• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

基于经验模态分解和小波包能量熵的杉木加载过程中细观损伤监测与识别

赵东, 马荣宇, 于立川, 赵健, 刘嘉辉

赵东, 马荣宇, 于立川, 赵健, 刘嘉辉. 基于经验模态分解和小波包能量熵的杉木加载过程中细观损伤监测与识别[J]. 北京林业大学学报, 2024, 46(3): 123-131. DOI: 10.12171/j.1000-1522.20230365
引用本文: 赵东, 马荣宇, 于立川, 赵健, 刘嘉辉. 基于经验模态分解和小波包能量熵的杉木加载过程中细观损伤监测与识别[J]. 北京林业大学学报, 2024, 46(3): 123-131. DOI: 10.12171/j.1000-1522.20230365
Zhao Dong, Ma Rongyu, Yu Lichuan, Zhao Jian, Liu Jiahui. Monitoring and identification of microscopic damage during fir loading based on empirical modal decomposition and wavelet packet energy entropy[J]. Journal of Beijing Forestry University, 2024, 46(3): 123-131. DOI: 10.12171/j.1000-1522.20230365
Citation: Zhao Dong, Ma Rongyu, Yu Lichuan, Zhao Jian, Liu Jiahui. Monitoring and identification of microscopic damage during fir loading based on empirical modal decomposition and wavelet packet energy entropy[J]. Journal of Beijing Forestry University, 2024, 46(3): 123-131. DOI: 10.12171/j.1000-1522.20230365

基于经验模态分解和小波包能量熵的杉木加载过程中细观损伤监测与识别

基金项目: 北京市自然科学基金项目(2182045)。
详细信息
    作者简介:

    赵东,教授,博士生导师。主要研究方向:工程力学与仿真、木材无损检测。Email:zhaodong68@bjfu.edu.cn 地址:100083 北京市海淀区清华东路 35 号北京林业大学工学院

  • 中图分类号: S791.27;TV698.1+5

Monitoring and identification of microscopic damage during fir loading based on empirical modal decomposition and wavelet packet energy entropy

  • 摘要:
    目的 

    细观损伤是承载木材断裂的主要原因之一。木材的多孔层状结构使其损伤过程变得复杂,针对单一信号处理方法较难充分挖掘木材断裂声发射信号中的细观损伤信息,造成识别信息不充分、不完备的问题。本研究提出通过经验模态分解(EMD)和小波包能量熵结合的信号处理方法,通过声发射无损检测手段,识别杉木加载过程中的细观损伤类型。

    方法 

    以杉木为研究对象,进行单轴压缩、双悬臂梁和顺纹拉伸3种单一损伤试验,并对其进行加载过程中声发射信号的采集、监测与分析。通过小波包阈值法消除损伤试验中采集的声发射信号噪声,经由EMD和相关系数计算,分离出最能体现杉木细观损伤特征的本征模态(IMF)分量,并对IMF分量进行基于傅里叶变换的峰值频率分析和小波包能量熵分析,提取杉木细观损伤的特征。

    结果 

    (1)EMD和小波包能量熵结合的信号处理方法能够判断杉木加载过程中声发射信号对应的细观损伤类型与构成。(2)杉木不同细观损伤类型的声发射信号对应不同的小波包能量熵区间:胞壁屈曲与塌溃(0.69 ~ 0.99)、层间开裂(1.57 ~ 1.78)、纤维束断裂(1.92 ~ 2.27)。(3)宏观断口观察和电镜显微分析验证了该方法的准确性。

    结论 

    经验模态分解–小波包能量熵法避免了声发射信号模态堆叠的影响,并解决了木材细观损伤复杂且难以识别的问题,为杉木木材断裂的早期诊断方法提供了理论支撑。

    Abstract:
    Objective 

    Microscopic damage is a primary contributor to wood fracture. The intricate porous laminar structure of wood makes the damage process complex, posing challenges in fully comprehending the microscopic damage information within the acoustic emission signal of wood fracture through a single signal processing method. This limitation results in inadequate and incomplete identification information. This study introduced a signal processing approach that combined empirical modal decomposition (EMD) and wavelet packet energy entropy to discern the various types of microscopic damage occurring during the loading process of fir (Cunninghamia lanceolata) using acoustic emission nondestructive testing.

    Method 

    Three individual damage tests, namely uniaxial compression, double cantilever beam, and parallel tensile were conducted on fir as the study object. Acoustic emission signals were acquired, monitored, and analyzed throughout the loading processes. The wavelet packet thresholding method was employed to eliminate noise from the acoustic emission signals recorded during the damage tests. Furthermore, the EMD method, coupled with correlation coefficient calculations, was utilized to isolate the intrinsic mode function (IMF) components, which can fully reflect the characteristics of microscopic damage in fir. Subsequently, Fourier-transform-based peak frequency analysis and wavelet-packet energy entropy analysis were executed on the IMF components to extract the features associated with the microscopic damage in fir.

    Result 

    (1) The combination of EMD and wavelet packet energy entropy effectively determined the type and composition of signals corresponding to microscopic damage. (2) Acoustic emission signals of different microscopic damage types corresponded to distinct wavelet energy entropy intervals: buckling and collapse of cell wall (0.69−0.99), delamination (1.57−1.78), and fiber bundle breakage (1.92−2.27). (3) The accuracy of the method was verified by macroscopic fracture and scanning electron microscopy experiments.

    Conclusion 

    The combination of EMD and wavelet packet energy entropy can avoid the influence of modal stacking in acoustic emission signals, and resolve the hard problem of recognizing complex microscopic damages in wood. This approach offers theoretical basis for the early diagnosis of fir wood fractures.

  • 图  1   试件几何形状与尺寸图

    Figure  1.   Specimen geometry and dimensions

    图  2   单一损伤试验的载荷–时间曲线图

    Figure  2.   Load-time graphs for single damage tests

    图  3   单一损伤试验中采集的AE信号及其FFT频域图

    Figure  3.   AE signals and their FFT frequency-domain plots acquired in single damage tests

    图  4   单轴压缩试验AE信号及IMF分量频域图

    Figure  4.   AE signal and IMF component frequency domain of uniaxial compression test

    图  5   双悬臂梁试验AE信号及IMF分量频域图

    Figure  5.   AE signal and IMF component frequency domain of double cantilever beam test

    图  6   顺纹拉伸试验AE信号及IMF分量频域图

    Figure  6.   Parallel tensile test AE signal and IMF component frequency domain

    图  7   单一损伤试件损伤的宏观图像

    Figure  7.   Macroscopic image of damage in a single damaged sample

    图  8   单一损伤试验对应损伤的SEM图

    Figure  8.   SEM maps of damage corresponding to a single damage test

    表  1   单一损伤试验IMF分量和原信号之间的相关系数

    Table  1   Correlation coefficients between the IMF components of the single damage test and the original signal

    试验类型
    Test type
    IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 残余分量
    Residual component
    单轴压缩 Uniaxial compression 0.2270 0.8885 0.1338 0.0170 0.0080 0.0039 0.0028 0.0045
    双悬臂梁 Double cantilever beam 0.9459 0.3756 0.0348 −0.0015 0.0005 0.0002 0.0002 −0.0011
    顺纹拉伸 Parallel tensile 0.8394 0.4968 0.2006 0.0923 −0.0018 −0.0030 0.0008 −0.0032
    下载: 导出CSV

    表  2   单一损伤试验IMF分量和原信号之间的相关系数及其小波包能量熵

    Table  2   Correlation coefficients between the IMF components of the single damage test and the original signal,and their wavelet packet energy entropy

    AE信号
    AE signal
    IMF1相关系数
    Correlation coefficient of IMF1
    IMF1能量熵
    Energy entropy of IMF1
    IMF2相关系数
    Correlation coefficient of IMF2
    IMF2能量熵
    Energy entropy of IMF2
    UC1 0.3632 1.8692 0.9232 0.6998
    UC2 0.2270 2.6569 0.8885 0.7324
    UC3 0.5673 1.9258 0.8617 0.7962
    UC4 0.3382 2.1592 0.8537 0.8357
    UC5 0.4808 2.2873 0.7332 0.9843
    DCB1 0.9459 1.5769 0.3756 0.9873
    DCB2 0.9121 1.7701 0.3948 1.0595
    DCB3 0.9258 1.6938 0.3551 1.0326
    DCB4 0.9299 1.7498 0.3299 1.0342
    DCB5 0.9245 1.7052 0.3376 1.0047
    PT1 0.8394 2.0463 0.4968 1.6399
    PT2 0.9013 1.9292 0.3192 1.4839
    PT3 0.8805 2.1697 0.4161 1.4556
    PT4 0.8638 2.2034 0.4247 1.5903
    PT5 0.8595 2.2647 0.4186 1.4179
    注:UC1 ~ UC5分别代表单轴压缩试验1 ~ 5;DCB1 ~ DCB5分别代表5组双悬臂梁试验1 ~ 5;PT1 ~ PT5分别代表5组顺纹拉伸试验1 ~ 5。Notes: UC1−UC5 represent the uniaxial compression test 1−5. DCB1−DCB5 represent the double cantilever beam test 1−5. PT1−PT5 represent the parallel tensile test 1−5.
    下载: 导出CSV

    表  3   不同的细观损伤类型对应的峰值频率

    Table  3   Peak frequencies corresponding to different types of microscopic damage

    项目
    Item
    胞壁屈曲与塌溃
    Buckling and collapse of cell wall
    微裂隙损伤
    Microcrack damage
    层间开裂
    Delamination
    纤维断裂
    Fiber breakage
    峰值频率 Peak frequency/kHz 20 ~ 80 90 ~ 140 150 ~ 210 250 ~ 350
    注:此表引自参考文献[14]。Note: the table is cited from reference [14].
    下载: 导出CSV
  • [1] 邵卓平. 木材损伤断裂与木材细观损伤基本构元[J]. 林业科学, 2007, 43(4): 107−110.

    Shao Z P. Wood damage-fracture and wood meso-damage elements[J]. Scientia Silvae Sinicae, 2007, 43(4): 107−110.

    [2] 邵卓平, 陈品, 查朝生, 等. 木材损伤断裂过程的声发射特性与Felicity效应[J]. 林业科学, 2009, 45(2): 86−91.

    Shao Z P, Chen P, Zha Z S, et al. Acoustic emission characteristics of damage and fracture process of wood and felicity effect[J]. Scientia Silvae Sinicae, 2009, 45(2): 86−91.

    [3] 涂郡成, 赵东, 赵健. 应用AE和DIC原位监测含横纹裂纹木构件的裂纹演化规律试验研究[J]. 北京林业大学学报, 2020, 42(1): 142−148.

    Tu J C, Zhao D, Zhao J. Experimental study on in situ monitoring of the evolution law of cracks in wood components with transverse cracks based on acoustic emission and image correlation[J]. Journal of Beijing Forestry University, 2020, 42(1): 142−148.

    [4] 赵小矛, 焦亮亮, 赵健, 等. 榫卯结构弯曲破坏时声发射衰减特性与源定位[J]. 北京林业大学学报, 2017, 39(1): 107−111.

    Zhao X M, Jiao L L, Zhao J, et al. Acoustic emission attenuation and source location on the bending failure of the rectangular mortise-tenon joint for wood structures[J]. Journal of Beijing Forestry University, 2017, 39(1): 107−111.

    [5] 王丽宇, 鹿振友, 赵东, 等. 白桦材LT型裂纹的演化与增长行为的研究[J]. 北京林业大学学报, 2002, 24(2): 59−61. doi: 10.3321/j.issn:1000-1522.2002.02.012

    Wang L Y, Lu Z Y, Zhao D, et al. Crack initiation and propagation in LT specimens of Betula platyphylla Suk[J]. Journal of Beijing Forestry University, 2002, 24(2): 59−61. doi: 10.3321/j.issn:1000-1522.2002.02.012

    [6] 张美林, 李俊萩, 张晴晖, 等. 基于熵和波形特征的木材损伤断裂过程声发射信号处理[J]. 林业工程学报, 2022, 7(2): 159−166.

    Zhang M L, Li J Q, Zhang Q H, et al. Acoustic emission signal processing and analysis of wood damage and fracture process based on entropy and waveform characteristics[J]. Journal of Forestry Engineering, 2022, 7(2): 159−166.

    [7]

    Tu J C, Yu L C, Zhao J, et al. Damage modes recognition of wood based on acoustic emission technique and Hilbert-Huang transform analysis[J]. Forests, 2022, 13(4): 631. doi: 10.3390/f13040631

    [8]

    Liu X L, Liu Z, Li X B, et al. Experimental study on the effect of strain rate on rock acoustic emission characteristics[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104420. doi: 10.1016/j.ijrmms.2020.104420

    [9]

    Verstrynge E, van Steen C, Vandecruys E, et al. Steel corrosion damage monitoring in reinforced concrete structures with the acoustic emission technique: a review[J]. Construction and Building Materials, 2022, 349: 128732. doi: 10.1016/j.conbuildmat.2022.128732

    [10]

    Li Y, Xu F Y. Structural damage monitoring for metallic panels based on acoustic emission and adaptive improvement variational mode decomposition-wavelet packet transform[J]. Structural Health Monitoring, 2022, 21(2): 710−730. doi: 10.1177/14759217211008969

    [11]

    He K F, Xia Z X, Si Y, et al. Noise reduction of welding crack ae signal based on EMD and wavelet packet[J]. Sensors, 2020, 20: 761. doi: 10.3390/s20030761

    [12]

    Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Science, 1998, 454: 903−995.

    [13]

    Yang Y, Yu D J, Cheng J S. A roller bearing fault diagnosis method based on EMD energy entropy and ANN[J]. Journal of Sound and Vibration, 2006, 294(1−2): 269−277.

    [14]

    Tu J C, Zhao D, Zhao J, et al. Experimental study on crack initiation and propagation of wood with LT-type crack using digital image correlation (DIC) technique and acoustic emission (AE)[J]. Wood Science and Technology, 2021, 55: 1577−1591. doi: 10.1007/s00226-020-01252-8

    [15] 李柬龙, 陈胜, 李海潮, 等. 轻木细胞壁超微结构与力学性能关系研究[J]. 北京林业大学学报, 2022, 44(2): 115−122.

    Li J L, Chen S, Li H C, et al. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115−122.

  • 期刊类型引用(0)

    其他类型引用(1)

图(8)  /  表(3)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  92
  • PDF下载量:  57
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-12-19
  • 修回日期:  2024-01-25
  • 录用日期:  2024-01-31
  • 网络出版日期:  2024-02-04
  • 刊出日期:  2024-03-24

目录

    /

    返回文章
    返回