• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

基于转基因741杨与新疆杨杂交创制抗虫非整倍体毛白杨新种质

齐婉芯, 陈婷婷, 宋佳力, 安新民

齐婉芯, 陈婷婷, 宋佳力, 安新民. 基于转基因741杨与新疆杨杂交创制抗虫非整倍体毛白杨新种质[J]. 北京林业大学学报, 2024, 46(12): 92-102. DOI: 10.12171/j.1000-1522.20240021
引用本文: 齐婉芯, 陈婷婷, 宋佳力, 安新民. 基于转基因741杨与新疆杨杂交创制抗虫非整倍体毛白杨新种质[J]. 北京林业大学学报, 2024, 46(12): 92-102. DOI: 10.12171/j.1000-1522.20240021
Qi Wanxin, Chen Tingting, Song Jiali, An Xinmin. Creating a new germplasm of aneuploid Populus tomentosa with insect-resistance based on hybridization of transgenic 741 poplar and P. alba var. pyramidalis[J]. Journal of Beijing Forestry University, 2024, 46(12): 92-102. DOI: 10.12171/j.1000-1522.20240021
Citation: Qi Wanxin, Chen Tingting, Song Jiali, An Xinmin. Creating a new germplasm of aneuploid Populus tomentosa with insect-resistance based on hybridization of transgenic 741 poplar and P. alba var. pyramidalis[J]. Journal of Beijing Forestry University, 2024, 46(12): 92-102. DOI: 10.12171/j.1000-1522.20240021

基于转基因741杨与新疆杨杂交创制抗虫非整倍体毛白杨新种质

基金项目: 科技创新2030—重大项目课题(2022ZD0401503)。
详细信息
    作者简介:

    齐婉芯,博士。主要研究方向:杨树遗传改良。Email:qsaturn@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    安新民,博士,教授。主要研究方向:林木基因组学与分子育种。Email:anxinmin@bjfu.edu.cn 地址:同上。

  • 中图分类号: S722.3+4;S792.11

Creating a new germplasm of aneuploid Populus tomentosa with insect-resistance based on hybridization of transgenic 741 poplar and P. alba var. pyramidalis

  • 摘要:
    目的 

    以转BtCry3A基因三倍体741杨为母本与二倍体新疆杨为父本进行人工杂交,以期快速获得非整倍体毛白杨抗虫优良新种质。

    方法 

    采集转基因741杨雌花枝、新疆杨雄花枝进行人工授粉杂交,收集即将脱落的花序,通过胚挽救技术获得杂交子代。通过聚合酶链式反应(PCR)检测杂交子代是否含有BtCry3A基因;通过实时荧光定量PCR(RT-qPCR)对BtCry3A基因在母本与子代中的表达量进行分析。以二倍体新疆杨为参照,通过流式细胞技术检测杂交子代的倍性;并对子代幼苗表型进行初步观测分析。

    结果 

    (1)通过对未发育成熟种子进行胚挽救获得8个杂交子代,其中6个杂交子代后续生长状态良好,5个子代遗传了母本的BtCry3A基因。(2)RT-qPCR检测显示,BtCry3A基因在5个子代中的表达量均高于母本,其中3#表达量为母本12倍;(3)初步判定子代1#为超四倍体,子代2#、4#、8#为非整倍体,子代3#可能为非整倍体或四倍体;(4)杂交子代表型差异大,5个杂交子代叶形、叶片大小、节间距等均不相同,其中3#和8#生长势优于亲本。

    结论 

    通过转BtCry3A基因三倍体741杨与二倍体新疆杨杂交,快速获得了具有BtCry3A抗虫基因且发生形态变异的非整倍体毛白杨新种质,其中子代3#因抗虫基因表达量显著高于母本,且生长势优于双亲,可作为优良潜在非整倍体毛白杨新种质进行后续抗虫性测试。

    Abstract:
    Objective 

    Artificial hybridization was carried out using transgenic triploid 741 poplar with BtCry3A as the female parent and diploid Populus alba var. pyramidalis as the male parent, in order to quickly obtain new germplasm of aneuploid Populus tomentosa with insect-resistance.

    Method 

    Collecting female flower branches of transgenic 741 poplar and male flower branches of P. alba var. pyramidalis, hybrid progenies were obtained by embryo rescue technique from the inflorescence that was about to fall off. The seedlings with BtCry3A were identified by polymerase chain reaction, and further expression of BtCry3A was measured via real-time fluorescent quantitative polymerase chain reaction. Subsequently, conducted ploidy analysis of these hybrid progenies using flow cytometry method. Finally, preliminary phenotypic analysis of the offsprings was performed.

    Result 

    (1) Eight hybrid individuals were successfully generated by combing artificial hybridization and embryo rescue techniques, among which six hybrid offsprings showed good growth status. Five offsprings inherited the BtCry3A gene from the mother plants. (2) The BtCry3A gene exhibited enhanced expression levels in the offsprings compared with maternal parent, with individual 3# demonstrating a 12-fold increase. (3) 1# was hyper-tetraploid, 2#, 4# and 8# were aneuploid, while 3# may be aneuploid or tetraploid. (4) The hybrid offsprings exhibited diverse phenotype, the five hybrid individuals were different in leaf shape, leaf size and pitch spacing, with 3# and 8# showing superior growth vigor compared with parental lines.

    Conclusion 

    Employing artificial hybridization between triploid 741 poplar with BtCry3A and diploid P. alba var. pyramidalis, we creat the novel germplasms of aneuploid P. tomentosa with BtCry3A and diverse phenotypic variation. Offspring 3# has significantly higher anti-insect gene expression than their mothers, and growth potential is better than parents. It can be used as an excellent potential aneuploid hair poplar new germplasm for subsequent insect resistance tests.

  • 图  1   花粉萌发(a)与胚挽救获得的杂交子代(b)

    Figure  1.   Pollen germination (a) and hybrid offsprings obtained from embryo rescuing (b)

    图  2   杂交子代中BtCry3A基因PCR(a)和RT-PCR(b)检测

    a图中0为质粒,1为转基因741杨,2为新疆杨,3为野生型741杨,4 ~ 9为1#、2#、3#、4#、6#、8#子代。b图中1为新疆杨,2为野生型741杨,3为转基因741杨,4 ~ 9为1#、2#、3#、4#、6#、8#子代。 In figure a, 0 means plasmid, 1means transgenic 741 poplar, 2 means P. alba var. pyramidalis, 3 means wild type 741 poplar, 4−9 mean 1#, 2#, 3#, 4#, 6#, and 8# hybrids. In figure b, 1 means P. alba var. pyramidalis, 2 means wild type 741 poplar, 3 means transgenic 741 poplar, 4−9 mean 1#, 2#, 3#, 4#, 6#, and 8# hybrids.

    Figure  2.   Identification of BtCry3A in hybrid offsprings by PCR (a) and RT-PCR (b)

    图  3   不同株系BtCry3A基因RT-qPCR分析

    **表示与野生型741杨相比,在0.01水平上存在极显著差异。** means extremly significant difference at 0.01 level compared with wild type 741 poplar.

    Figure  3.   Analysis of BtCry3A in different strains by RT-qPCR

    图  4   父母本与杂交子代核DNA流式细胞检测

    a. 新疆杨;b. 转基因741杨;c ~ g. 杂交子代1#、2#、3#、4#、8#。a, P. alba var. pyramidalis; b, transgenic 741 poplar; c−g, 1#, 2#, 3#, 4#, 8# hybrid offsprings.

    Figure  4.   Detection of nuclear DNA of offspring and its parents by flow cytometer

    图  5   亲本与杂交子代幼苗表型前视图(a)和俯视图(b)

    Figure  5.   Phenotypes of parents and hybrid offspring front view (a) and vertical view(b)

    图  6   亲本与杂交子代幼苗表型差异分析

    *表示与新疆杨相比在0.05水平上存在显著差异,**表示与新疆杨相比在0.01水平上存在极显著差异。下同。* means significant difference at 0.05 level compared with P. alba var. pyramidalis, ** means extremly significant difference at 0.01 level compared with P. alba var. pyramidalis. The same below.

    Figure  6.   Analysis of phenotypic difference between parents and hybrid offsprings

    图  7   亲本与杂交子代幼苗叶片表型差异分析

    Figure  7.   Analysis of leaf phenotypic difference between parent and hybrid offsprings

    图  8   亲本与杂交子代幼苗叶片纵切面

    a. 新疆杨;b. 转基因741杨;c ~ g. 杂交子代1#/2#/3#/4#/8#。a, P. alba var. pyramidalis; b, transgenic 741 poplar; c−g, 1#, 2#, 3#, 4#, 8# hybrid offsprings.

    Figure  8.   Leaf longitudinal section of parents and hybrid offsprings

    表  1   流式细胞分析法对杂交子代的倍性检测结果

    Table  1   Detection results of nuclear ploidy of hybrid offsprings by flow cytometry method

    样本
    Sample

    CV/%
    相对荧光强度
    Relative fluorescence intensity
    F
    F value
    新疆杨 P. alba var. pyramidalis 6.96 ± 0.12 13 251.00 ± 21.23 2.00
    741杨 741 poplar 6.07 ± 0.21 19 731.00 ± 129.25 2.98
    1# 5.41 ± 0.28 28 297.33 ± 36.97 4.27
    2# 5.86 ± 0.14 16 786.67 ± 129.60 2.53
    3# 5.67 ± 0.19 26 006.67 ± 86.44 3.93
    4# 6.56 ± 0.79 15 659.00 ± 259.90 2.36
    8# 5.95 ± 0.22 24 763.00 ± 270.82 3.74
    下载: 导出CSV
  • [1] 李善文, 张志毅, 何承忠. 中国杨树杂交育种研究进展[J]. 世界林业研究, 2004, 17(2): 37−38. doi: 10.3969/j.issn.1001-4241.2004.02.010

    Li S W, Zhang Z Y, He C Z. Progress on hybridization breeding of poplar in China[J]. World Forestry Research, 2004, 17(2): 37−38. doi: 10.3969/j.issn.1001-4241.2004.02.010

    [2] 李秀华. 三北防护林杨树天牛的危害及防治策略[J]. 防护林科技, 2021(4): 77−78, 80.

    Li X H. Harm and control strategy of poplar in three north shelterbelt[J]. Protection Forest Science and Technology, 2021(4): 77−78, 80.

    [3] 丁莉萍, 王宏芝, 魏建华. 杨树转基因研究进展及展望[J]. 林业科学研究, 2016, 29(1): 124−132.

    Ding L P, Wang H Z, Wei J H. Progress and prospect of research in transgenic poplar[J]. Forest Research, 2016, 29(1): 124−132.

    [4] 田颖川, 李太元, 莽克强, 等. 抗虫转基因欧洲黑杨的培育[J]. 生物工程学报, 1993, 9(4): 291−297, 395. doi: 10.3321/j.issn:1000-3061.1993.04.017

    Tian Y C, Li T Y, Mang K Q, et al. Insect tolerance of transgenic Populus nigra plants transformed with Bacillus thuringiensis toxin gene[J]. Chinese Journal of Biotechnology, 1993, 9(4): 291−297, 395. doi: 10.3321/j.issn:1000-3061.1993.04.017

    [5] 王学聘, 韩一凡, 戴莲韵, 等. 抗虫转基因欧美杨的培育[J]. 林业科学, 1997, 33(1): 69−74. doi: 10.3321/j.issn:1001-7488.1997.01.010

    Wang X P, Han Y F, Dai L Y, et al. Studies on insect-resistant transgenic (P. × euramericana) plants[J]. Scientia Silvae Sinicae, 1997, 33(1): 69−74. doi: 10.3321/j.issn:1001-7488.1997.01.010

    [6] 饶红宇, 陈英, 黄敏仁, 等. 杨树NL-8010转Bt基因植株的获得及抗虫性[J]. 植物资源与环境学报, 2000, 9(2): 1−5. doi: 10.3969/j.issn.1674-7895.2000.02.001

    Rao H Y, Chen Y, Huang M R, et al. Genetic transformation of poplar NL-80106 transferred by Bt gene and its insect-resistance[J]. Journal of Plant Resources and Environment, 2000, 9(2): 1−5. doi: 10.3969/j.issn.1674-7895.2000.02.001

    [7] 李科友, 樊军锋, 赵忠, 等. 转双价抗虫基因毛白杨无性系85号抗虫性研究[J]. 西北植物学报, 2007, 27(8): 1537−1543.

    Li K Y, Fan J F, Zhao Z, et al. Resistance to insect of transgenic Populus tomentosa clone-85 plants with two insect-resistant genes[J]. Acta Bot Boreal Occident Sin, 2007, 27(8): 1537−1543.

    [8] 甄志先, 李静, 梁海永, 等. 转BtCry3A基因杨树毒蛋白表达及对桑天牛抗性的研究[J]. 蚕业科学, 2007(4): 538−542. doi: 10.3969/j.issn.0257-4799.2007.04.004

    Zhen Z X, Li J, Liang H Y, et al. Expressions of BtCry3A gene in transgenic polar and its resistance against Apriona germari[J]. Science of Sericulture, 2007(4): 538−542. doi: 10.3969/j.issn.0257-4799.2007.04.004

    [9] 姜惠明. 白杨杂种优势的初步分析及白杨杂种优良无性系741号杨选育[J]. 河北农学报, 1983, 8(2): 75−80.

    Jiang H M. Preliminary analysis of hybrid vigor of poplar and selection of high-quality poplar hybrid clone-741[J]. Hebei Agricultural Journal, 1983, 8(2): 75−80.

    [10] 牛小云, 黄大庄, 杨敏生,等. 转BtCry3A基因杨树6个株系体内毒蛋白表达及对桑天牛的抗性鉴定[J]. 蚕业科学, 2011, 37(4): 593−599. doi: 10.3969/j.issn.0257-4799.2011.04.001

    Niu X Y, Huang D Z, Yang M S, et al. Expression of toxic protein in six transgenic poplar strains with BtCry3A gene and identification of their resistance against Apriona germari[J]. Science of Sericulture, 2011, 37(4): 593−599. doi: 10.3969/j.issn.0257-4799.2011.04.001

    [11]

    Ran Y D, Liang Z, Gao C X. Current and future editing reagent delivery systems for plant genome editing[J]. Science China-Life Sciences, 2017, 60(5): 490−505. doi: 10.1007/s11427-017-9022-1

    [12]

    Satheesh V, Zhang H, Wang X T, et al. Precise editing of plant genomes-prospects and challenges[J]. Seminars in Cell & Developmental Biology, 2019, 96: 115−123.

    [13] 苏静, 王向东, 王俊, 等. 植物三倍体育种研究进展[J]. 南方农业, 2012, 6(5): 78−80. doi: 10.3969/j.issn.1673-890X.2012.05.026

    Su J, Wang X D, Wang J, et al. Advances of triploid breeding in plant[J]. South China Agriculture, 2012, 6(5): 78−80. doi: 10.3969/j.issn.1673-890X.2012.05.026

    [14]

    Ramsey J, Schemske D W. Pathways, mechanisms, and rates of polyploid formation in flowering plants[J]. Annual Review of Ecology and Systematics, 1998, 29: 467−501. doi: 10.1146/annurev.ecolsys.29.1.467

    [15]

    Siegel J J, Amon A. New insights into the troubles of aneuploidy[J]. Annual Review of Cell and Developmental Biology, 2012, 28(1): 189−214. doi: 10.1146/annurev-cellbio-101011-155807

    [16]

    Shi X, Chen C, Yang H, et al. The gene balance hypothesis: epigenetics and dosage effects in plants[J]. Methods in Molecular Biology, 2020, 2093: 161−171.

    [17] 朱斌, 田贵福, 贺路英, 等. 植物非整倍体研究进展[J]. 广西植物, 2018, 38(10): 1404−1410. doi: 10.11931/guihaia.gxzw201712007

    Zhu B, Tian G F, He L Y, et al. Advances of aneuploidy in plant[J]. Guihaia, 2018, 38(10): 1404−1410. doi: 10.11931/guihaia.gxzw201712007

    [18]

    Jeong C S, Park S M, Wakana A, et al. Male and female fertility in triploid grapes (Vitis complex) with special reference to the production of aneuploid plants[J]. Vitis Journal of Grapevine Research, 2002, 41(1): 11−19.

    [19]

    Kikuchi S, Iwasuna M, Kobori A, et al. Seed formation in triploid loquat (Eriobotrya japonica) through cross-hybridization with pollen of diploid cultivars[J]. Breeding Science, 2014, 64(2): 176−182. doi: 10.1270/jsbbs.64.176

    [20]

    Wang P, Yang Y, Lei C, et al. A female fertile triploid loquat line produces fruits with less seed and aneuploid germplasm[J]. Scientia Horticulturae, 2023, 319(11): 21−41.

    [21]

    Suzuki T, Yamagishi M. Aneuploids without bulbils segregated in F1 hybrids derived from triploid Lilium lancifolium and diploid L. leichtlinii crosses[J]. The Horticulture Journal, 2016, 85(3): 224−231. doi: 10.2503/hortj.MI-089

    [22] 崔罗敏, 万麟, 周树军. 三倍体观赏百合与二倍体食用龙牙百合的杂交分析[J]. 西北植物学报, 2021, 41(6): 971−976. doi: 10.7606/j.issn.1000-4025.2021.06.0971

    Cui L M, Wan L, Zhou S J. Analysis of the hybridization between triploid ornamental lily (Lilium) and diploid Edible Lilim brownii. var. viridulum[J]. Acta Bot Boreal Occident Sin, 2021, 41(6): 971−976. doi: 10.7606/j.issn.1000-4025.2021.06.0971

    [23]

    Zhang A, Li N, Gong L, et al. Global analysis of gene expression in response to whole-chromosome aneuploidy in hexaploid wheat[J]. Plant Physiology, 2017, 175(2): 828−847. doi: 10.1104/pp.17.00819

    [24] 旻昱, 康宁, 索玉静, 等. 毛白杨杂种三倍体的2n雌配子形成途径鉴定[J]. 北京林业大学学报, 2017, 39(5): 17−24.

    Min Y, Kang N, Suo Y J, et al. Origin identification of 2n female gamete of Populus tomentosa triploid hybrids[J]. Journal of Beijing Forestry University, 2017, 39(5): 17−24.

    [25] 李代丽, 商静, 田菊, 等. 青黑杨杂种三倍体花粉母细胞减数分裂染色体行为及其花粉变异研究[J]. 北京林业大学学报, 2019, 41(7): 75−82.

    Li D L, Shang J, Tian J, et al. Meiotic chromosome behavior of pollen mother cells and pollen variation in triploid hybrid between section Tacamahaca and sect. Aigeiros of Populus[J]. Journal of Beijing Forestry University, 2019, 41(7): 75−82.

    [26]

    Wang J, Huo B, Liu W, et al. Abnormal meiosis in an intersectional allotriploid of Populus L. and segregation of ploidy levels in 2x × 3x progeny[J]. PLoS One, 2017, 12(7): e181767.

    [27]

    Pellicer J, Leitch I J. The application of flow cytometry for estimating genome size and ploidy level in plants[J]. Methods in Molecular Biology, 2014, 1115: 279−307.

    [28]

    Puite K J, Broeke W R R T. DNA staining of fixed and non-fixed plant protoplasts for flow cytometry with hoechst 33342[J]. Plant Science Letters, 1983, 32(1−2): 79−88. doi: 10.1016/0304-4211(83)90101-3

    [29] 李薇, 李淑娴. 林木抗虫性研究进展[J]. 西南林业大学学报, 2018, 38(5): 180−190.

    Li W, Li S X. Advances in insect resistance of forest trees[J]. Journal of Southwest Forestry University, 2018, 38(5): 180−190.

    [30] 贾殿坤. 三北防护林中杨树天牛的危害特点及防治措施[J]. 林业勘查设计, 2023, 52(3): 48−51. doi: 10.3969/j.issn.1673-4505.2023.03.012

    Jia D K. Hazard characteristics and prevention measures of Cerambycidae in the Three-North Shelter Forest Program forest investigation design[J]. Forest Investigation Desigh, 2023, 52(3): 48−51. doi: 10.3969/j.issn.1673-4505.2023.03.012

    [31] 李林光, 何平, 欧春青, 等. 苹果三倍体后代培养及倍性鉴定[J]. 果树学报, 2008, 25(3): 400−403. doi: 10.3969/j.issn.1009-9980.2008.03.022

    Li L G, He P, Ou C Q, et al. Culture and identification of seedlings from triploid apple[J]. Journal of Fruit Science, 2008, 25(3): 400−403. doi: 10.3969/j.issn.1009-9980.2008.03.022

    [32] 梁武军, 解凯东, 谢宗周, 等. 三倍体葡萄柚实生后代多倍体的发掘与SSR遗传鉴定[J]. 果树学报, 2015, 32(1): 13−18.

    Liang W J, Xie K D, Xie Z Z, et al. Exploitation of polyploids from open-pollinated triploid grapefruit progenies and their genetic identification by SSR molecular markers[J]. Journal of Fruit Science, 2015, 32(1): 13−18.

    [33]

    Kojima S, Cimini D. Aneuploidy and gene expression: is there dosage compensation?[J]. Epigenomics, 2019, 11(16): 1827−1837.

    [34] 常丽娟, 刘勇, 宋君, 等. 转基因植物中外源基因的沉默及应对策略[J]. 生物技术通讯, 2013, 24(6): 881−885. doi: 10.3969/j.issn.1009-0002.2013.06.031

    Chang L J, Liu Y, Song J, et al. Silence of exogenous eenes in transgenic plants and the coping strategies[J]. Letters in Biotechnology, 2013, 24(6): 881−885. doi: 10.3969/j.issn.1009-0002.2013.06.031

    [35]

    Wang P, Yang Y, Lei C, et al. A female fertile triploid loquat line produces fruits with less seed and aneuploid germplasm[J]. Scientia Horticulturae, 2023, 319: 112141.

    [36]

    Chen H, Contreras R N. Near-hexaploid and near-tetraploid aneuploid progenies derived from backcrossing tetraploid parents Hibiscus syriacus × (H. syriacus × H. paramutabilis)[J]. Genes, 2022, 13(6): 1022.

    [37]

    Dang J, Wu T, Liang G, et al. Identification and characterization of a loquat aneuploid with novel leaf phenotypes[J]. Hortscience, 2019, 54(5): 804−808. doi: 10.21273/HORTSCI13844-18

    [38] 轩淑欣, 李明, 张成合, 等 . 植物非整倍体及其在遗传研究上的应用[J]. 河北农业大学学报, 2002(增刊1): 47−50. doi: 10.3969/j.issn.1000-1573.2002.z1.015

    Xuan S X, Li M, Zhang C H, et al. Plant aneuoloids and their use in the genetic studies and breeding[J]. Journal of Agricultural University of Hebei, 2002(Suppl. 1): 47−50. doi: 10.3969/j.issn.1000-1573.2002.z1.015

    [39] 费希同, 唐军荣, 周军, 等. 中国杨树多倍体诱导研究现状[J]. 湖北农业科学, 2014, 53(18): 4252−4256.

    Fei X T, Tang J R, Zhou J, et al. Research status of polyploid induction on poplar in China[J]. Hubei Agricultural Sciences, 2014, 53(18): 4252−4256.

  • 期刊类型引用(12)

    1. 孙凡,马彦广,刘占民,杨博宁,王辉丽,李伟. 油松高世代种子园亲本选择策略研究. 北京林业大学学报. 2024(04): 28-39 . 本站查看
    2. 吕寻,李万峰,胡勐鸿,戴小芬,成红梅,委霞. 日本落叶松种子园和优树自由授粉家系选择与利用研究. 西南林业大学学报(自然科学). 2024(03): 1-9 . 百度学术
    3. 冯健,张金博,杨圆圆,杜超群,徐柏松,曹颖,姚飞. 基于生长性状和SSR遗传多样性分析的红松第二代优树选择研究. 西南林业大学学报(自然科学). 2024(04): 1-7 . 百度学术
    4. 胡勐鸿,吕寻,戴小芬,李宗德,李万峰. 日本落叶松无性系种子园和优树半同胞家系苗期比较. 东北林业大学学报. 2024(12): 10-17 . 百度学术
    5. 向华,向文明,向明. 我国用材林优树选择技术研究进展. 湖南林业科技. 2021(02): 89-96 . 百度学术
    6. 康向阳. 林木遗传育种研究进展. 南京林业大学学报(自然科学版). 2020(03): 1-10 . 百度学术
    7. 邓乐平,黄婷,王哲,吴惠姗,李晓华,廖仿炎,李义良,郭文冰,赵奋成. 湿地松改良种子园无性系的遗传评价及新一轮育种亲本选择. 林业与环境科学. 2020(04): 1-7 . 百度学术
    8. 杜超群,赵虎,袁慧,侯义梅,朱于勤,许业洲. 日本落叶松种子园母树生长及种实性状评价. 森林与环境学报. 2019(01): 32-36 . 百度学术
    9. 王芳,王元兴,王成录,张伟娜,刘卫胜,陆志民,杨雨春. 红松优树半同胞子代家系生长、结实及抗病虫能力的变异特征. 应用生态学报. 2019(05): 1679-1686 . 百度学术
    10. 金星,于忠峰,苗海伟,于国斌,朱瑞,张丽杰. 辽宁地区油松花粉形态及生活力的测定. 分子植物育种. 2019(15): 5115-5119 . 百度学术
    11. 康向阳. 关于林木育种策略的思考. 北京林业大学学报. 2019(12): 15-22 . 本站查看
    12. 苗禹博,朱晓梅,李志娟,贾凤岭,李伟. 不同世代樟子松育种资源遗传评价. 北京林业大学学报. 2017(12): 71-78 . 本站查看

    其他类型引用(4)

图(8)  /  表(1)
计量
  • 文章访问数:  144
  • HTML全文浏览量:  7
  • PDF下载量:  36
  • 被引次数: 16
出版历程
  • 收稿日期:  2024-01-16
  • 修回日期:  2024-05-17
  • 录用日期:  2024-12-06
  • 网络出版日期:  2024-12-08
  • 刊出日期:  2024-12-24

目录

    /

    返回文章
    返回