Monitoring and identification of microscopic damage during fir loading based on empirical modal decomposition and wavelet packet energy entropy
-
摘要:目的
细观损伤是承载木材断裂的主要原因之一。木材的多孔层状结构使其损伤过程变得复杂,针对单一信号处理方法较难充分挖掘木材断裂声发射信号中的细观损伤信息,造成识别信息不充分、不完备的问题。本研究提出通过经验模态分解(EMD)和小波包能量熵结合的信号处理方法,通过声发射无损检测手段,识别杉木加载过程中的细观损伤类型。
方法以杉木为研究对象,进行单轴压缩、双悬臂梁和顺纹拉伸3种单一损伤试验,并对其进行加载过程中声发射信号的采集、监测与分析。通过小波包阈值法消除损伤试验中采集的声发射信号噪声,经由EMD和相关系数计算,分离出最能体现杉木细观损伤特征的本征模态(IMF)分量,并对IMF分量进行基于傅里叶变换的峰值频率分析和小波包能量熵分析,提取杉木细观损伤的特征。
结果(1)EMD和小波包能量熵结合的信号处理方法能够判断杉木加载过程中声发射信号对应的细观损伤类型与构成。(2)杉木不同细观损伤类型的声发射信号对应不同的小波包能量熵区间:胞壁屈曲与塌溃(0.69 ~ 0.99)、层间开裂(1.57 ~ 1.78)、纤维束断裂(1.92 ~ 2.27)。(3)宏观断口观察和电镜显微分析验证了该方法的准确性。
结论经验模态分解–小波包能量熵法避免了声发射信号模态堆叠的影响,并解决了木材细观损伤复杂且难以识别的问题,为杉木木材断裂的早期诊断方法提供了理论支撑。
-
关键词:
- 木材细观损伤识别 /
- 声发射 /
- 小波包变换 /
- 能量熵 /
- 经验模态分解(EMD)
Abstract:ObjectiveMicroscopic damage is a primary contributor to wood fracture. The intricate porous laminar structure of wood makes the damage process complex, posing challenges in fully comprehending the microscopic damage information within the acoustic emission signal of wood fracture through a single signal processing method. This limitation results in inadequate and incomplete identification information. This study introduced a signal processing approach that combined empirical modal decomposition (EMD) and wavelet packet energy entropy to discern the various types of microscopic damage occurring during the loading process of fir (Cunninghamia lanceolata) using acoustic emission nondestructive testing.
MethodThree individual damage tests, namely uniaxial compression, double cantilever beam, and parallel tensile were conducted on fir as the study object. Acoustic emission signals were acquired, monitored, and analyzed throughout the loading processes. The wavelet packet thresholding method was employed to eliminate noise from the acoustic emission signals recorded during the damage tests. Furthermore, the EMD method, coupled with correlation coefficient calculations, was utilized to isolate the intrinsic mode function (IMF) components, which can fully reflect the characteristics of microscopic damage in fir. Subsequently, Fourier-transform-based peak frequency analysis and wavelet-packet energy entropy analysis were executed on the IMF components to extract the features associated with the microscopic damage in fir.
Result(1) The combination of EMD and wavelet packet energy entropy effectively determined the type and composition of signals corresponding to microscopic damage. (2) Acoustic emission signals of different microscopic damage types corresponded to distinct wavelet energy entropy intervals: buckling and collapse of cell wall (0.69−0.99), delamination (1.57−1.78), and fiber bundle breakage (1.92−2.27). (3) The accuracy of the method was verified by macroscopic fracture and scanning electron microscopy experiments.
ConclusionThe combination of EMD and wavelet packet energy entropy can avoid the influence of modal stacking in acoustic emission signals, and resolve the hard problem of recognizing complex microscopic damages in wood. This approach offers theoretical basis for the early diagnosis of fir wood fractures.
-
-
表 1 单一损伤试验IMF分量和原信号之间的相关系数
Table 1 Correlation coefficients between the IMF components of the single damage test and the original signal
试验类型
Test typeIMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 残余分量
Residual component单轴压缩 Uniaxial compression 0.2270 0.8885 0.1338 0.0170 0.0080 0.0039 0.0028 0.0045 双悬臂梁 Double cantilever beam 0.9459 0.3756 0.0348 −0.0015 0.0005 0.0002 0.0002 −0.0011 顺纹拉伸 Parallel tensile 0.8394 0.4968 0.2006 0.0923 −0.0018 −0.0030 0.0008 −0.0032 表 2 单一损伤试验IMF分量和原信号之间的相关系数及其小波包能量熵
Table 2 Correlation coefficients between the IMF components of the single damage test and the original signal,and their wavelet packet energy entropy
AE信号
AE signalIMF1相关系数
Correlation coefficient of IMF1IMF1能量熵
Energy entropy of IMF1IMF2相关系数
Correlation coefficient of IMF2IMF2能量熵
Energy entropy of IMF2UC1 0.3632 1.8692 0.9232 0.6998 UC2 0.2270 2.6569 0.8885 0.7324 UC3 0.5673 1.9258 0.8617 0.7962 UC4 0.3382 2.1592 0.8537 0.8357 UC5 0.4808 2.2873 0.7332 0.9843 DCB1 0.9459 1.5769 0.3756 0.9873 DCB2 0.9121 1.7701 0.3948 1.0595 DCB3 0.9258 1.6938 0.3551 1.0326 DCB4 0.9299 1.7498 0.3299 1.0342 DCB5 0.9245 1.7052 0.3376 1.0047 PT1 0.8394 2.0463 0.4968 1.6399 PT2 0.9013 1.9292 0.3192 1.4839 PT3 0.8805 2.1697 0.4161 1.4556 PT4 0.8638 2.2034 0.4247 1.5903 PT5 0.8595 2.2647 0.4186 1.4179 注:UC1 ~ UC5分别代表单轴压缩试验1 ~ 5;DCB1 ~ DCB5分别代表5组双悬臂梁试验1 ~ 5;PT1 ~ PT5分别代表5组顺纹拉伸试验1 ~ 5。Notes: UC1−UC5 represent the uniaxial compression test 1−5. DCB1−DCB5 represent the double cantilever beam test 1−5. PT1−PT5 represent the parallel tensile test 1−5. 表 3 不同的细观损伤类型对应的峰值频率
Table 3 Peak frequencies corresponding to different types of microscopic damage
-
[1] 邵卓平. 木材损伤断裂与木材细观损伤基本构元[J]. 林业科学, 2007, 43(4): 107−110. Shao Z P. Wood damage-fracture and wood meso-damage elements[J]. Scientia Silvae Sinicae, 2007, 43(4): 107−110.
[2] 邵卓平, 陈品, 查朝生, 等. 木材损伤断裂过程的声发射特性与Felicity效应[J]. 林业科学, 2009, 45(2): 86−91. Shao Z P, Chen P, Zha Z S, et al. Acoustic emission characteristics of damage and fracture process of wood and felicity effect[J]. Scientia Silvae Sinicae, 2009, 45(2): 86−91.
[3] 涂郡成, 赵东, 赵健. 应用AE和DIC原位监测含横纹裂纹木构件的裂纹演化规律试验研究[J]. 北京林业大学学报, 2020, 42(1): 142−148. Tu J C, Zhao D, Zhao J. Experimental study on in situ monitoring of the evolution law of cracks in wood components with transverse cracks based on acoustic emission and image correlation[J]. Journal of Beijing Forestry University, 2020, 42(1): 142−148.
[4] 赵小矛, 焦亮亮, 赵健, 等. 榫卯结构弯曲破坏时声发射衰减特性与源定位[J]. 北京林业大学学报, 2017, 39(1): 107−111. Zhao X M, Jiao L L, Zhao J, et al. Acoustic emission attenuation and source location on the bending failure of the rectangular mortise-tenon joint for wood structures[J]. Journal of Beijing Forestry University, 2017, 39(1): 107−111.
[5] 王丽宇, 鹿振友, 赵东, 等. 白桦材LT型裂纹的演化与增长行为的研究[J]. 北京林业大学学报, 2002, 24(2): 59−61. doi: 10.3321/j.issn:1000-1522.2002.02.012 Wang L Y, Lu Z Y, Zhao D, et al. Crack initiation and propagation in LT specimens of Betula platyphylla Suk[J]. Journal of Beijing Forestry University, 2002, 24(2): 59−61. doi: 10.3321/j.issn:1000-1522.2002.02.012
[6] 张美林, 李俊萩, 张晴晖, 等. 基于熵和波形特征的木材损伤断裂过程声发射信号处理[J]. 林业工程学报, 2022, 7(2): 159−166. Zhang M L, Li J Q, Zhang Q H, et al. Acoustic emission signal processing and analysis of wood damage and fracture process based on entropy and waveform characteristics[J]. Journal of Forestry Engineering, 2022, 7(2): 159−166.
[7] Tu J C, Yu L C, Zhao J, et al. Damage modes recognition of wood based on acoustic emission technique and Hilbert-Huang transform analysis[J]. Forests, 2022, 13(4): 631. doi: 10.3390/f13040631
[8] Liu X L, Liu Z, Li X B, et al. Experimental study on the effect of strain rate on rock acoustic emission characteristics[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104420. doi: 10.1016/j.ijrmms.2020.104420
[9] Verstrynge E, van Steen C, Vandecruys E, et al. Steel corrosion damage monitoring in reinforced concrete structures with the acoustic emission technique: a review[J]. Construction and Building Materials, 2022, 349: 128732. doi: 10.1016/j.conbuildmat.2022.128732
[10] Li Y, Xu F Y. Structural damage monitoring for metallic panels based on acoustic emission and adaptive improvement variational mode decomposition-wavelet packet transform[J]. Structural Health Monitoring, 2022, 21(2): 710−730. doi: 10.1177/14759217211008969
[11] He K F, Xia Z X, Si Y, et al. Noise reduction of welding crack ae signal based on EMD and wavelet packet[J]. Sensors, 2020, 20: 761. doi: 10.3390/s20030761
[12] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Science, 1998, 454: 903−995.
[13] Yang Y, Yu D J, Cheng J S. A roller bearing fault diagnosis method based on EMD energy entropy and ANN[J]. Journal of Sound and Vibration, 2006, 294(1−2): 269−277.
[14] Tu J C, Zhao D, Zhao J, et al. Experimental study on crack initiation and propagation of wood with LT-type crack using digital image correlation (DIC) technique and acoustic emission (AE)[J]. Wood Science and Technology, 2021, 55: 1577−1591. doi: 10.1007/s00226-020-01252-8
[15] 李柬龙, 陈胜, 李海潮, 等. 轻木细胞壁超微结构与力学性能关系研究[J]. 北京林业大学学报, 2022, 44(2): 115−122. Li J L, Chen S, Li H C, et al. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115−122.
-
期刊类型引用(0)
其他类型引用(1)