 等. 木霉菌生物防治及促进植物生长机制研究进展[J]. 吉林农业大学学报, 2020, 42(3): 237−247.

    Halifu S, Deng X, Song X S, et al. Research progress in the mechanism of biocontrol and plant growth promotion of Trichoderma[J]. Journal of Jilin Agricultural University, 2020, 42(3): 237−247.

    [9]

    Flores A, Chet I, Herrera-Estrella A. Improved biocontrol activity of Trichoderma harzianum by over-expression of the proteinase-encoding gene prb1[J]. Current Genetics, 1997, 31(1): 3−7.

    [10]

    Fan H J, Liu Z H, Zhang R S, et al. Functional analysis of a subtilisin-like serine protease gene from biocontrol fungus Trichoderma harzianum[J]. Journal of Microbiology, 2014, 52: 129−138. doi: 10.1007/s12275-014-3308-9

    [11]

    Yang X, Cong H, Song J, et al. Heterologous expression of an aspartic protease gene from biocontrol fungus Trichoderma asperellum in Pichia pastoris[J]. World Journal of Microbiology and Biotechnology, 2013, 29: 2087−2094. doi: 10.1007/s11274-013-1373-6

    [12]

    Avni A, Bailey B A, Mattoo A K, et al. Induction of ethylene biosynthesis in Nicotiana tabacum by a Trichoderma viride xylanase is correlated to the accumulation of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) synthase and ACC oxidase transcripts[J]. Plant Physiology, 1994, 106: 1049−1055. doi: 10.1104/pp.106.3.1049

    [13]

    Zeilinger S, Reithner B, Scala V, et al. Signal transduction by Tga3, a novel G protein alpha subunit of Trichoderma atroviride[J]. Applied and Environmental Microbiology, 2005, 71(3): 1591−1597. doi: 10.1128/AEM.71.3.1591-1597.2005

    [14]

    Susanne Z, Markus O. Trichoderma biocontrol: signal transduction pathways involved in host sensing and mycoparasitism[J]. Gene Regulation and Systems Biology, 2007, 1: 227−234.

    [15]

    de Paula R G P, Antoniêto A C C A, Carraro C B, et al. The duality of the MAPK signaling pathway in the control of metabolic processes and cellulase production in Trichoderma reesei[J/OL]. Scientific Reports, 2018, 8(1): 14931[2023−06−19]. https://www.nature.com/articles/s41598-018-33383-1.

    [16]

    Susanne Z, Markus O. Trichoderma biocontrol: signal transduction pathways involved in host sensing and mycoparasitism[J]. Gene Regulation and Systems Biology, 2007, 1: 1227−1234.

    [17]

    Yu W, Mijiti G, Huang Y, et al. Functional analysis of eliciting plant response protein Epl1-Tas from Trichoderma asperellum ACCC30536[J]. Scientific Reports, 2018, 8(1): 7974. doi: 10.1038/s41598-018-26328-1

    [18] 胡琼, 刘茂泉. 木霉菌促生与拮抗作用研究进展[J]. 农药, 2019, 58(7): 478−482.

    Hu Q, Liu M Q. Research progress of plant growth promotion and antagonistic action of Trichoderma[J]. Pesticide, 2019, 58(7): 478−482.

    [19] 刘畅, 张昕玥, 蔡汶妤, 等. 绿色木霉与哈茨木霉对黄瓜幼苗促生作用机理的研究[J]. 江苏农业科学, 2020, 48(16): 156−160.

    Liu C, Zhang X Y, Cai W Y, et al. Study on growth-promoting mechanism of Trichoderma viride and Trichoderma harzianum to cucumber seedlings[J]. Jiangsu Agricultural Sciences, 2020, 48(16): 156−160.

    [20] 邓俊杰, Abdul M B, 侯雪月, 等. 木霉对月季幼苗生长的影响[J]. 植物研究, 2020, 40(5): 666−672. doi: 10.7525/j.issn.1673-5102.2020.05.004

    Deng J J, Abdul M B, Hou X Y, et al. Effect of Trichoderma harzianum T6 on Rosa chinensis ‘Shi-Jie-Mei’ growth[J]. Bulletin of Botanical Research, 2020, 40(5): 666−672. doi: 10.7525/j.issn.1673-5102.2020.05.004

    [21] 王娜, 窦恺, 王志英, 等. 山新杨组培苗生根移栽方法[J]. 植物研究, 2014, 34(3): 380−385.

    Wang N, Dou K, Wang Z Y, et al. Rooting and transplanting method of Populus davidiana × P. bolleana tissue culture seedlings[J]. Bulletin of Botanical Research, 2014, 34(3): 380−385.

    [22] 遇文婧. 深绿木霉刺激植物响应蛋白TatEpl1诱导杨树系统抗病性机制[D]. 哈尔滨: 东北林业大学, 2020.

    Yu W J. Mechaniam of disease resistance of Populus davidiana × P. alba var. pyramidlis under eliciting plant response protein TatEpl1 of Trichoderma atrovirite inducing[D]. Harbin: Northeast Forestry University, 2020.

    [23] 古丽吉米拉·米吉提. 棘孢木霉刺激植物响应蛋白基因Epll功能研究[D]. 哈尔滨: 东北林业大学, 2014.

    Gulijimila Mijiti. Functional study of eliciting plant response protein gene Epl1 from Trichoderma aspereullm[D]. Harbin: Northeast Forestry University, 2014.

    [24] 黄颖. 农杆菌介导棘孢木霉转化系统优化及突变体分析[D]. 哈尔滨: 东北林业大学, 2020.

    Huang Y. The optimization of agrobacterium tumefaciens mediated Trichoderma asperellum transformation system and analysis of T-DNA insertional mutants[D]. Harbin: Northeast Forestry University, 2020.

    [25] 于威, 郝天龙. 几种防御性酶在植物抗病方面的研究进展[J]. 北京农业, 2014(36): 133−134.

    Yu W, Hao T L. Research progress of several defensive enzymes in plant disease resistance[J]. Beijing Agriculture, 2014(36): 133−134.

    [26] 朱国栋. 棘孢木霉诱导下山新杨的生长及生理生化响应[D]. 哈尔滨: 东北林业大学, 2015.

    Zhu G D. Study on the growth, physiological and biochemical responses of Populus davidiana × P. alba var. pyramidlis seedlings inducing by Trichoderma aspereullm[D]. Harbin: Northeast Forestry University, 2015.

    [27] 高长敏, 马光恕, 廉华, 等. 木霉菌对黄瓜幼苗生长和膜脂过氧化指标的影响及对枯萎病的防治效果[J]. 中国生物防治学报, 2018, 34(5): 762−770.

    Gao C M, Ma G S, Lian H, et al. Effect of trichoderma on the growth of cucumber seedlings, membrane lipid indexes and control effect against fusarium wilt[J]. Chinese Journal of Biological Control, 2018, 34(5): 762−770.

    [28] 孙悦燕, 王秀丽, 高润梅, 等. 干旱胁迫下华北落叶松幼苗接种木霉的生理变化[J]. 应用生态学报, 2021, 32(3): 853−859.

    Sun Y Y, Wang X L, Gao R M, et al. Physiological changes of Larix principis-rupprechtii seedlings inoculated with Trichoderma spp. under drought stress[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 853−859.

    [29] 陈卫卫, 唐然, 吴昱煜, 等. 象草PAL基因克隆及其蛋白质结构与功能预测[J]. 草地学报, 2016, 24(1): 137−145.

    Chen W W, Tang R, Wu Y Y, et al. Cloning of a PAL gene of Pennisetum purpureum and prediction of its protein structure and function[J]. Journal of Grassland Science, 2016, 24(1): 137−145.

    [30] 台莲梅, 高俊峰, 左豫虎, 等. 长枝木霉菌T115D诱导大豆叶片防御酶活性及疫病盆栽防治效果[J]. 中国生物防治学报, 2018, 34(6): 897−905.

    Tai L M, Gao J F, Zuo Y H, et al. Induction of defense enzymes activities in soyben and control effect of phytophthora root rot in flowerpot by Trichoderma longibrachiaum T115D[J]. Chinese Journal of Biological Control, 2018, 34(6): 897−905.

    [31]

    Limón M C, Chacón M R, Mejías R, et al. Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellu- lose binding-domain[J]. Applied Microbiology and Biotechnology, 2004, 64: 675−685. doi: 10.1007/s00253-003-1538-6

  • 期刊类型引用(5)

    1. 买永辉,贾艳玲,齐蓉,陈帅,王宏彬,丁志辉. 基于LoRa的沙漠近地环境参数监测系统设计. 数字技术与应用. 2023(07): 163-165 . 百度学术
    2. 屈英,刘小强,李明淇. 枣树滴灌水肥一体化发展现状及建议. 河北农机. 2023(18): 94-96 . 百度学术
    3. 丁磊,鲁延芳,占玉芳,甄伟玲,滕玉风,钱万建. 沙荒地红枣矮化密植丰产栽培技术. 林业科技通讯. 2022(04): 78-81 . 百度学术
    4. 韩齐齐,张娅妮,冯荦荦,闫欣鹏,张有林. 冬枣采后生理与气调贮藏关键技术研究. 食品与发酵工业. 2021(04): 33-39 . 百度学术
    5. 张波,吕廷波,赵秀杰,王东旺,徐强,邢猛,周小杰. 不同灌溉定额对滴灌骏枣生长的影响. 水土保持学报. 2021(06): 168-174+182 . 百度学术

    其他类型引用(1)

图(6)  /  表(5)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  29
  • PDF下载量:  41
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-11-28
  • 修回日期:  2024-05-29
  • 录用日期:  2024-11-25
  • 网络出版日期:  2024-11-26
  • 刊出日期:  2024-12-24

目录

    /

    返回文章
    返回