The impact of thinning intensity on carbon storage in the mixed coniferous and broad-leaved forest ecosystem in Northeast China
-
摘要:目的
抚育采伐是改善林分质量、优化林分结构的重要森林经营方式,对调控森林生态系统固碳能力具有显著影响。目前关于天然混交林生态系统层面碳储量对不同采伐强度的响应规律尚未形成一致的结论。本研究旨在探究不同采伐强度下针阔混交林生态系统碳储量的动态变化,为合理选择采伐强度、提升森林碳碳汇能力提供理论依据。
方法于2011年建立轻度采伐(强度 17.3%)、中度采伐(强度34.7%)、重度采伐(强度51.9%)样地及对照样地,计算2021年生态系统各组分的碳储量,分析采伐后10年间森林碳储量的动态变化,揭示森林生态系统碳储量对不同采伐强度的响应规律。
结果采伐10年后,森林生态系统碳储量随着采伐强度的增大呈上升趋势(轻度采伐为333.72 t/hm2,中度采伐为358.48 t/hm2,重度采伐为386.93 t/hm2)。不同采伐强度样地的森林生态系统碳储量无显著差异,但重度采伐样地中乔木层碳储量显著低于对照样地,而轻度采伐样地与对照样地无显著差异(轻度采伐样地乔木层碳储量是对照样地的1.09倍)。灌木碳储量在中度采伐样地显著高于对照样地(p < 0.05);而草本碳储量在重度采伐样地显著低于对照样地(p < 0.05)。土壤碳储量不同采伐强度下无显著差异,但随采伐强度的增加呈上升趋势,这是生态系统碳储量呈增长趋势的主要原因之一。
结论20%以内的抚育采伐强度既可实现林分结构调整目标,又能促进森林生态系统植被层碳储量积累,采伐后10年已恢复至对照样地水平。从生态系统层面考虑,若纳入土壤等其他碳组分,重度采伐反而可能促进生态系统碳储量的提升。因此,应综合考虑生态系统各组分的恢复状态选择最合适的采伐强度进行抚育。本研究的时间跨度为10年,相对于森林的生长周期较短,后续还需在更长的时间尺度上评价生态系统碳储量的变化规律。
Abstract:ObjectiveThinning is an important forest management method to improve forest quality and optimize forest structure, which has a significant impact on regulating the carbon sequestration capacity of forest ecosystems. At present, there is no consensus on the response of carbon storage at the ecosystem level of natural mixed forests to different thinning intensities. The aim of this study is to explore the dynamic changes in carbon storage in coniferous and broad-leaved mixed forest ecosystems under different thinning intensities, providing a theoretical basis for rational selection of thinning intensities and enhancing forest carbon sequestration capacity.
MethodIn 2011, light thinning (intensity 17.3%), moderate thinning (intensity 34.7%), heavy thinning (intensity 51.9%) plots and control plots were established to calculate the carbon stocks of various components in the ecosystem in 2021. The dynamic changes in forest carbon stocks over the past 10 years after thinning were analyzed to reveal the response patterns of forest ecosystem carbon stocks to different thinning intensities.
ResultAfter 10 years of thinning, the carbon storage of forest ecosystems showed an upward trend with increasing thinning intensity (333.72 t/hm2 for light thinning, 358.48 t/hm2 for moderate thinning, and 386.93 t/hm2 for heavy thinning). There was no significant difference in forest ecosystem carbon storage among plots with different thinning intensities, but the carbon storage in the tree layer of the heavily logged plot was significantly lower than that of the control plot, while there was no significant difference between the lightly logged plot and the control plot (the carbon storage in the tree layer of the lightly logged plot was 1.09 times that of the control plot). The carbon storage of shrubs in moderate thinning plots was significantly higher than that in control plots (p < 0.05); The carbon storage of herbaceous plants was significantly lower in heavily logged plots than in control plots (p < 0.05). There is no significant difference in soil carbon storage under different thinning intensities, but it shows an upward trend with the increase of thinning intensity, which is one of the main reasons for the increasing trend of ecosystem carbon storage.
ConclusionA cultivation and logging intensity of less than 20% can not only achieve the goal of forest structure adjustment, but also promote the accumulation of carbon storage in the vegetation layer of the forest ecosystem. After 10 years of thinning, it has been restored to the level of the control plot. From the perspective of the ecosystem, if other carbon components such as soil are included, heavy thinning may actually promote the increase of carbon storage in the ecosystem. Therefore, it is necessary to comprehensively consider the restoration status of various components of the ecosystem and select the most suitable thinning intensity for nurturing. The time span of this study is 10 years, which is relatively short compared to the growth cycle of forests. Therefore, it is necessary to evaluate the changes in ecosystem carbon storage on a longer time scale in the future.
-
抚育采伐是森林经营管理的重要策略之一[1−2],其通过降低林分密度、去除生长不良树木来优化林分结构、提升生物多样性,进而增加森林生态系统的稳定性[3−4]。然而,森林采伐也会影响森林小气候和土壤理化性质,从而改变森林生态系统的固碳能力。由于以往研究在采伐强度、恢复时间和评估方法上存在差异,相关的研究结果并未达成一致[5−6]。
碳储量是衡量森林生产、碳储存及减缓气候变化能力的重要指标[7]。非生物因素(如土壤条件、地形异质性和气候)通过调控资源有效性(如光、水和养分)及小气候,显著影响林分生长[8]。同时,林龄、种内种间竞争以及森林群落结构等生物因素也会影响森林碳储量[9−10]。在部分亚热带和温带森林中,林分结构(如林分密度、树木大小变化)和林龄对地上碳储量的贡献大于物种组成[9,11−14]。其中,林分密度作为重要的林分结构属性,通过增加林分结构变化和调节资源配置,显著影响森林碳储量[15]。
森林乔木和灌木的碳储量组成复杂,涵盖树叶、树干、树根及树枝等多个组分,其比例因立地条件和树种组成而异。不同采伐强度对林分胸径、断面积及蓄积量等指标的影响不同,进而导致碳储量储分布的差异。因此,深入理解抚育采伐对林分生长的影响机制,对优化森林经营管理策略、促进森林碳储量积累具有重要意义[16]。
尽管大量研究估算了采伐后林分生物量或碳储量的恢复时间[17−18],但关于碳储量长期恢复轨迹的研究仍较为匮乏。采伐强度、气候条件、土地利用历史、林龄、森林结构及环境变化等因素均可显著影响森林中碳储量的恢复过程[19−20]。研究表明,采伐强度强烈地影响了森林碳储量的恢复时间,采伐后碳储量恢复可能持续到几十年甚至上百年[21−23]。然而,针对不同采伐强度下森林碳储量长期恢复动态的研究仍十分有限。
自20世纪50年代以来,对东北阔叶红松(Pinus koraiensis)林的大规模开发利用导致了大面积次生针阔混交林的形成。围绕这些次生林,学者们开展了大量研究,主要聚焦于采伐对幼苗更新、林分空间结构、物种多样性、林分生长状况、土壤理化性质及土壤呼吸等方面的影响[24−29],而关于不同采伐强度下生态系统碳储量变化的研究相对较少。本研究通过在吉林省典型天然林内设置不同采伐强度的固定样地,定位监测采伐后林分的生长动态,探讨了采伐后10年间生态系统碳储量的变化规律。该研究对指导森林碳汇经营实践及促进森林资源的可持续利用都具有重要的意义。
1. 研究区概况与研究方法
1.1 研究区概况
研究地点位于吉林省林业实验区国有林保护中心,属受季风影响的温带大陆性山地气候区。研究区年气温变化幅度较大,年平均气温为3.8 ℃,最热月7月平均气温为21.7 ℃,最冷月1月平均气温为–18.6 ℃。年降水量为700 ~ 800 mm,无霜期120 ~ 150 d。平均海拔506 m,土壤类型为山地暗棕色森林土,土层厚度为20 ~ 100 cm。森林群落类型为典型天然次生针阔混交林,主要乔木树种有红松、白牛槭(Acer mandshuricum)、胡桃楸(Juglans mandshurica)、春榆(Ulmus davidiana var. japonica)和水曲柳(Fraxinus mandshurica)等。主要灌木种有毛榛子(Corylus mandshurica)、簇毛槭(Acer barbinerve)和东北山梅花(Philadelphus schrenkii)等。主要草本有猴腿蹄盖蕨(Athyrium multidendatum)、毛缘苔草(Carex pilos)、小叶芹(Aegopodum alpestre)等[30−31]。
1.2 样地设置
2011年7月,选择地形和林分状况相对一致的区域设置了4个面积为100 m × 100 m的固定样地。样地之间的间隔都在50 m以上,以此消除采伐边缘效应,使用全站仪将每个样地划分成25个20 m × 20 m的连续样方,在每个20 m × 20 m样方节点处用水泥桩进行标记和编号,4块样地共有100个小样方。对样地内所有胸径(DBH)≥1 cm的木本植物进行挂牌、调查及定位。调查每个植株的物种、胸径、树高、枝下高、冠幅及生长状况等。每个20 m × 20 m样方中采伐强度按照胸高断面积控制,重点伐除林中的病腐木、濒死木、被压木,保留林中的珍稀树种和经济价值较高的树种。实验样地总体采伐原则为留优去劣、间密存匀,调节林分结构,使林木分布更加均匀,并将所有采伐剩余物移除样地之外。设置轻度(LT)、中度(MT)、重度(HT) 3个采伐强度,并设置不采伐样地作为对照(CK)。样地进行采伐后,根据胸高断面积计算得到4个样地实际采伐强度分别为:0(CK)、17%(LT)、35% (MT)和52% (HT)。采伐前后样地的概况见表1和表2。此后于2013、2015、2018及2021年对采伐样地进行了复测。
表 1 采伐前的林分特征Table 1. Characteristics of forest stands before thinning样地属性 采伐强度 CK LT MT HT 坡度/(°) 1 4 5 3 海拔/m 453 443 430 447 坡向 NE NE NE NE 平均胸径/cm 14.6 13.9 14.8 12.4 林分密度/(株·hm−2) 1106 1045 1007 1298 平均树高/m 9.7 9.6 9.7 8.8 郁闭度 0.9 0.9 0.9 0.9 胸高断面积/m2 30.06 29.47 30.38 30.47 注:CK. 对照样地;LT. 轻度采伐样地;MT. 中度采伐样地;HT. 重度采伐样地。下同。 表 2 采伐后样地的林分特征Table 2. The characteristics of the forest stand in the sample plot after tending and logging样地属性 采伐强度 CK LT MT HT 采伐强度/% 0 17.24 34.74 51.87 株数强度/% 0 19.23 27.90 44.76 平均胸径/cm 14.6 13.77 14.83 12.69 林分密度/(株·hm−2) 1106 844 726 717 平均树高/m 9.7 9.8 9.9 8.9 郁闭度 0.9 0.8 0.6 0.5 胸高断面积/m2 30.06 24.39 19.82 14.66 1.3 森林生态系统碳储量计算方法
1.3.1 不同采伐强度样地植被层碳储量计算方法
以20 m × 20 m的样方为单位,根据调查的乔木胸径数据,结合已建立的异速生长方程[32],计算每株林木的生物量求和得到每个样方的林分生物量,并换算为每公顷的林分生物量。在每个20 m × 20 m的样方随机设置一个2 m × 2 m的灌木样方,根据灌木调查样方的基径和冠幅等指标,代入异速生长方程得到调查样方的灌木的生物量,计算均值换算为1 hm2样地内灌木总生物量。在每个样地中按对角线设置13个1 m × 1 m的草本样方,对草本植物进行整株收获,用清水洗净后将地上与地下部分区分开,之后在85℃烘干至恒质量。在每个1 m × 1 m的草本样方内,设定一个0.5 m × 0.5 m的凋落物现存量调查样方,收取全部凋落物并在85 ℃烘干至恒质量。样地中枯立木在调查时做好标记,用去除树枝和树叶部分的异速生长方程估算生物量。最终将所有的生物量乘以碳转换系数0.5换成碳储量。
植被层碳储量的计算公式为:
TG=Tt+Ts+Th+TL+Td 式中:TG为植被层碳储量(t),Tt为乔木层碳储量(t),TS为灌木层碳储量(t),Th为草本层碳储量(t),TL为凋落物层碳储量(t),Td为枯立木层碳储量(t)。
1.3.2 土壤碳储量计算
在各个样地内利用土钻随机进行土壤取样,测定不同样地的0 ~ 20 cm、20 ~ 40 cm、40 ~ 60 cm和 > 60 cm土壤层有机碳含量,不同深度的土壤层分开测量计算其每层碳储量,最后相加得到土壤层碳储量,计算公式为
Tsoil=4∑i=1(Di×Csoili×ρ×S) 式中:Tsoil为土壤层碳储量(t);Di为第i层土壤厚度(cm);Csoili为第i层土壤有机碳含量(%);ρ为土壤容重(g/cm3);S为样地面积(hm2);i为土壤层i,i = 4表示共分为4层,其中前3层土壤深度均为20 cm,第4层则根据土壤实际厚度计算。
1.3.3 生态系统碳储量计算
植被层碳储量加上土壤层碳储量即为森林生态系统的碳储量,计算公式为
Te=TG+Tsoil 式中:Te为生态系统碳储量(t)。
2. 结果与分析
2.1 采伐对乔木层碳储量的影响
随着采伐强度增大,2021年乔木层碳储量呈现逐渐减小的趋势。轻度采伐样地乔木层碳储量最高,为138.47 t/hm2;对照样地和中度采伐样地次之,分别为127.11 t/hm2和106.65 t/hm2;重度采伐样地乔木层碳储量最小,为76.87 t/hm2。轻度采伐样地中乔木碳储量是对照样地的1.09 倍(表3),重度采伐样地的乔木碳储量仅为对照样地的60.47%。重度采伐样地的乔木层碳储量显著低于对照样地。其他采伐强度下乔木碳储量与对照样地没有显著差异。
表 3 2021年不同采伐强度下乔木层碳储量的变化Table 3. Changes in carbon storage of tree layer under different intensities of thinning in 2021采伐强度 组分 碳储量/(t·hm−2) CK 叶 2.65 ± 0.16ab 枝 31.86 ± 2.61 a 干 63.57 ± 3.55ab 根 29.03 ± 1.76a 总 127.11 ± 7.56 a LT 叶 2.86 ± 0.38a 枝 35.46 ± 7.11 a 干 70.40 ± 10.98 a 根 29.73 ± 4.80a 总 138.47 ± 21.24 a MT 叶 2.93 ± 0.27 a 枝 23.295 ± 1.41ab 干 57.97 ± 3.33ab 根 22.455 ± 1.17 ab 总 106.65 ± 5.97 ab HT 叶 1.72 ± 0.16b 枝 16.715 ± 1.4b 干 41.02 ± 2.9b 根 17.40 ± 1.31b 总 76.87 ± 5.58b 注:不同小写字母表示相同组成部分在不同采伐强度下的差异显著(p < 0.05)。下同。 乔木层碳储量主要由根、干、枝、叶4部分组成,在不同采伐样地中,均为树干占比最高;其中中度采伐样地树干占比最高为54.36%,重度采伐样地次之树干占比53.37%,轻度样地最低树干占比50.84%。枝和根的比例在4块样地里均为25%左右;叶占比最少,不到乔木层碳储量的5%。总体上,地上部分(叶、枝和干)占比例达到乔木层碳储量的77%(图1)。
2.2 采伐对灌木层碳储量的影响
不同采伐样地中随着采伐强度的逐渐增大,2021年灌木层碳储量呈先增后减的趋势,即中度采伐 > 重度采伐 > 轻度采伐 > 对照。中度采伐样地的灌木层碳储量最高,为8.81 t/hm2;重度采伐和轻度采伐样地次之,分别为7.24 t/hm2和6.89 t/hm2;对照样地中灌木层碳储量最低,为2.13 t/hm2。其中仅有中度采伐样地的灌木层碳储量显著高于对照样地(表4)。灌木层各组分的碳储量分配比例是根部最大,达到28.96% ~ 32.47%;其次是树枝(28.40% ~ 32.54%)和树干(21.89% ~ 31.10%);树叶占比则最小,为10.78% ~ 15.06%(图2)。
表 4 不同采伐强度下灌木层碳储量的变化Table 4. Changes in carbon storage of shrub layer under different intensities of thinning采伐强度 组分 碳储量/(t·hm−2) CK 叶 0.32 ± 0.07b 枝 0.65 ± 0.17b 干 0.46 ± 0.09a 根 0.69 ± 0.13b 总 2.13 ± 0.49b LT 叶 0.83 ± 0.15ab 枝 2.05 ± 0.57ab 干 1.85 ± 0.57a 根 2.15 ± 0.50ab 总 6.89 ± 1.79ab MT 叶 1.06 ± 0.17a 枝 2.86 ± 0.60a 干 2.33 ± 0.49a 根 2.55 ± 0.43a 总 8.81 ± 1.76a HT 叶 0.78 ± 0.18ab 枝 2.05 ± 0.66ab 干 2.25 ± 0.97a 根 2.15 ± 0.62ab 总 7.24 ± 2.31ab 2.3 采伐对草本层碳储量的影响
不同采伐样地中,草本层地下部分的碳储量均小于地上部分。中度采伐样地中地下部分碳储量最高(0.11 t/hm2),对照样地中地上部分碳储量最高(0.28 t/hm2)。对照样地中草本碳储量最高,为0.38 t/hm2。中度采伐和轻度采伐样地次之,分别为0.33 t/hm2和0.25 t/hm2。重度采伐样地草本碳储量最低,为0.17 t/hm2,是对照样地的44.74%(表5)。3个采伐样地中,仅有重度采伐样地的草本碳储量显著低于对照样地。
表 5 不同采伐强度草本层碳储量的变化Table 5. Changes in carbon storage of herbaceous layer under different intensities of thinning采伐强度 地上部分 地下部分 总碳储量/
(t·hm−2)碳储量/(t·hm−2) 占比/% 碳储量/(t·hm−2) 占比/% CK 0.28 ± 0.05a 75.93 0.09 ± 0.02a 24.07 0.38 ± 0.06a LT 0.18 ± 0.03a 71.43 0.08 ± 0.01a 28.06 0.25 ± 0.04a MT 0.22 ± 0.08a 68.75 0.11 ± 0.04a 31.25 0.33 ± 0.09a HT 0.09 ± 0.02b 56.25 0.08 ± 0.03a 43.75 0.17 ± 0.05b 注:同列不同字母表示处理间差异显著(p < 0.05)。下同。 2.4 采伐对凋落物碳储量和枯立木碳储量的影响
采伐样地中凋落物碳储量与对照样地无显著性差异。轻度采伐样地中凋落物现存碳储量最高(2.13 t/hm2);中度采伐样地中凋落物现存碳储量最低(1.95 t/hm2)。2021年,对照样地中枯立木的碳储量最高,为4.06 t/hm2;轻度采伐和中度采伐样地次之,分别为2.01 t/hm2和1.92 t/hm2。重度采伐样地中枯立木碳储量最低,仅有1.53 t/hm2。但与对照样地相比,各采伐强度均无显著性差异(表6)。
表 6 不同采伐强度样地凋落物和枯立木碳储量Table 6. Carbon storage of litter and dead wood in plots with different thinning intensities采伐强度 凋落物现存碳储量/ (t·hm−2) 枯立木碳储量/
(t·hm−2)2011a 2013a 2015a 2021a 平均 CK 2.09a 2.20a 2.16a 1.59a 2.02a 4.06 ± 1.56 a LT 2.14a 2.08a 2.14a 2.15a 2.13a 2.01 ± 0.76 a MT 2.09a 1.94ab 1.86b 1.88a 1.95a 1.92 ± 0.72 a HT 2.08a 1.75b 1.76b 2.29a 1.97a 1.53 ± 0.76 a 2.5 间伐对土壤碳储量的影响
随着采伐强度的增大,土壤层碳储量呈现逐渐增加的趋势。重度采伐样地的土壤层碳储量最大为299.15 t/hm2,是对照样地的1.46倍。中度采伐样地的土壤层碳储量次之是238.82 t/hm2。轻度采伐样地的土壤层碳储量最小仅为183.96 t/hm2。不同抚育采伐强度样地各个层分土壤碳储量会随土壤深度的增加逐渐降低,0 ~ 20 cm土壤层的碳储量含量最高,大于60 cm土壤层的碳储量含量最低。其中各采伐强度样地的土壤层碳储量与对照组均无显著差异。轻度采伐样地表层土壤碳储量显著高于对照处理样地(图3)。
2.6 采伐对生态系统碳储量的影响
随着采伐强度的不断升高,生态系统碳储量呈现逐渐增加的变化趋势。其中,重度采伐样地的生态系统碳储量最大为386.93 t/hm2,轻度采伐样地最小,仅为333.72 t/hm2。采伐强度对森林生态系统碳储量无显著影响(表7)。
表 7 不同采伐强度下生态系统碳储量及其分配比例Table 7. The carbon storage of forest ecosystem and its distribution under different intensity采伐强度 碳储量/ (t·hm−2) CK 339.91 ± 8.72a LT 333.72 ± 7.44a MT 358.48 ± 23.67a HT 386.93 ± 72.58a 3. 讨 论
3.1 不同采伐强度对乔木碳储量的影响
森林采伐后经过10年的恢复期,各样地中碳储量均有所提升。采伐初期,由于活力木减少和林分密度降低,碳储量出现急剧下降,且下降幅度随采伐强度的增加而增大[33−34]。然而,经过10年的恢复以后,轻度和中度采伐样均与对照样地无显著差异,表明乔木层碳储量已经得到恢复。其中,轻度采伐样地中乔木碳储量最大,是对照样地的1.09倍。适度采伐改善了保留木的生长环境,通过增强光合作用促进了碳储量快速积累。相比之下,重度采伐样地中乔木碳储量显著低于对照样地,表明过高的采伐强度下保留木过少,碳储量恢复到对照水平还需要更长时间。
Lucas等[35]发现高强度采伐过后树木死亡率升高,林下温度上升,风速加快。本研究中,部分耐荫树种对环境的变化异常敏感,光照增加和温度升高导致林木死亡率上升,间接延缓了林分总碳储量的恢复[36−37]。卢立华等[38]发现,保留木密度较高的样地乔木层碳储量更大,而保留木密度较低的样地碳储量相对较低,这与本文研究结果一致。但卢丽华等研究表明碳储量各组分分配随不同保留木密度发生了变化,与本文结果不同,可能与树种、林型及立地条件等的差异有关。轻度采伐既为保留木改善了生长环境,又未造成林木数量的骤降,较大的树木基数使得碳储量能够快速恢复并达到更高水平[39]。
采伐后,乔木层碳储量各组分的分配比例表现为树干最高,树枝和树根次之,树叶最低。这表明采伐强度未改变乔木层各部分的碳分配比例,与龚映匀[40]的研究结果一致。
3.2 不同采伐强度对林下植被层碳储量的影响
草本层、灌木层和凋落物层都是森林生态系统的重要组成部分,其碳储量在养分循环等生态过程中发挥着至关重要的作用[41]。以往研究表明,适度的森林采伐能够增加林下植被的碳储量[42]。本研究也发现了类似规律,中度(35%)采伐样地中灌木层碳储量最高,且显著高于对照样地。牟长城等[43]的研究也表明,强度35%的采伐能够显著增加林下植被层的净初级生产力及年净固碳量。采伐后,林分空间结构发生改变,林下生长空间增大,促进了灌木植物的发育。
然而,乔灌木植物的快速发育会挤占草本植物的生存空间,显著降低草本的碳储量。本研究中,重度采伐样地因乔灌木的快速生长,导致草本碳储量显著低于对照样地。适度采伐能够改善林内微环境,加快林下植被生长,进而增加凋落物的输入量,补偿因微生物活动加速和采伐木清除而导致的损失[44]。本研究发现,采伐强度对林下凋落物层碳储量无显著影响。董莉莉等[45]对蒙古栎(Quercus mongolica)次生林的研究也表明,间伐6年和23年后,凋落物量与采伐强度无显著相关性。
3.3 不同采伐强度对生态系统碳储量的影响
采伐10年后,不同采伐强度下生态系统的总碳储量无显著差异,但随采伐强度增加呈上升趋势。这主要归因于中度和强度采伐样地土壤碳储量的增加。本研究发现土壤总碳储量随着采伐强度增加而逐渐增加,但差异不显著。土壤碳储量的增加可能与采伐后残留根系经微生物分解后形成稳定的有机物质有关,导致中度采和重度采伐样地的土壤碳储量较高。董莉莉等[45]发现,蒙古栎次生林采伐6年后,重度采伐样地的土壤碳储量高于对照样地,但采伐23年后,采伐强度与土壤碳储量无显著相关性。这表明采伐后的恢复时间对土壤碳库具有重要影响[46−47]。土壤碳主要来源于凋落物分解、植物根系和土壤动物及微生物的代谢等。Bravo-Oviedo等[48]对苏格兰松(Scotch Pine)林进行不同间伐强度采伐,恢复10年后,发现土壤碳储量不受间伐强度影响,与本研究结果一致。可能是间伐10年后,4块样地土壤表层的凋落物并无差异,而土壤的碳很大程度上也来源于此。Zhang[49]等研究也表明,间伐强度对土壤碳储量的增加不显著,这可能与间伐强度、恢复时间及不同森林类型(阔叶林、针叶林和混交林)的差异有关。间伐改变了生态系统的碳储量分布。轻度采伐样地因保留林木数量较多,植被碳储量在10年恢复后达到对照样地的1.01倍。Zasada 等[50]在古宾林区进行了为期10年的研究,也认为轻度采伐和较长采伐年限的方式更有利于碳储量的积累。因此,若仅考虑植被层碳储量,轻度采伐是最优选择,既能有效利用资源,也有助于维护森林生态系统的健康与可持续发展。
4. 结 论
本文探讨了不同采伐强度对天然林生态系统碳储量的影响,发现轻度采伐有助于增加乔木层碳储量,而中度采伐会显著增加灌木层的碳储量。不同采伐强度对生态系统碳储量并无显著差异。因此,选取采伐强度应综合考虑生态系统恢复和森林植被碳汇功能等多种因素。本研究的森林恢复时间跨度仅有10年,未来仍需要长期的跟踪研究,在更长时间尺度上观察采伐强度对生态系统碳储量的影响。
-
表 1 采伐前的林分特征
Table 1 Characteristics of forest stands before thinning
样地属性 采伐强度 CK LT MT HT 坡度/(°) 1 4 5 3 海拔/m 453 443 430 447 坡向 NE NE NE NE 平均胸径/cm 14.6 13.9 14.8 12.4 林分密度/(株·hm−2) 1106 1045 1007 1298 平均树高/m 9.7 9.6 9.7 8.8 郁闭度 0.9 0.9 0.9 0.9 胸高断面积/m2 30.06 29.47 30.38 30.47 注:CK. 对照样地;LT. 轻度采伐样地;MT. 中度采伐样地;HT. 重度采伐样地。下同。 表 2 采伐后样地的林分特征
Table 2 The characteristics of the forest stand in the sample plot after tending and logging
样地属性 采伐强度 CK LT MT HT 采伐强度/% 0 17.24 34.74 51.87 株数强度/% 0 19.23 27.90 44.76 平均胸径/cm 14.6 13.77 14.83 12.69 林分密度/(株·hm−2) 1106 844 726 717 平均树高/m 9.7 9.8 9.9 8.9 郁闭度 0.9 0.8 0.6 0.5 胸高断面积/m2 30.06 24.39 19.82 14.66 表 3 2021年不同采伐强度下乔木层碳储量的变化
Table 3 Changes in carbon storage of tree layer under different intensities of thinning in 2021
采伐强度 组分 碳储量/(t·hm−2) CK 叶 2.65 ± 0.16ab 枝 31.86 ± 2.61 a 干 63.57 ± 3.55ab 根 29.03 ± 1.76a 总 127.11 ± 7.56 a LT 叶 2.86 ± 0.38a 枝 35.46 ± 7.11 a 干 70.40 ± 10.98 a 根 29.73 ± 4.80a 总 138.47 ± 21.24 a MT 叶 2.93 ± 0.27 a 枝 23.295 ± 1.41ab 干 57.97 ± 3.33ab 根 22.455 ± 1.17 ab 总 106.65 ± 5.97 ab HT 叶 1.72 ± 0.16b 枝 16.715 ± 1.4b 干 41.02 ± 2.9b 根 17.40 ± 1.31b 总 76.87 ± 5.58b 注:不同小写字母表示相同组成部分在不同采伐强度下的差异显著(p < 0.05)。下同。 表 4 不同采伐强度下灌木层碳储量的变化
Table 4 Changes in carbon storage of shrub layer under different intensities of thinning
采伐强度 组分 碳储量/(t·hm−2) CK 叶 0.32 ± 0.07b 枝 0.65 ± 0.17b 干 0.46 ± 0.09a 根 0.69 ± 0.13b 总 2.13 ± 0.49b LT 叶 0.83 ± 0.15ab 枝 2.05 ± 0.57ab 干 1.85 ± 0.57a 根 2.15 ± 0.50ab 总 6.89 ± 1.79ab MT 叶 1.06 ± 0.17a 枝 2.86 ± 0.60a 干 2.33 ± 0.49a 根 2.55 ± 0.43a 总 8.81 ± 1.76a HT 叶 0.78 ± 0.18ab 枝 2.05 ± 0.66ab 干 2.25 ± 0.97a 根 2.15 ± 0.62ab 总 7.24 ± 2.31ab 表 5 不同采伐强度草本层碳储量的变化
Table 5 Changes in carbon storage of herbaceous layer under different intensities of thinning
采伐强度 地上部分 地下部分 总碳储量/
(t·hm−2)碳储量/(t·hm−2) 占比/% 碳储量/(t·hm−2) 占比/% CK 0.28 ± 0.05a 75.93 0.09 ± 0.02a 24.07 0.38 ± 0.06a LT 0.18 ± 0.03a 71.43 0.08 ± 0.01a 28.06 0.25 ± 0.04a MT 0.22 ± 0.08a 68.75 0.11 ± 0.04a 31.25 0.33 ± 0.09a HT 0.09 ± 0.02b 56.25 0.08 ± 0.03a 43.75 0.17 ± 0.05b 注:同列不同字母表示处理间差异显著(p < 0.05)。下同。 表 6 不同采伐强度样地凋落物和枯立木碳储量
Table 6 Carbon storage of litter and dead wood in plots with different thinning intensities
采伐强度 凋落物现存碳储量/ (t·hm−2) 枯立木碳储量/
(t·hm−2)2011a 2013a 2015a 2021a 平均 CK 2.09a 2.20a 2.16a 1.59a 2.02a 4.06 ± 1.56 a LT 2.14a 2.08a 2.14a 2.15a 2.13a 2.01 ± 0.76 a MT 2.09a 1.94ab 1.86b 1.88a 1.95a 1.92 ± 0.72 a HT 2.08a 1.75b 1.76b 2.29a 1.97a 1.53 ± 0.76 a 表 7 不同采伐强度下生态系统碳储量及其分配比例
Table 7 The carbon storage of forest ecosystem and its distribution under different intensity
采伐强度 碳储量/ (t·hm−2) CK 339.91 ± 8.72a LT 333.72 ± 7.44a MT 358.48 ± 23.67a HT 386.93 ± 72.58a -
[1] Peres C A , Barlow J , Laurance W F . Detecting anthropogenic disturbance in tropical forests[J]. Trends in Ecology & Evolution, 2006, 21(5): 227-229.
[2] Turcios M M J, Margarita M. A. do Vale, Jose F. , et al. Soil charcoal as long-term pyrogenic carbon storage in Amazonian seasonal forests[J]. Global Change Biology, 2016, 22(1): 190-197.
[3] Duguid, MC, Ashton, et al. A meta-analysis of the effect of forest management for timber on understory plant species diversity in temperate forests[J]. Forest Ecology and Management, 2013, 2013,303(-): 81−90.
[4] Reich, PB. Taking stock of forest carbon[J]. Nature Climate Change, 2011, 2011,1(7): 346−347.
[5] Navarro F B, Jimenez M N, Cañadas E M, et al. Effects of different intensities of overstory thinning on tree growth and understory plant-species productivity in a semi-arid Pinus halepensis Mill. afforestation[J]. Forest Systems, 2010, 3(3): 410−417.
[6] Bunker, Daniel, E. , et al. Species loss and aboveground carbon storage in a tropical forest[J]. Science, 2005, 310: 1029−1031.
[7] Augusto L, Boa A. Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon[J]. Nature Communications, 2022, 13(1): 1097.
[8] Jucker, Bongalov, Burslem, et al. Topography shapes the structure, composition and function of tropical forest landscapes[J]. Ecology Letters, 2018, 21(7): 989−1000.
[9] Liu L, Zeng F, Song T, et al. Stand structure and abiotic factors modulate Karst forest biomass in Southwest China[J]. Forests, 2020, 11(4): 443.
[10] Hui D, Wang J, Le X, et al. Influences of biotic and abiotic factors on the relationship between tree productivity and biomass in China[J]. Forest Ecology and Management, 2012, 264: 72−80.
[11] Noh N J, Kim C, Bae S W, et al. Carbon and nitrogen dynamics in a Pinus densiflora forest with low and high stand densities[J]. Journal of Plant Ecology, 2013, 6(5): 368−379.
[12] Ullah F, Gilani H, Sanaei A, et al. Stand structure determines aboveground biomass across temperate forest types and species mixture along a local-scale elevational gradient[J]. Forest Ecology and Management, 2021, 486: 118984.
[13] Danescu A, Albrecht A T, Bauhus J. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany[J]. Oecologia, 2016, 182(2): 1−15.
[14] Ali A, Yan E R, Chen H Y H, et al. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China[J]. Copernicus GmbH, 2016(13): 4627−4635.
[15] Ali A. Forest stand structure and functioning: current knowledge and future challenges[J]. Elsevier, 2019, 98: 665−677.
[16] 方精云, 刘国华, 徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报, 1996(05): 497−508. Fang J Y, Liu G H, Xu S L. Biomass and net production of forest vegetation in China[J]. Acta Ecologica Sinica, 1996(05): 497−508.
[17] Roopsind A, Wortel V, Hanoeman W, et al. Quantifying uncertainty about forest recovery 32-years after selective logging in Suriname[J]. Forest Ecology and Management, 2017, 391: 246−255. doi: 10.1016/j.foreco.2017.02.026
[18] Vidal E, West T A P, Putz F E. Recovery of biomass and merchantable timber volumes twenty years after conventional and reduced-impact logging in Amazonian Brazil[J]. Forest Ecology and Management, 2016, 376: 1−8. doi: 10.1016/j.foreco.2016.06.003
[19] Rozendaal D M A, Chazdon R L, Arreola-Villa F, et al. Demographic drivers of aboveground biomass dynamics during secondary succession in neotropical dry and wet forests[J]. Ecosystems, 2017, 20(2): 340−353. doi: 10.1007/s10021-016-0029-4
[20] Lawrence R D. Litter nutrient dynamics during succession in dry tropical forests of the Yucatan: regional and seasonal effects[J]. Ecosystems, 2003, 6(8): 747−761. doi: 10.1007/s10021-003-0177-1
[21] West, Thales A P, Putz, et al. Recovery of biomass and merchantable timber volumes twenty years after conventional and reduced-impact logging in Amazonian Brazil[J]. Forest Ecology and Management, 2016, 376: 1−8. doi: 10.1016/j.foreco.2016.06.003
[22] Rutishauser E, Hérault B, Baraloto C, et al. Rapid tree carbon stock recovery in managed Amazonian forests[J]. Current Biology, 2015, 25(20): 2738−2738. doi: 10.1016/j.cub.2015.09.059
[23] Sist P, Blanc L, Mazzei L, et al. Current knowledge on overall post-logging biomass dynamics in Northern Amazonian forests[J]. Bois et Forets des Tropiques, 2012, 66(314): 41−49.
[24] 巫志龙, 周成军, 周新年, et al. 不同强度采伐5年后杉阔混交人工林土壤呼吸速率差异[J]. 林业科学, 2019, 55(6): 142−149. doi: 10.11707/j.1001-7488.20190617 WU Z L, Zhou C J, Zhou X N, et al. Difference in soil respiration rates of the mixed plantations of Cunninghamia lanceolata and broadleaved trees 5 years after harvesting at different intensities[J]. Scientia Silvae Sinicae, 2019, 55(6): 142−149. doi: 10.11707/j.1001-7488.20190617
[25] 王树梅, 范少辉, 官凤英, 等. 带状采伐对毛竹林土壤理化性质、酶活性及优势菌群的短期影响[J]. 东北林业大学学报, 2022, 50(1): 46−51. doi: 10.3969/j.issn.1000-5382.2022.01.008 Wang S M, Fan S H, Guan, F, Y, et al. Short-term influence of strip cutting on soil physical and chemical properties and dominant flora in Phyllostachys edulis stands[J]. Journal of Northeast Forestry University, 2022, 50(1): 46−51. doi: 10.3969/j.issn.1000-5382.2022.01.008
[26] 岳庆敏, 何怀江, 张春雨, 等. 阔叶红松林林木与林分生长对采伐干扰的响应[J]. 生态学报, 2024, 44(5): 2019−2028. Yue Q M, He H J, Zhang C Y, et al. Responses of tree growth and stand productivity to harvesting disturbance in Korean pine-broadleaved forests[J]. Acta Ecologica Sinica, 2024, 44(5): 2019−2028.
[27] 刘思泽, 尹海锋, 李相君, 等. 间伐初期马尾松根际细菌群落物种多样性的季节动态及驱动因子[J]. 应用与环境生物学报, 2023, 29(5): 1149−1156. Liu S Z, Yin H F, Li X J, et al. Seasonal dynamics of species diversity of the bacterial community in Pinus massoniana rhizosphere and its driving factors in the early thinning stage[J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(5): 1149−1156.
[28] 李存庆, 董灵波, 刘兆刚. 抚育采伐强度对天然落叶松林林分结构和蓄积的影响[J]. 东北林业大学学报, 2021, 49(5): 1−5. doi: 10.3969/j.issn.1000-5382.2021.05.001 Li C Q, Dong L B, Liu Z G. Effect of tending cutting intensity on the stand structure and accumulation of natural larch forest[J]. Journal of Northeast Forestry University, 2021, 49(5): 1−5. doi: 10.3969/j.issn.1000-5382.2021.05.001
[29] 米爽, 宋子龙, 秦江环, 等. 抚育采伐对吉林蛟河针阔混交林幼苗更新的影响[J]. 北京林业大学学报, 2019, 41(5): 159−169. Mi S, Song Z L, Qin J H, et al. Effects of tending thinning on seedling regeneration in a mixed conifer-broadleaf forest in Jiaohe, Jilin Province of northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(5): 159−169.
[30] 范春雨, 张春雨, 赵秀海. 择伐对吉林蛟河阔叶红松林群落结构及动态的影响[J]. 生态学报, 2017, 37(20): 6668−6678. Fan C Y, Zhang C Y, Zhao X H. Effects of selective harvest on community structure and dynamics in a mixed broadleaved Korean pine forest in Jiaohe, Jilin Province[J]. Acta Ecologica Sinica, 2017, 37(20): 6668−6678.
[31] 郝珉辉, 李晓宇, 夏梦洁, 等. 抚育采伐对蛟河次生针阔混交林功能结构和谱系结构的影响[J]. 林业科学, 2018, 54(5): 1−9. doi: 10.11707/j.1001-7488.20180501 Hao M H, Li X Y, Xia M J, et al. Effects of Tending Felling on Functional and Phylogenetic Structures in a Multi-Species Temperate Secondary Forest at Jiaohe in Jilin Province[J]. Scientia Silvae Sinicae, 2018, 54(5): 1−9. doi: 10.11707/j.1001-7488.20180501
[32] 何怀江. 采伐干扰对吉林蛟河针阔混交林碳储量和碳平衡的影响[D]. 北京: 北京林业大学, 2018. He H J Effects of thinning disturbance on carbon storage andcarbon balance in coniferous and broad-leaved mixed forests in Jiaohe, Jilin Province [D]. Beijing: Beijing Forestry University, 2018.
[33] Pandey S S, Cockfield G, Maraseni T N. Dynamics of carbon and biodiversity under REDD + regime: a case from Nepal[J]. Environmental Science and Policy, 2014, 38: 272−281. doi: 10.1016/j.envsci.2014.01.005
[34] Yu Z, Zhou G, Liu S, et al. Impacts of forest management intensity on carbon accumulation of China’s forest plantations[J]. Forest Ecology and Management, 2020, 472: 118252. doi: 10.1016/j.foreco.2020.118252
[35] Mazzei L, Sist P, Ruschel A, et al. Above-ground biomass dynamics after reduced-impact logging in the Eastern Amazon[J]. Forest Ecology and Management, 2010, 259(3): 367−373.
[36] Yosi C, Keenan R, Fox J. Forest dynamics after selective timber harvesting in Papua New Guinea[J]. Fuel and Energy Abstracts, 2011, 262(6): 895−905.
[37] Avila A L D, Ruschel A R, Carvalho J O P d, et al. Medium-term dynamics of tree species composition in response to silvicultural intervention intensities in a tropical rain forest[J]. Biological Conservation, 2015, 191(3): 577−586.
[38] 卢立华, 农友, 李华, 等. 保留密度对杉木人工林生长和生物量及经济效益的影响[J]. 应用生态学报, 2020, 31(3): 717−724. Lu L H, Nong Y, Li H, et al. Effects of retention density on growth, biomass, and economic benefit of Cunninghamia lanceolata plantation[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 717−724.
[39] Aun K K, M. Varik, M. Becker, et al. Short-term effect of thinning on the carbon budget of young and middle-aged Scots pine (Pinus sylvestris L.) stands[J]. Forest Ecology and Management, 2021, 492(12): 119241.
[40] 龚映匀. 抚育间伐对川西柳杉人工林碳格局的影响[D]. 长沙: 中南林业科技大学, 2021. Gong Y Y. Effect of thinning on carbon distribution of Cryptomeria fortunei plantation in western Sichaun [D]. Changsha: Central South University of Forestry and Technology, 2021.
[41] 赵鹏武, 宋彩玲, 苏日娜, 等. 森林生态系统凋落物研究综述[J]. 内蒙古农业大学学报(自然科学版), 2009, 30(2): 292−299. Zhao P W, Song C L, Su R N, et al. Review in the research of litter fall in forest ecosystems[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2009, 30(2): 292−299.
[42] 刘娜娜, 张希金, 达良俊. 间伐对人工水源涵养林碳储量及其垂直分布的影响[J]. 西北林学院学报, 2016, 31(5): 29−36. doi: 10.3969/j.issn.1001-7461.2016.05.05 Liu N N, Zhang X J, Da L J. Effects of ehinning on carbon storage and its vertical distribution in water conservation forests[J]. Journal of Northwest Forestry University, 2016, 31(5): 29−36. doi: 10.3969/j.issn.1001-7461.2016.05.05
[43] 牟长城, 卢慧翠, 包旭, 等. 采伐干扰对大兴安岭落叶松–苔草沼泽植被碳储量的影响[J]. 生态学报, 2013, 33(17): 5286−5298. Mou C C, Lu H C, Bao X, et al. Effects of selective cutting on vegetation carbon storage of boreal Larix gmelinii-Carex schmidtii forested wetlands in Daxing’anling, China[J]. Acta Ecologica Sinica, 2013, 33(17): 5286−5298.
[44] Zhang B S, Dong X B, Qu H F, et al. Effects of thinning on ecosystem carbon storage and tree-shrub-herb diversity of a low-quality secondary forest in NE China[J]. Journal of Forestry Research, 2023(4): 1−15.
[45] 董莉莉, 刘红民, 汪成成, 等. 间伐对蒙古栎次生林生态系统碳储量的短期和长期影响[J]. 沈阳农业大学学报, 2019, 50(5): 614−620. Dong L L, Liu H M, Wang C C, et al. Short-term and long-term effects of thinning on carbon storage of Quercus mongolica secondary forests[J]. Journal of Shenyang Agricultural University, 2019, 50(5): 614−620.
[46] Nilsen P, Strand, L T. Thinning intensity effects on carbon and nitrogen stores and fluxes in a Norway spruce (Picea abies (L.) Karst.) stand after 33 years[J]. Forest Ecology and Management, 2008, 256(3): 201−208. doi: 10.1016/j.foreco.2008.04.001
[47] 殷鸣放, 周立君, 殷炜达. 长白落叶松人工林带状间伐方式对土壤有机碳含量的影响[J]. 林业科学, 2012, 48(7): 170−173. doi: 10.11707/j.1001-7488.20120726 Yin M F, Zhou L J, Yin W D. Effects of different thinning manners on the soil organic carbon content of Larix olgensis plantations[J]. Scientia Silvae Sinicae, 2012, 48(7): 170−173. doi: 10.11707/j.1001-7488.20120726
[48] Bravo-Oviedo A, Alonso-Ponce R, Bravo F. Forest thinning impact on carbon stock and soil condition in Southern European populations of P. sylvestris L.[J]. Forest Ecology and Management, 2015, 357: 259−267. doi: 10.1016/j.foreco.2015.08.005
[49] Zhang X Z, Guan D X, Li W B, et al. The effects of forest thinning on soil carbon stocks and dynamics: a meta-analysis[J]. Forest Ecology and Management, 2018, 429: 36−43.
[50] Zasada M, Bronisz K, Sz B, et al. Effect of the cutting age and thinning intensity on biomass and carbon sequestration: the Gubin Forest District case study[J]. Folia Forestalia Polonica, 2010, 51(2): 18−24.