• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

基于转基因741杨与新疆杨杂交创制抗虫非整倍体毛白杨新种质

齐婉芯, 陈婷婷, 宋佳力, 安新民

齐婉芯, 陈婷婷, 宋佳力, 安新民. 基于转基因741杨与新疆杨杂交创制抗虫非整倍体毛白杨新种质[J]. 北京林业大学学报, 2024, 46(12): 92-102. DOI: 10.12171/j.1000-1522.20240021
引用本文: 齐婉芯, 陈婷婷, 宋佳力, 安新民. 基于转基因741杨与新疆杨杂交创制抗虫非整倍体毛白杨新种质[J]. 北京林业大学学报, 2024, 46(12): 92-102. DOI: 10.12171/j.1000-1522.20240021
Qi Wanxin, Chen Tingting, Song Jiali, An Xinmin. Creating a new germplasm of aneuploid Populus tomentosa with insect-resistance based on hybridization of transgenic 741 poplar and P. alba var. pyramidalis[J]. Journal of Beijing Forestry University, 2024, 46(12): 92-102. DOI: 10.12171/j.1000-1522.20240021
Citation: Qi Wanxin, Chen Tingting, Song Jiali, An Xinmin. Creating a new germplasm of aneuploid Populus tomentosa with insect-resistance based on hybridization of transgenic 741 poplar and P. alba var. pyramidalis[J]. Journal of Beijing Forestry University, 2024, 46(12): 92-102. DOI: 10.12171/j.1000-1522.20240021

基于转基因741杨与新疆杨杂交创制抗虫非整倍体毛白杨新种质

基金项目: 科技创新2030—重大项目课题(2022ZD0401503)。
详细信息
    作者简介:

    齐婉芯,博士。主要研究方向:杨树遗传改良。Email:qsaturn@bjfu.edu.cn 地址:100083 北京市海淀区清华东路35号北京林业大学生物科学与技术学院

    责任作者:

    安新民,博士,教授。主要研究方向:林木基因组学与分子育种。Email:anxinmin@bjfu.edu.cn 地址:同上。

  • 中图分类号: S722.3+4;S792.11

Creating a new germplasm of aneuploid Populus tomentosa with insect-resistance based on hybridization of transgenic 741 poplar and P. alba var. pyramidalis

  • 摘要:
    目的 

    以转BtCry3A基因三倍体741杨为母本与二倍体新疆杨为父本进行人工杂交,以期快速获得非整倍体毛白杨抗虫优良新种质。

    方法 

    采集转基因741杨雌花枝、新疆杨雄花枝进行人工授粉杂交,收集即将脱落的花序,通过胚挽救技术获得杂交子代。通过聚合酶链式反应(PCR)检测杂交子代是否含有BtCry3A基因;通过实时荧光定量PCR(RT-qPCR)对BtCry3A基因在母本与子代中的表达量进行分析。以二倍体新疆杨为参照,通过流式细胞技术检测杂交子代的倍性;并对子代幼苗表型进行初步观测分析。

    结果 

    (1)通过对未发育成熟种子进行胚挽救获得8个杂交子代,其中6个杂交子代后续生长状态良好,5个子代遗传了母本的BtCry3A基因。(2)RT-qPCR检测显示,BtCry3A基因在5个子代中的表达量均高于母本,其中3#表达量为母本12倍;(3)初步判定子代1#为超四倍体,子代2#、4#、8#为非整倍体,子代3#可能为非整倍体或四倍体;(4)杂交子代表型差异大,5个杂交子代叶形、叶片大小、节间距等均不相同,其中3#和8#生长势优于亲本。

    结论 

    通过转BtCry3A基因三倍体741杨与二倍体新疆杨杂交,快速获得了具有BtCry3A抗虫基因且发生形态变异的非整倍体毛白杨新种质,其中子代3#因抗虫基因表达量显著高于母本,且生长势优于双亲,可作为优良潜在非整倍体毛白杨新种质进行后续抗虫性测试。

    Abstract:
    Objective 

    Artificial hybridization was carried out using transgenic triploid 741 poplar with BtCry3A as the female parent and diploid Populus alba var. pyramidalis as the male parent, in order to quickly obtain new germplasm of aneuploid Populus tomentosa with insect-resistance.

    Method 

    Collecting female flower branches of transgenic 741 poplar and male flower branches of P. alba var. pyramidalis, hybrid progenies were obtained by embryo rescue technique from the inflorescence that was about to fall off. The seedlings with BtCry3A were identified by polymerase chain reaction, and further expression of BtCry3A was measured via real-time fluorescent quantitative polymerase chain reaction. Subsequently, conducted ploidy analysis of these hybrid progenies using flow cytometry method. Finally, preliminary phenotypic analysis of the offsprings was performed.

    Result 

    (1) Eight hybrid individuals were successfully generated by combing artificial hybridization and embryo rescue techniques, among which six hybrid offsprings showed good growth status. Five offsprings inherited the BtCry3A gene from the mother plants. (2) The BtCry3A gene exhibited enhanced expression levels in the offsprings compared with maternal parent, with individual 3# demonstrating a 12-fold increase. (3) 1# was hyper-tetraploid, 2#, 4# and 8# were aneuploid, while 3# may be aneuploid or tetraploid. (4) The hybrid offsprings exhibited diverse phenotype, the five hybrid individuals were different in leaf shape, leaf size and pitch spacing, with 3# and 8# showing superior growth vigor compared with parental lines.

    Conclusion 

    Employing artificial hybridization between triploid 741 poplar with BtCry3A and diploid P. alba var. pyramidalis, we creat the novel germplasms of aneuploid P. tomentosa with BtCry3A and diverse phenotypic variation. Offspring 3# has significantly higher anti-insect gene expression than their mothers, and growth potential is better than parents. It can be used as an excellent potential aneuploid hair poplar new germplasm for subsequent insect resistance tests.

  • 森林作为最重要的陆地生态系统,具有消减洪峰、涵养水源等生态服务功能,通常被称为“森林水库”[1]。森林水源涵养的能力主要体现在其枯落物层和土壤层[2],是森林发挥水源涵养功能的主体部分[3]。枯落物是森林生态系统结构中重要的一环[4]。作为降水降落至地表面先于土壤接触到的部分,枯落物具有涵养水源、拦蓄降水与径流、维持土壤湿度等重要作用[5]。林地土壤层的水文效则通过自身蓄水能力和入渗特性所体现,对降水分配、水分循环和土壤流失等过程具有显著作用[6]。研究枯落物和土壤的水文特征,揭示枯落物和土壤与生态环境要素之间的定性与定量关系,对研究森林生态系统的水土保持能力,合理规划和利用水资源方面具有重要意义[7]

    国内外学者对不同区域、不同森林植被类型的枯落物和土壤水文效应进行了大量研究[8-10],不同林分枯落物及土壤水文效应随立地条件、树种配置以及林分结构的变化而产生显著差异。近年来对冀北地区林地水源涵养功能的研究也取得一定成果,但多以完全郁闭的成熟林为研究对象,重点集中在不同林分类型、林分密度的比较研究[11-12],相较于人工成熟林,人工幼龄林处于植被恢复的初期,也是目前人工抚育和经营管理的主要作业阶段,了解人工幼龄林的水源涵养能力,后期通过适宜的抚育方式和经营措施,优化林分结构,促进林木生长,抑制不利因素的发生,可为其发挥水源涵养主导功能提供支持,而目前对植被恢复下的不同人工幼龄林及其与灌木混交配置模式下的水源涵养功能研究甚少。

    河北省崇礼区西沟流域植被稀少,大部分为荒山秃岭,且裸岩率较高[13],加上人为不合理开垦、放牧,使得该地区已有植被被破坏,水土流失问题严重,导致该地区植被水源涵养等生态服务功能难以充分发挥,严重制约区域社会和经济发展。为恢复和改善生态环境,西沟流域自2009年以来,先后通过人工营造、自然恢复等手段,建设了大面积的针叶纯林及其与灌木的乔灌混交林。由于地处崇礼区冬奥场馆周边,如何快速且充分发挥人工针叶幼龄林及乔灌混交林的水源涵养与水土保持功能,对于保障崇礼赛区冬奥场馆的正常运营、改善冬奥场馆周边小流域生态环境尤为重要。因此,亟需对人工针叶幼龄林及其不同混交配置模式的生态服务功能进行深入研究。为研究项目实施后冬奥周边小流域的林地水源涵养能力,以崇礼区西沟−羊草沟流域的5种典型配置模式的人工针叶幼龄林为研究对象,定量分析和比较其枯落物层及土壤层的水源涵养能力,为冬奥会崇礼赛区乃至整个冀北地区人工林的恢复、经营和水源涵养、水土保持功能的研究提供理论依据和科学参考。

    研究区位于河北省张家口市崇礼区驿马图乡的羊草沟流域(图1),地处冀北接坝山区,属于清水河支流−崇礼西沟流域,清水河(永定河水系上游)源头即起源于此,地理坐标为41°04′05″ ~ 41°08′30″N,114°58′30″ ~ 115°02′30″E,海拔在1 084 ~ 1 575 m之间,属温带大陆性季风气候,地形大部分为山地,地势东高西低、北高南低,受地形影响,结霜期较晚,年均降雨量456.8 mm,全年降雨集中在6—9月,降雨时空分布不均。土壤以山地褐土和栗钙土为主。

    图  1  研究区地理位置图
    Ⅰ.落叶松纯林,Ⅱ.樟子松纯林,Ⅲ.落叶松柠条混交林,Ⅳ.樟子松柠条混交林,Ⅴ.樟子松落叶松柠条混交林。下同。Ⅰ, Larix gmelinii pure forest;Ⅱ, Pinus sylvestris pure forest;Ⅲ, Larix gmelinii and Caragana korshins mixed forest;Ⅳ, Pinus sylvestris and Caragana korshins mixed forest;Ⅴ, Pinus sylvestris, Larix gmelinii and Caragana korshins mixed forest. Same as below.
    Figure  1.  Geographical location map of the study area

    2010年开始在荒山荒坡内实施封山育林和人工造林相结合的植被恢复与重建,坝头山地以营造水土保持林、防风固沙林和水源涵养林为主;阴坡、半阴坡土层较厚的坡面以落叶松(Larix gmelinii)、樟子松(Pinus sylvestris var. mongolica)为主;阳坡、半阳坡土层较薄,树种设计以樟子松、油松(Pinus tabuliformis)为主;沟壑设计栽植沙棘(Hippophae rhamnoides)、杨树(Populus simonii var. przewalskii),乔灌混交达到7∶3。混交方式以不规则块状混交和班间混交为主,现已形成华北落叶松(Larix gmelinii var. principis-rupprechtii)针叶纯林、樟子松针叶纯林、华北落叶松柠条(Caragana korshinskii)混交林、樟子松柠条混交林、华北落叶松樟子松柠条混交林5种主要人工林地。灌木林地主要有山杏(Armeniaca sibirica)、沙棘(Hippophae rhamnoides)等。

    于2021年5月初,在流域内选取了代表该区域管理后植被恢复都为12年的5块面积为20 m × 20 m的标准样地,包括Ⅰ落叶松纯林、Ⅱ樟子松纯林、Ⅲ落叶松柠条混交林、Ⅳ樟子松柠条混交林、Ⅴ樟子松落叶松柠条混交林(图1),并对5种不同配置模式的造林地进行了野外调查,包括GPS定位、每木检尺调查,并记录了海拔、坡向、坡度、郁闭度以及林分密度等,生长季初期林下无草本生长。表1记录了5个采样点的植物种类和地形信息。

    表  1  样地类型和基本特征
    Table  1.  Sample plot types and basic characteristics
    林分类型
    Forest stand type
    海拔
    Altitude/m
    坡度
    Slope/(°)
    林龄/a
    Stand age/year
    树高
    Tree height/m
    DBH/cm林分密度/(株·hm−2
    Forest density/(tree·ha−1
    1 521 20 12 2.35 3.75 950
    1 493 22 12 2.21 4.17 1 075
    1 286 22 12 3.24 3.55 1 250
    1 569 22 12 3.52 4.37 1 275
    1 249 23 12 2.68 3.86 1 125
    下载: 导出CSV 
    | 显示表格

    枯落物储量调查在每个样地内都选取3个(坡上、坡中、坡下)面积为0.2 m × 0.2 m的小样方,用钢尺分别测量未分解层和半分解层的厚度并记录,分层取样后装入牛皮纸袋中进行称鲜质量,然后带回放入烘箱在105 ℃下烘12 h后称干质量。

    枯落物持水测定采用室内浸泡法[14]进行枯落物持水量和持水速率的测定。

    枯落物有效拦蓄量计算通过枯落物持水、蓄积量以及自然含水率[15]进行推算,得到枯落物的有效拦蓄量。

    土壤物理性质测定采用剖面法,在每块样地内选取3个样点挖取土壤剖面,由于该地区土层较薄,且多为砾石,加上每个样地土层深度不同,为保证所有样地取土层相同,所以仅在0 ~ 10 cm的土层取环刀土样,并用环刀法[16]测定土壤密度、孔隙度等物理性质。

    土壤入渗测定采用原状土双环法[17]测定土壤入渗,在每块样地随机选取3个样点进行试验。

    采用Excel 2016和SPSS 22.0软件进行数据处理,使用ArcGIS 10.4.1和Origin 2021进行做图,采用单因素方差分析进行差异显著性分析(P < 0.05)。

    表2可知:5种配置模式的枯落物总厚度处于5.10 ~ 6.70 mm之间,总蓄积量处于2.55 ~ 4.50 t/hm2之间,其大小排序为樟子松纯林(4.50 t/hm2) > 樟子松落叶松柠条混交林(3.81 t/hm2) > 樟子松柠条混交林(3.76 t/hm2) > 落叶松纯林(3.64 t/hm2) > 落叶松柠条混交林(2.55 t/hm2)。5种配置模式枯落物的半分解层蓄积量及厚度均小于对应未分解层的蓄积量及厚度,半分解层枯落物的蓄积量大小排序为樟子松纯林 > 樟子松柠条混交林 > 落叶松纯林 > 樟子松落叶松柠条混交林 > 落叶松柠条混交林;未分解层枯落物的蓄积量大小排序为樟子松纯林 > 樟子松落叶松柠条混交林 > 樟子松柠条混交林 > 落叶松纯林 > 落叶松柠条混交林,落叶松柠条混交林与3种有樟子松的林地都表现为差异显著(P < 0.05)。

    表  2  不同配置模式的枯落物厚度及持水情况
    Table  2.  Litter thickness and water holding capacity of different configuration models
    林分类型
    Stand type
    枯落物层
    Litter layer
    枯落物蓄积量/(t·hm−2
    Litter volume/(t·ha−1
    枯落物厚度
    Litter thickness/mm
    半分解层 Semi-decomposed layer 1.68 ± 0.15a 2.60 ± 0.34ab
    2.03 ± 0.32a 2.90 ± 0.29a
    1.08 ± 0.06b 2.30 ± 0.15b
    1.69 ± 0.49a 2.80 ± 0.17a
    1.61 ± 0.35ab 2.70 ± 0.14ab
    未分解层 Undecomposed layer 1.96 ± 0.12ab 3.30 ± 0.11b
    2.47 ± 0.15a 3.80 ± 0.06a
    1.47 ± 0.11b 2.80 ± 0.09c
    2.07 ± 0.63a 3.30 ± 0.26b
    2.20 ± 0.08a 3.50 ± 0.05b
    注:同列不同小写字母表示同一分解状态下各处理间差异显著(P < 0.05);表中数据为平均值 ± 标准差。下同。Notes: different lowercase letters in the same column indicate significant differences between treatments at the same decomposed layer(P < 0.05); the data in the table are mean ± standard deviation. The same below.
    下载: 导出CSV 
    | 显示表格

    表3可知:5种配置模式的枯落物总的最大持水率处于231.20% ~ 333.05%之间,其大小排序为樟子松落叶松柠条混交林 > 落叶松纯林 > 落叶松柠条混交林 > 樟子松柠条混交林 > 樟子松纯林。在半分解层和未分解层中,樟子松落叶松柠条混交林的枯落物最大持水率都为最大,分别是161.42%和171.63%,樟子松纯林的枯落物最大持水率都为最小,分别是126.70%和104.50%。

    表  3  不同配置模式枯落物层的拦蓄能力
    Table  3.  Interception capacity of litter layer of different configuration models
    林分类型
    Stand type
    枯落物层 Litter layer自然含水率
    Natural moisture content/%
    最大持水率
    Maximum water holding rate/%
    最大持水量/(t·hm−2
    Maximum water holding capacity/(t·ha−1)
    有效拦蓄率
    Effective interception rate/%
    有效拦蓄量/(t·hm−2
    Effective interception capacity/(t·ha−1)
    半分解层
    Semi-decomposed layer
    15.09 ± 0.02ab 149.46 ± 40.02a 0.95 ± 0.32b 107.58 ± 40.33a 0.63 ± 0.04a
    17.76 ± 0.03a 126.70 ± 33.18a 1.48 ± 0.34ab 92.60 ± 25.81a 0.70 ± 0.04a
    15.09 ± 0.02ab 159.93 ± 50.38a 1.46 ± 0.35ab 123.52 ± 41.39a 0.71 ± 0.05a
    17.76 ± 0.03a 151.23 ± 8.96a 1.30 ± 0.61a 123.59 ± 9.97a 0.68 ± 0.04a
    11.01 ± 0.01b 161.42 ± 33.51a 1.33 ± 0.22ab 127.85 ± 27.67a 0.68 ± 0.05a
    未分解层 Undecomposed layer 11.97 ± 0.04a 147.65 ± 27.28a 1.00 ± 0.07b 113.41 ± 25.04a 0.54 ± 0.02c
    16.78 ± 0.06a 104.50 ± 11.61b 1.46 ± 0.41ab 74.56 ± 8.92b 0.71 ± 0.03b
    11.97 ± 0.04a 120.11 ± 3.94b 1.17 ± 0.04ab 92.44 ± 2.58b 0.65 ± 0.03b
    16.78 ± 0.06a 106.44 ± 5.14b 1.59 ± 0.33a 83.94 ± 3.93b 0.78 ± 0.04a
    10.06 ± 0.02a 171.63 ± 9.42a 1.37 ± 0.16ab 137.33 ± 6.79a 0.69 ± 0.04b
    下载: 导出CSV 
    | 显示表格

    枯落物总的最大持水量处于1.95 ~ 2.94 t/hm2之间,其大小排序为樟子松纯林 > 樟子松柠条混交林 > 樟子松落叶松柠条混交林 > 落叶松柠条混交林 > 落叶松纯林。在半分解层中,樟子松纯林的枯落物最大持水量最大,为1.48 t/hm2,而落叶松纯林最小,为0.95 t/hm2,5种配置模式之间无显著差异;在未分解层中,樟子松 柠条混交林的枯落物最大持水量最大,为1.59 t/hm2,而落叶松纯林最小,为1.00 t/hm2,樟子松柠条混交林和落叶松纯林差异显著(P < 0.05)。

    表3可知:5种配置模式的有效拦蓄量处于1.17 ~ 1.46 t/hm2之间,其大小排序为樟子松柠条混交林 > 樟子松纯林 > 樟子松落叶松柠条混交林 > 落叶松柠条混交林 > 落叶松纯林。在半分解层中落叶松柠条混交林的枯落物有效拦蓄量最大,落叶松纯林的最小;在未分解层中樟子松柠条混交林的枯落物有效拦蓄量最大,落叶松纯林的最小。方差分析表明5种配置模式的有效拦蓄量在半分解层和未分解层的显著性与最大持水量一致,即5种配置模式在半分解层之间无显著差异,在未分解层樟子松纯林,落叶松柠条混交林和樟子松落叶松 柠条混交林之间无显著差异,但他们与另外两种配置模式之间差异显著(P < 0.05)。

    5种配置模式的枯落物半分解层和未分解层的持水过程变化趋势总体上大致相同(图2),在2 h内都快速上升,2 h后上升的速率逐渐减小,直到8 h后逐渐趋于稳定,在浸泡12 h时都已趋于饱和状态。对不同配置模式枯落物持水量和浸水时间进行统计分析,得出5种林分的关系式为(表4Q = alnt + b,式中:Q为枯落物持水量(g/kg),t为枯落物浸水时间(h),ab为方程系数[18]

    图  2  5种配置模式枯落物持水过程
    Figure  2.  Water-holding process of litter in five configuration models
    表  4  不同配置模式枯落物层持水量、吸水速率与浸水时间的关系式
    Table  4.  Relationship between water holding capacity, water absorption rate and immersion time ofdifferent configuration models in litter layers
    林分类型
    Stand type
    枯落物层
    Litter layer
    持水过程
    Water holding procedure
    吸水过程
    Water absorption procedure
    回归方程
    Regression equation
    R2回归方程
    Regression equation
    R2
    半分解层 Semi-decomposed layer Q = 138.28lnt + 1 087.4 0.989 4 V = 5 632.4t−1.822 0.951 1
    Q = 137.38lnt + 883.7 0.964 1 V = 4 335.3t−1.770 0.947 1
    Q = 96.27lnt + 1 310.4 0.980 1 V = 5 740.4t−1.758 0.944 5
    Q = 121.49lnt + 1 051.0 0.979 1 V = 1 379.5t−0.935 0.999 7
    Q = 191.92lnt + 1 185.7 0.951 3 V = 5 560.5t−1.837 0.948 5
    未分解层 Undecomposed layer Q = 133.70lnt + 1 100.7 0.976 6 V = 5 780.1t−1.829 0.948 7
    Q = 107.70lnt + 745.9 0.971 9 V = 3 714.6t−1.786 0.946 0
    Q = 88.59lnt + 920.2 0.958 7 V = 6 793.0t−1.840 0.953 6
    Q = 86.81lnt + 824.8 0.977 2 V = 5 102.8t−1.887 0.957 3
    Q = 153.35lnt + 1 286.5 0.970 5 V = 4 444.9t−1.862 0.951 9
    下载: 导出CSV 
    | 显示表格

    图3可知:5种配置模式的枯落物吸水速率变化规律基本一致,在2 h内最大且快速下降,2 h后吸水速率逐渐减慢,到6 h后逐渐趋于稳定,24 h时已经接近零。对不同配置模式枯落物吸水速率和浸水时间进行统计分析,得出5种配置模式的关系式为(表4V = mtn,式中:V为枯落物吸水速率,g/(kg·h);t为枯落物浸水时间,h;m为方程系数;n为指数[19]

    图  3  枯落物层吸水速率与浸水时间的关系
    Figure  3.  Relationship between water absorption rate and immersion time in litter layer

    表5可知:5种配置模式的土壤密度大小排序为落叶松纯林 > 樟子松纯林 > 落叶松柠条混交林 > 樟子松柠条混交林 > 樟子松落叶松柠条混交林。5种配置模式的土壤总孔隙度大小排序为:樟子松落叶松柠条混交林 > 樟子松柠条混交林 > 落叶松柠条混交林 > 樟子松纯林 > 落叶松纯林。樟子松落叶松柠条混交林的非毛管孔隙度和毛管孔隙度都最大,分别为7.93%和33.16%,落叶松纯林的非毛管孔隙度和毛管孔隙度都最小,分别为3.25%和28.19%。

    表  5  不同配置模式土壤层的土壤持水及物理性质
    Table  5.  Soil water holding capacity and physical properties of soil layers in different configuration models
    林分类型
    Stand type
    土壤密度
    Soil density/
    (g·cm−3
    非毛管孔隙度
    Non-capillary porosity/%
    毛管孔隙度
    Capillary porosity/%
    总孔隙度
    Total porosity/%
    最大持水量/(t·hm−2
    Maximum water holding capacity/(t·ha−1)
    毛管持水量/(t·hm−2
    Capillary water holding capacity/(t·ha−1)
    有效持水量/(t·hm−2
    Effective water holding capacity/(t·ha−1
    1.62 ± 0.07a3.25 ± 0.26b28.19 ± 0.46b31.44 ± 0.63b516.21 ± 6.04b468.45 ± 2.54b47.76 ± 4.60b
    1.56 ± 0.12ab3.58 ± 0.52b28.33 ± 1.28b31.91 ± 1.80b529.40 ± 13.21ab477.28 ± 13.79ab52.12 ± 2.88b
    1.44 ± 0.02bc5.14 ± 0.28ab28.51 ± 0.87b34.11 ± 1.51ab550.89 ± 20.75ab474.45 ± 18.70ab76.44 ± 2.05a
    1.42 ± 0.02bc5.60 ± 0.75ab29.27 ± 0.54ab34.42 ± 0.33ab557.10 ± 7.57ab475.87 ± 3.43ab81.23 ± 4.18a
    1.20 ± 0.03c7.93 ± 0.38a33.16 ± 0.44a41.09 ± 0.63a645.36 ± 10.07a558.57 ± 6.99a86.79 ± 6.10a
    下载: 导出CSV 
    | 显示表格

    5种配置模式土壤的最大持水量处于516.21 ~ 645.36 t/hm2,其大小排序为:樟子松落叶松柠条混交林 > 樟子松柠条混交林 > 落叶松柠条混交林 > 樟子松纯林 > 落叶松纯林,这与土壤总孔隙度、毛管孔隙度和非毛管孔隙度的变化规律一致。林地内有效持水量处于47.76 ~ 86.79 t/hm2之间,其中樟子松落叶松柠条混交林的有效持水量最大,是落叶松纯林的有效持水量的1.82倍。

    方差分析表明:整体上,樟子松落叶松柠条混交林和2种纯林配置模式的土壤水文物理性质差异显著(P < 0.05),混交配置模式表现为樟子松落叶松柠条混交林和其他2种混交林配置模式的土壤水文物理性质无显著差异。

    表6可知:5种配置模式的初渗速率和稳渗速率分别处于9.60 ~ 16.57 mm/min和2.10 ~ 5.34 mm/min之间。5种配置模式初渗速率和稳渗速率的大小排序都为:樟子松落叶松柠条混交林(Ⅴ) > 樟子松柠条混交林(Ⅳ) > 落叶松柠条混交林(Ⅲ) > 樟子松纯林(Ⅱ) > 落叶松纯林(Ⅰ)。樟子松落叶松柠条混交林初渗速率和稳渗速率分别是落叶松纯林初渗速率和稳渗速率的1.73倍和2.54倍。方差分析表明2种纯林和3种混交林配置模式的初渗速率差异显著(P < 0.05),且3种混交林配置模式的初渗速率之间差异显著(P < 0.05),落叶松纯林的稳渗速率与3种混交林配置模式都存在显著性差异(P < 0.05)。对土壤入渗的时间和速率进行拟合,得出二者符合幂函数关系:y = atb,式中:y为入渗速率(mm/min);ab都为方程系数;t为入渗时间(min)。

    表  6  不同配置模式的土壤渗透速率及模型
    Table  6.  Soil infiltration rate and model of different configuration models
    林分类型
    Stand type
    初渗速率
    Initial infiltration rate/(mm·min−1
    稳渗速率
    Steady infiltration rate/(mm·min−1
    回归方程
    Regression equation
    R2
    9.60 ± 0.28d2.10 ± 0.26cy = 8.97t−0.470.932 9
    10.04 ± 0.34d3.39 ± 0.33bcy = 9.82t−0.310.929 1
    11.71 ± 0.36c3.54 ± 0.31by = 10.43t−0.350.955 3
    13.91 ± 0.42b4.61 ± 0.39aby = 10.65t−0.260.919 8
    16.57 ± 0.38a5.34 ± 0.35ay = 11.65t−0.240.865 8
    下载: 导出CSV 
    | 显示表格

    枯落物储量的大小受树种组成、林龄、水热环境、凋落量、分解速率、地表累积时间等要素的综合影响[20-21]。本研究中,5种配置模式的枯落物厚度和蓄积量各不相同,樟子松纯林由于自身结构较优且适应能力强,其厚度和蓄积量均为最大(表2);5种配置模式下,枯落物的半分解层厚度和蓄积量均小于未分解层,这可能是由于所有树种都处于幼龄林阶段且分解时间较短,加上研究区总体降水量较低(401.6 mm/a),平均气温偏冷(3.5 ℃),且处于高寒半干旱地区,特定的地理气候环境导致枯落物累积和分解速率均较慢,这也与公博等[12]的研究结果一致。

    枯落物的持水能力受树种、枯落物组成、蓄积量和分解速率等多重影响[22]。本研究中,5种配置模式的枯落物最大持水量、最大持水率以及有效拦蓄量的变化规律并不一致,这与枯落物的生物量及其自身结构有关[9]。总体而言,不论乔灌混交林还是纯林,樟子松林的枯落物持水量均偏大(表5),这可能是由于同龄樟子松本身适应能力强,生长状况更好,加之同龄樟子松叶片轮廓均大于落叶松,使得樟子松的外型与枯落物厚度较之同龄的落叶松均更大;另外一个可能原因是,樟子松林地的林分密度较高(表1),受林内环境因素的影响,樟子松林地的持水量均普遍较大。尽管枯落物持水量和吸水速率都与浸水时间呈现出较好的函数关系,但樟子松和落叶松林地持水和吸水变化规律与邓继峰等[23]、孙拥康等[24]的研究结果不同,这种差异可能与树种的生长阶段不同直接相关,也可能是区域、树种生物学特性等差异的影响所导致。

    由于不同森林植被类型生态学特性的差异,同一区域相同生境内,不同配置模式的土壤层蓄水渗透性能也表现出差异[6]。本研究中,5种配置模式的土壤水文物理性质变化规律一致,即3种混交配置模式的土壤物理性质和入渗性能均优于纯林,其中,樟子松落叶松柠条混交林在5种配置模式中均为最优,可能是由于樟子松 落叶松柠条混交林相对于其他4种配置,其树种组成,土壤层的腐殖物质以及根系生物量更为复杂多样(本研究测得樟子松落叶松柠条混交林的平均根质量密度最大,为2.13 kg/m3,落叶松纯林的平均根质量密度最小,为1.93 kg/m3)。腐殖物质和根系对土壤的改良调控作用导致土壤理化性质和入渗性能的变化显著。一方面,说明与柠条混交的配置模式对于林地土壤密度、孔隙度等土壤物理性质的提升显著,另一方面,说明樟子松和落叶松的混交配置模式产生的枯落物及其分解过程对林地蓄水能力提升有一定改善,三者的相互耦合,使得林地土壤的蓄水能力得到显著提高,从而为混交林地中不同植被的生长生存提供了更有利的土壤水文条件。这也与廖军[25]、公博等[12]的研究结论一致,不同配置模式的土壤水文物理性质存在一定的差异,混交林配置模式由于树种、枯落物组成以及根系分布更加复杂,比人工纯林有更强的水源涵养能力,可以有效地延缓地表径流的产生,减少水土流失,改善生态质量[26]

    综合来看,樟子松落叶松柠条混交林的枯落物层和土壤层的水文性能都高于其他林地,即该人工林的水源涵养能力最强,足以说明树种选择和配置方式在人工林重建和恢复过程中的重要性,可以作为该地区首选的植被恢复模式。恢复方式对于新营造的森林结构和功能至关重要[27],然而当前研究区人工林经营和抚育作业开展仍较少,大多以单次人工林营造为主,并且仍存在林分结构单一、不合理的现象。目前的恢复方式侧重于树种组成、结构、自然栖息地、生态系统过程和服务的恢复[28]。人工造林对生态系统服务功能的构建不仅与造林区域的气候与土壤有关[29],也与造林树种、造林密度和经营管理措施的差异有关[30]。森林结构的复杂性在调节森林生态系统功能方面起着至关重要的作用,并强烈影响生物多样性[31]。林分空间结构是林分特征的重要研究内容之一,而林分结构对森林功能的发挥有重要影响作用[32],混交林的林分结构相较于纯林更为复杂,物种更加丰富多样。因此,迫切需要加强人工林经营管理,根据不同的环境条件,充分考虑树种和配置模式,通过结构化森林经营技术[33-34],实施针叶纯林改造技术,改善林分状态,提高林分稳定性。

  • 图  1   花粉萌发(a)与胚挽救获得的杂交子代(b)

    Figure  1.   Pollen germination (a) and hybrid offsprings obtained from embryo rescuing (b)

    图  2   杂交子代中BtCry3A基因PCR(a)和RT-PCR(b)检测

    a图中0为质粒,1为转基因741杨,2为新疆杨,3为野生型741杨,4 ~ 9为1#、2#、3#、4#、6#、8#子代。b图中1为新疆杨,2为野生型741杨,3为转基因741杨,4 ~ 9为1#、2#、3#、4#、6#、8#子代。 In figure a, 0 means plasmid, 1means transgenic 741 poplar, 2 means P. alba var. pyramidalis, 3 means wild type 741 poplar, 4−9 mean 1#, 2#, 3#, 4#, 6#, and 8# hybrids. In figure b, 1 means P. alba var. pyramidalis, 2 means wild type 741 poplar, 3 means transgenic 741 poplar, 4−9 mean 1#, 2#, 3#, 4#, 6#, and 8# hybrids.

    Figure  2.   Identification of BtCry3A in hybrid offsprings by PCR (a) and RT-PCR (b)

    图  3   不同株系BtCry3A基因RT-qPCR分析

    **表示与野生型741杨相比,在0.01水平上存在极显著差异。** means extremly significant difference at 0.01 level compared with wild type 741 poplar.

    Figure  3.   Analysis of BtCry3A in different strains by RT-qPCR

    图  4   父母本与杂交子代核DNA流式细胞检测

    a. 新疆杨;b. 转基因741杨;c ~ g. 杂交子代1#、2#、3#、4#、8#。a, P. alba var. pyramidalis; b, transgenic 741 poplar; c−g, 1#, 2#, 3#, 4#, 8# hybrid offsprings.

    Figure  4.   Detection of nuclear DNA of offspring and its parents by flow cytometer

    图  5   亲本与杂交子代幼苗表型前视图(a)和俯视图(b)

    Figure  5.   Phenotypes of parents and hybrid offspring front view (a) and vertical view(b)

    图  6   亲本与杂交子代幼苗表型差异分析

    *表示与新疆杨相比在0.05水平上存在显著差异,**表示与新疆杨相比在0.01水平上存在极显著差异。下同。* means significant difference at 0.05 level compared with P. alba var. pyramidalis, ** means extremly significant difference at 0.01 level compared with P. alba var. pyramidalis. The same below.

    Figure  6.   Analysis of phenotypic difference between parents and hybrid offsprings

    图  7   亲本与杂交子代幼苗叶片表型差异分析

    Figure  7.   Analysis of leaf phenotypic difference between parent and hybrid offsprings

    图  8   亲本与杂交子代幼苗叶片纵切面

    a. 新疆杨;b. 转基因741杨;c ~ g. 杂交子代1#/2#/3#/4#/8#。a, P. alba var. pyramidalis; b, transgenic 741 poplar; c−g, 1#, 2#, 3#, 4#, 8# hybrid offsprings.

    Figure  8.   Leaf longitudinal section of parents and hybrid offsprings

    表  1   流式细胞分析法对杂交子代的倍性检测结果

    Table  1   Detection results of nuclear ploidy of hybrid offsprings by flow cytometry method

    样本
    Sample

    CV/%
    相对荧光强度
    Relative fluorescence intensity
    F
    F value
    新疆杨 P. alba var. pyramidalis 6.96 ± 0.12 13 251.00 ± 21.23 2.00
    741杨 741 poplar 6.07 ± 0.21 19 731.00 ± 129.25 2.98
    1# 5.41 ± 0.28 28 297.33 ± 36.97 4.27
    2# 5.86 ± 0.14 16 786.67 ± 129.60 2.53
    3# 5.67 ± 0.19 26 006.67 ± 86.44 3.93
    4# 6.56 ± 0.79 15 659.00 ± 259.90 2.36
    8# 5.95 ± 0.22 24 763.00 ± 270.82 3.74
    下载: 导出CSV
  • [1] 李善文, 张志毅, 何承忠. 中国杨树杂交育种研究进展[J]. 世界林业研究, 2004, 17(2): 37−38. doi: 10.3969/j.issn.1001-4241.2004.02.010

    Li S W, Zhang Z Y, He C Z. Progress on hybridization breeding of poplar in China[J]. World Forestry Research, 2004, 17(2): 37−38. doi: 10.3969/j.issn.1001-4241.2004.02.010

    [2] 李秀华. 三北防护林杨树天牛的危害及防治策略[J]. 防护林科技, 2021(4): 77−78, 80.

    Li X H. Harm and control strategy of poplar in three north shelterbelt[J]. Protection Forest Science and Technology, 2021(4): 77−78, 80.

    [3] 丁莉萍, 王宏芝, 魏建华. 杨树转基因研究进展及展望[J]. 林业科学研究, 2016, 29(1): 124−132.

    Ding L P, Wang H Z, Wei J H. Progress and prospect of research in transgenic poplar[J]. Forest Research, 2016, 29(1): 124−132.

    [4] 田颖川, 李太元, 莽克强, 等. 抗虫转基因欧洲黑杨的培育[J]. 生物工程学报, 1993, 9(4): 291−297, 395. doi: 10.3321/j.issn:1000-3061.1993.04.017

    Tian Y C, Li T Y, Mang K Q, et al. Insect tolerance of transgenic Populus nigra plants transformed with Bacillus thuringiensis toxin gene[J]. Chinese Journal of Biotechnology, 1993, 9(4): 291−297, 395. doi: 10.3321/j.issn:1000-3061.1993.04.017

    [5] 王学聘, 韩一凡, 戴莲韵, 等. 抗虫转基因欧美杨的培育[J]. 林业科学, 1997, 33(1): 69−74. doi: 10.3321/j.issn:1001-7488.1997.01.010

    Wang X P, Han Y F, Dai L Y, et al. Studies on insect-resistant transgenic (P. × euramericana) plants[J]. Scientia Silvae Sinicae, 1997, 33(1): 69−74. doi: 10.3321/j.issn:1001-7488.1997.01.010

    [6] 饶红宇, 陈英, 黄敏仁, 等. 杨树NL-8010转Bt基因植株的获得及抗虫性[J]. 植物资源与环境学报, 2000, 9(2): 1−5. doi: 10.3969/j.issn.1674-7895.2000.02.001

    Rao H Y, Chen Y, Huang M R, et al. Genetic transformation of poplar NL-80106 transferred by Bt gene and its insect-resistance[J]. Journal of Plant Resources and Environment, 2000, 9(2): 1−5. doi: 10.3969/j.issn.1674-7895.2000.02.001

    [7] 李科友, 樊军锋, 赵忠, 等. 转双价抗虫基因毛白杨无性系85号抗虫性研究[J]. 西北植物学报, 2007, 27(8): 1537−1543.

    Li K Y, Fan J F, Zhao Z, et al. Resistance to insect of transgenic Populus tomentosa clone-85 plants with two insect-resistant genes[J]. Acta Bot Boreal Occident Sin, 2007, 27(8): 1537−1543.

    [8] 甄志先, 李静, 梁海永, 等. 转BtCry3A基因杨树毒蛋白表达及对桑天牛抗性的研究[J]. 蚕业科学, 2007(4): 538−542. doi: 10.3969/j.issn.0257-4799.2007.04.004

    Zhen Z X, Li J, Liang H Y, et al. Expressions of BtCry3A gene in transgenic polar and its resistance against Apriona germari[J]. Science of Sericulture, 2007(4): 538−542. doi: 10.3969/j.issn.0257-4799.2007.04.004

    [9] 姜惠明. 白杨杂种优势的初步分析及白杨杂种优良无性系741号杨选育[J]. 河北农学报, 1983, 8(2): 75−80.

    Jiang H M. Preliminary analysis of hybrid vigor of poplar and selection of high-quality poplar hybrid clone-741[J]. Hebei Agricultural Journal, 1983, 8(2): 75−80.

    [10] 牛小云, 黄大庄, 杨敏生,等. 转BtCry3A基因杨树6个株系体内毒蛋白表达及对桑天牛的抗性鉴定[J]. 蚕业科学, 2011, 37(4): 593−599. doi: 10.3969/j.issn.0257-4799.2011.04.001

    Niu X Y, Huang D Z, Yang M S, et al. Expression of toxic protein in six transgenic poplar strains with BtCry3A gene and identification of their resistance against Apriona germari[J]. Science of Sericulture, 2011, 37(4): 593−599. doi: 10.3969/j.issn.0257-4799.2011.04.001

    [11]

    Ran Y D, Liang Z, Gao C X. Current and future editing reagent delivery systems for plant genome editing[J]. Science China-Life Sciences, 2017, 60(5): 490−505. doi: 10.1007/s11427-017-9022-1

    [12]

    Satheesh V, Zhang H, Wang X T, et al. Precise editing of plant genomes-prospects and challenges[J]. Seminars in Cell & Developmental Biology, 2019, 96: 115−123.

    [13] 苏静, 王向东, 王俊, 等. 植物三倍体育种研究进展[J]. 南方农业, 2012, 6(5): 78−80. doi: 10.3969/j.issn.1673-890X.2012.05.026

    Su J, Wang X D, Wang J, et al. Advances of triploid breeding in plant[J]. South China Agriculture, 2012, 6(5): 78−80. doi: 10.3969/j.issn.1673-890X.2012.05.026

    [14]

    Ramsey J, Schemske D W. Pathways, mechanisms, and rates of polyploid formation in flowering plants[J]. Annual Review of Ecology and Systematics, 1998, 29: 467−501. doi: 10.1146/annurev.ecolsys.29.1.467

    [15]

    Siegel J J, Amon A. New insights into the troubles of aneuploidy[J]. Annual Review of Cell and Developmental Biology, 2012, 28(1): 189−214. doi: 10.1146/annurev-cellbio-101011-155807

    [16]

    Shi X, Chen C, Yang H, et al. The gene balance hypothesis: epigenetics and dosage effects in plants[J]. Methods in Molecular Biology, 2020, 2093: 161−171.

    [17] 朱斌, 田贵福, 贺路英, 等. 植物非整倍体研究进展[J]. 广西植物, 2018, 38(10): 1404−1410. doi: 10.11931/guihaia.gxzw201712007

    Zhu B, Tian G F, He L Y, et al. Advances of aneuploidy in plant[J]. Guihaia, 2018, 38(10): 1404−1410. doi: 10.11931/guihaia.gxzw201712007

    [18]

    Jeong C S, Park S M, Wakana A, et al. Male and female fertility in triploid grapes (Vitis complex) with special reference to the production of aneuploid plants[J]. Vitis Journal of Grapevine Research, 2002, 41(1): 11−19.

    [19]

    Kikuchi S, Iwasuna M, Kobori A, et al. Seed formation in triploid loquat (Eriobotrya japonica) through cross-hybridization with pollen of diploid cultivars[J]. Breeding Science, 2014, 64(2): 176−182. doi: 10.1270/jsbbs.64.176

    [20]

    Wang P, Yang Y, Lei C, et al. A female fertile triploid loquat line produces fruits with less seed and aneuploid germplasm[J]. Scientia Horticulturae, 2023, 319(11): 21−41.

    [21]

    Suzuki T, Yamagishi M. Aneuploids without bulbils segregated in F1 hybrids derived from triploid Lilium lancifolium and diploid L. leichtlinii crosses[J]. The Horticulture Journal, 2016, 85(3): 224−231. doi: 10.2503/hortj.MI-089

    [22] 崔罗敏, 万麟, 周树军. 三倍体观赏百合与二倍体食用龙牙百合的杂交分析[J]. 西北植物学报, 2021, 41(6): 971−976. doi: 10.7606/j.issn.1000-4025.2021.06.0971

    Cui L M, Wan L, Zhou S J. Analysis of the hybridization between triploid ornamental lily (Lilium) and diploid Edible Lilim brownii. var. viridulum[J]. Acta Bot Boreal Occident Sin, 2021, 41(6): 971−976. doi: 10.7606/j.issn.1000-4025.2021.06.0971

    [23]

    Zhang A, Li N, Gong L, et al. Global analysis of gene expression in response to whole-chromosome aneuploidy in hexaploid wheat[J]. Plant Physiology, 2017, 175(2): 828−847. doi: 10.1104/pp.17.00819

    [24] 旻昱, 康宁, 索玉静, 等. 毛白杨杂种三倍体的2n雌配子形成途径鉴定[J]. 北京林业大学学报, 2017, 39(5): 17−24.

    Min Y, Kang N, Suo Y J, et al. Origin identification of 2n female gamete of Populus tomentosa triploid hybrids[J]. Journal of Beijing Forestry University, 2017, 39(5): 17−24.

    [25] 李代丽, 商静, 田菊, 等. 青黑杨杂种三倍体花粉母细胞减数分裂染色体行为及其花粉变异研究[J]. 北京林业大学学报, 2019, 41(7): 75−82.

    Li D L, Shang J, Tian J, et al. Meiotic chromosome behavior of pollen mother cells and pollen variation in triploid hybrid between section Tacamahaca and sect. Aigeiros of Populus[J]. Journal of Beijing Forestry University, 2019, 41(7): 75−82.

    [26]

    Wang J, Huo B, Liu W, et al. Abnormal meiosis in an intersectional allotriploid of Populus L. and segregation of ploidy levels in 2x × 3x progeny[J]. PLoS One, 2017, 12(7): e181767.

    [27]

    Pellicer J, Leitch I J. The application of flow cytometry for estimating genome size and ploidy level in plants[J]. Methods in Molecular Biology, 2014, 1115: 279−307.

    [28]

    Puite K J, Broeke W R R T. DNA staining of fixed and non-fixed plant protoplasts for flow cytometry with hoechst 33342[J]. Plant Science Letters, 1983, 32(1−2): 79−88. doi: 10.1016/0304-4211(83)90101-3

    [29] 李薇, 李淑娴. 林木抗虫性研究进展[J]. 西南林业大学学报, 2018, 38(5): 180−190.

    Li W, Li S X. Advances in insect resistance of forest trees[J]. Journal of Southwest Forestry University, 2018, 38(5): 180−190.

    [30] 贾殿坤. 三北防护林中杨树天牛的危害特点及防治措施[J]. 林业勘查设计, 2023, 52(3): 48−51. doi: 10.3969/j.issn.1673-4505.2023.03.012

    Jia D K. Hazard characteristics and prevention measures of Cerambycidae in the Three-North Shelter Forest Program forest investigation design[J]. Forest Investigation Desigh, 2023, 52(3): 48−51. doi: 10.3969/j.issn.1673-4505.2023.03.012

    [31] 李林光, 何平, 欧春青, 等. 苹果三倍体后代培养及倍性鉴定[J]. 果树学报, 2008, 25(3): 400−403. doi: 10.3969/j.issn.1009-9980.2008.03.022

    Li L G, He P, Ou C Q, et al. Culture and identification of seedlings from triploid apple[J]. Journal of Fruit Science, 2008, 25(3): 400−403. doi: 10.3969/j.issn.1009-9980.2008.03.022

    [32] 梁武军, 解凯东, 谢宗周, 等. 三倍体葡萄柚实生后代多倍体的发掘与SSR遗传鉴定[J]. 果树学报, 2015, 32(1): 13−18.

    Liang W J, Xie K D, Xie Z Z, et al. Exploitation of polyploids from open-pollinated triploid grapefruit progenies and their genetic identification by SSR molecular markers[J]. Journal of Fruit Science, 2015, 32(1): 13−18.

    [33]

    Kojima S, Cimini D. Aneuploidy and gene expression: is there dosage compensation?[J]. Epigenomics, 2019, 11(16): 1827−1837.

    [34] 常丽娟, 刘勇, 宋君, 等. 转基因植物中外源基因的沉默及应对策略[J]. 生物技术通讯, 2013, 24(6): 881−885. doi: 10.3969/j.issn.1009-0002.2013.06.031

    Chang L J, Liu Y, Song J, et al. Silence of exogenous eenes in transgenic plants and the coping strategies[J]. Letters in Biotechnology, 2013, 24(6): 881−885. doi: 10.3969/j.issn.1009-0002.2013.06.031

    [35]

    Wang P, Yang Y, Lei C, et al. A female fertile triploid loquat line produces fruits with less seed and aneuploid germplasm[J]. Scientia Horticulturae, 2023, 319: 112141.

    [36]

    Chen H, Contreras R N. Near-hexaploid and near-tetraploid aneuploid progenies derived from backcrossing tetraploid parents Hibiscus syriacus × (H. syriacus × H. paramutabilis)[J]. Genes, 2022, 13(6): 1022.

    [37]

    Dang J, Wu T, Liang G, et al. Identification and characterization of a loquat aneuploid with novel leaf phenotypes[J]. Hortscience, 2019, 54(5): 804−808. doi: 10.21273/HORTSCI13844-18

    [38] 轩淑欣, 李明, 张成合, 等 . 植物非整倍体及其在遗传研究上的应用[J]. 河北农业大学学报, 2002(增刊1): 47−50. doi: 10.3969/j.issn.1000-1573.2002.z1.015

    Xuan S X, Li M, Zhang C H, et al. Plant aneuoloids and their use in the genetic studies and breeding[J]. Journal of Agricultural University of Hebei, 2002(Suppl. 1): 47−50. doi: 10.3969/j.issn.1000-1573.2002.z1.015

    [39] 费希同, 唐军荣, 周军, 等. 中国杨树多倍体诱导研究现状[J]. 湖北农业科学, 2014, 53(18): 4252−4256.

    Fei X T, Tang J R, Zhou J, et al. Research status of polyploid induction on poplar in China[J]. Hubei Agricultural Sciences, 2014, 53(18): 4252−4256.

  • 期刊类型引用(0)

    其他类型引用(9)

图(8)  /  表(1)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  8
  • PDF下载量:  37
  • 被引次数: 9
出版历程
  • 收稿日期:  2024-01-16
  • 修回日期:  2024-05-17
  • 录用日期:  2024-12-06
  • 网络出版日期:  2024-12-08
  • 刊出日期:  2024-12-24

目录

/

返回文章
返回
x 关闭 永久关闭