• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

北京居住区鸟类群落特征及其影响因素

殷鲁秦, 王成, 刘锐之

殷鲁秦, 王成, 刘锐之. 北京居住区鸟类群落特征及其影响因素[J]. 北京林业大学学报. DOI: 10.12171/j.1000-1522.20240062
引用本文: 殷鲁秦, 王成, 刘锐之. 北京居住区鸟类群落特征及其影响因素[J]. 北京林业大学学报. DOI: 10.12171/j.1000-1522.20240062
Yin Luqin, Wang Cheng, Liu Ruzhi. Characteristics and influencing factors of bird community in residential areas of Beijing[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240062
Citation: Yin Luqin, Wang Cheng, Liu Ruzhi. Characteristics and influencing factors of bird community in residential areas of Beijing[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240062

北京居住区鸟类群落特征及其影响因素

基金项目: 国家自然科学基金项目(32401317),中央级公益性科研院所基本科研业务费专项(CAFYBB2022SY006))。
详细信息
    作者简介:

    殷鲁秦,博士,助理研究员。主要研究方向:城市生物多样性,园林生态。 Email:yinluqin@caf.ac.cn 地址:100091北京市海淀区香山路东小府1号

    责任作者:

    王成,博士,研究员。主要研究方向:城市林业。Email:wch8361@163.com 地址:同上。

  • 中图分类号: S731.2;Q958.15

Characteristics and influencing factors of bird community in residential areas of Beijing

  • 摘要:
    目的 

    城市是鸟类的重要栖息地之一,为全面了解城市生物多样性格局,并探索居住区生物多样性保育策略,本研究以鸟类为研究对象,以北京中心城区的居住区为研究区域,探究城市居住区是否是鸟类的重要活动空间,分析留鸟、候鸟以及不同食性鸟类群落特征的季节变化,并揭示鸟类多样性的影响因素,以期为居住区鸟类多样性保护和生物多样性之都建设提供科学依据。

    方法 

    共选取了40个居住小区,采用直接计数法进行为期一年的鸟类调查。通过方差分析比较了不同季节鸟类群落特征之间的差异,利用主坐标分析对不同季节鸟类的群落构成进行分析,并采用广义线性模型探究居住区环境因子对鸟类群落特征的关键影响因素。

    结果 

    (1)共记录鸟类10目23科51种,其中麻雀为极优势种,灰喜鹊、珠颈斑鸠、喜鹊和白头鹎为优势种。(2)鸟类物种丰富度和多度均呈双峰型分布,春秋季物种数显著高于夏季和冬季,但多度的季节差异性不显著。留鸟的物种数、多度和密度均显著高于候鸟,且候鸟在不同季节间差异显著,而留鸟的差异不显著。不同食性鸟类的物种数、多度和密度均存在显著差异,其中杂食性最高,肉食性鸟类最低,虫食性鸟类的物种随季节变化显著。留鸟和候鸟的群落构成对季节变化的响应不同,候鸟的群落构成随季节发生变化,而留鸟全年稳定无明显变化。(3)留鸟受环境因子影响不显著,而候鸟受环境因子的影响显著。建筑密度、道路密度和建筑层数对鸟类多样性具有负效应,乔木覆盖率具有正效应。

    结论 

    研究揭示了在高度城市化地区,居住区是鸟类的重要活动空间,对维持城市鸟类多样性具有重要作用。乔木覆盖率对鸟类多样性具有显著的积极影响,未来应加强居住区绿地的生境营建,助力城市生物多样性保育。

    Abstract:
    Objective 

    This study was carried out in residential areas with birds as the index making up the gap, so as to more comprehensively understand the pattern of urban biodiversity. We took residential areas in the central of Beijing as research area to explore whether urban residential areas are important activity spaces for birds. The seasonal changes of resident birds, migratory birds and different feeding birds were compared, and the influencing factors of bird diversity were explored, which provide basic support for the protection of bird diversity in residential areas and the construction of biodiversity city.

    Method 

    40 residential areas were selected to carry out a one-year bird survey. Variance analysis was used to compare the differences of bird community characteristics in different seasons, and principal coordinates analysis was used to compare the bird community composition in different seasons. A generalized linear model was used to explore the key factors affecting the bird diversity.

    Result 

    A total of 51 species, 23 families and 10 orders of birds were recorded. Eurasian Tree Sparrow (Passer montanus) was the most dominant species. Azure-winged Magpie (Cyanopica cyanus), Spotted Dove (Streptopelia chinensis), Common Magpie (Pica pica) and Light-vented Bulbul (Pycnonotus sinensis) were dominant species. The species richness and abundance of birds showed a bimodal pattern. The species in spring and autumn was significantly higher than that in summer and winter, but the difference of abundance was not significant. The species, abundance and density of resident birds were significantly higher than migratory birds. There was a significant difference between migratory birds in different seasons, while the resident birds. The species, abundance and density of birds with different diet were significantly different. The omnivorous was the highest, the carnivorous was the lowest, and the insectivorous changed significantly with the seasons. The community structure of resident and migratory birds was different in response to seasonal changes. Migratory birds changed with the seasons, while resident birds remained stable throughout the year. The resident birds were not significantly affected by environmental factors, while the migratory birds were significantly. Building density, road density and building floors had negative effects on bird diversity, and tree coverage had positive effects.

    Conclusion 

    The study revealed that residential areas iare important activity space for birds in highly urbanized areas, which play an important role in maintaining the diversity of urban birds. Arbors have a significant positive effect on bird diversity. In the future, it is necessary to strengthen the habitat construction in residential green space, which help the urban biodiversity conservation.

  • 植物的寿命是其生活史上一个重要的特征,准确判断植物的生长年龄对理解植物在特定环境中的发育和繁殖更新状况,评估其生长影响因子及环境适应能力,由此制定合理的栽培管理及开发利用措施意义重大[1-5]。植物生长年龄一般可以通过周年生长形态、物候及生长轮等进行分析。在木本植物中,多年生茎中的年轮解剖结构特征可以反映其实际生长年限及生长发育状况[1,6]。研究表明,多年生草本植物位于地下的宿存器官(根茎,块茎,块根和鳞茎)中存在类似树木年轮的“生长轮”可以作为其生长年限判别的依据[1]。根茎是根茎类植物营养物质的重要贮存场所[7-9],也是其自然更新和分株繁殖的主要器官,是芽与根生理整合的枢纽通道[10],对根茎的形态特征、次生结构及其生长年龄的研究是揭示其生长发育及环境适应机制的重要基础,因而受到广泛关注。目前,对根茎生长年龄的判断一方面是根据其世代繁殖更新的形态特征来确定[2-5],另一方面可以通过其生长轮来进行判断,在灰白千里光(Senecio incanus),草甸鼠尾草(Salvia pratensis )及奇异蜂斗菜(Petasites paradoxus)等植物的根茎中均发现有生长轮的存在[1]

    芍药(herbaceous peony)是典型的根茎类多年生草本植物,野生遗传资源丰富[11],栽培品种繁多,形成了3大品种类群[12-15],有重要的观赏和药用价值[16-17]。目前关于芍药根茎的研究报道较少,仅对中国芍药品种群的个别品种的根茎生长发育及初生组织结构特征进行了初步的研究[18],对芍药根茎中是否存在生长轮以及不同品种间的生长轮差异尚未有报道。因此,本研究通过比较观察分析不同芍药品种群品种的根茎形态生长发育特点,对芍药根茎进行解剖学研究,观察其生长轮特点,判别其生长年限,以期为芍药合理栽培措施的制定、无性繁殖技术的优化及资源的开发利用研究提供一定的基础理论指导。研究结果对其他多年生根茎类植物的生长年龄判断及相关研究的开展也具有一定的借鉴意义。

    芍药不同品种群品种(表1),种植于国家花卉工程中心芍药种质资源圃(北京昌平区小汤山镇),供试材料为3年生分株苗。

    表  1  供试芍药品种信息
    Table  1.  Variety information of experimental materials
    编号 No.品种名称 Variety name品种群分类 Classification of cultivar groups倍性 Ploidy level
    1 ‘种生粉’ ‘Zhongshengfen’ 中国芍药品种群 Lactiflora group 2n = 2x = 10
    2 ‘粉玉奴’ ‘Fenyunu’ 中国芍药品种群 Lactiflora group 2n = 2x = 10
    3 ‘珊瑚落日’ ‘Coral Sunset’ 杂种芍药品种群 Hybrid group 2n = 3x = 15
    4 ‘乳霜之愉’ ‘Cream Delight’ 杂种芍药品种群 Hybrid group 2n = 4x = 20
    5 ‘草原风情’ ‘Prairie Charm’ 伊藤杂种品种群 Itoh hybrid group 2n = 3x = 15
    6 ‘抓狂的香蕉’ ‘Going Bananas’ 伊藤杂种品种群 Itoh hybrid group 2n = 3x = 15
    下载: 导出CSV 
    | 显示表格

    于2018年9月中旬至11月底,剪除芍药地上枯茎,将地下根茎整体起挖,去除泥土、杂物,沿根茎生长方向将其理顺并去除多余的肉质根以使根茎清晰可见,拍照观察并记录芍药根茎的生长更新特征。

    选取不同品种当年生根茎芽基部1 cm以下的成熟根茎组织,沿其横轴切取约2 mm的薄片,FAA固定液(50%乙醇∶甲醛∶冰醋酸 = 90∶5∶5,体积比)真空固定处理24 h以上,随后加入约1/5 FAA体积甘油软化处理10 d以上,随后经脱水,透明,浸蜡,包埋后切片,切片厚度16 ~ 25 μm,经固绿−番红染色后中性树胶封片,Leica EZ4HD体式显微镜观察和拍照。

    体式显微观察:按照根茎的着生规律,切取发育正常的不同生长年限的根茎,冰盒保存带至实验室,用自来水冲洗3遍,去除根茎表面的泥土及其他杂质,置于吸水纸上室温晾1 ~ 2 h左右,观察时不锈钢刀片沿其横轴方向截平,将切口晾3 ~ 5 min后Leica EZ4HD体式显微镜拍照观察。

    石蜡切片制备:按照根茎的着生规律,选取发育正常的芍药不同生长年限的根茎按1.2.2所述方法进行切片观察。

    不同芍药品种群品种植株地下的组织架构基本一致,即由根茎、着生于根茎上的根茎芽和根3部分组成,根茎与肉质根在颜色上基本一致,除顶部根茎上着生的根茎芽外,下部根茎上也宿存大量处于休眠状态的根茎芽。正常发育的芍药地下根茎发育形态具有较明显的年龄分级特征,我们把当年根茎芽萌发后形成的根茎作为1龄生根茎,则1龄生根茎所着生的上一年形成的母代根茎则为2龄生根茎,2龄生根茎所着生的上一年形成的母代根茎为3龄生根茎,以此类推,各生长年限的根茎之间以根茎上宿存的茎或者残留的茎痕为界,偶见有当年生根茎着生于2龄以上的母代根茎(图1)。

    图  1  芍药根茎结构发育示意
    1YR:1龄生根茎;2YR:2龄生根茎;3YR:3龄生根茎;4YR:4龄生根茎;5YR:5龄生根茎;RB:根茎芽;St:茎;AR:不定根。1YR, 1 year old rhizome; 2YR, 2 years old rhizome; 3YR, 3 years old rhizome; 4YR, 4 years old rhizome; 5YR, 5 years old rhizome; RB, rhizome bud; St, stem; AR, adventitious root.
    Figure  1.  Structural characteristic of rhizome of herbaceous peony

    ‘种生粉’‘粉玉奴’‘Coral Sunset’‘Prairie Charm’和‘Going Bananas’5个品种地下根茎结构形态类似:每年的纵向(长度)生长量适中且横向(直径)膨大变异较小,不同龄级的根茎组织结构易于区分,且根茎背地向上更新(图2ab)。四倍体品种‘Cream Delight’每年纵向生长量小而横向生长量较大,膨大明显,不同龄级的根茎组织结构紧凑而不易区分,且往往与地表水平方向横向更新(图2cd)。

    图  2  芍药不同品种地下根茎发育结构特征
    a、b. ‘珊瑚落日’根茎;c、d. ‘草原风情’根茎;RB:根茎芽;Rt:根;Rh:根茎;St:茎。a, b, the rhizome of‘Coral Sunset’; c, d, the rhizome of ‘Cream Delight’; RB, rhizome bud; Rt, root; Rh, rhizome; St, stem.
    Figure  2.  Structural characteristics of rhizomes of different cultivars of herbaceous peony

    6个芍药品种根茎截面解剖构造均符合双子叶植物茎的次生构造,由周皮、皮层、次生韧皮部、形成层、次生木质部和中央髓组成(图3)。

    图  3  不同品种根茎解剖结构
    a、b. ‘大富贵’根茎解剖结构;c、d. ‘粉玉奴’根茎解剖结构;e、f. ‘珊瑚落日’根茎解剖结构;g、h. ‘乳霜之愉’根茎解剖结构;i、j. ‘草原风情’根茎解剖结构;k、l. ‘抓狂的香蕉’根茎解剖结构;Pe:周皮;Sp:次生韧皮部;Vc:维管形成层;Sx:次生木质部;Pi:髓。标尺 = 1 000 μm。a, b, rhizome anatomy of ‘Dafugui’; c, d, rhizome anatomy of ‘Fenyunu’; e, f, rhizome anatomy of ‘Coral Sunset’; g, h, rhizome anatomy of ‘Cream Delight’; i, j, rhizome anatomy of ‘Prairie Charm’; k, l, rhizome anatomy of ‘Going Bananas’; Pe, periderm; Sp, secondary phloem; Vc, vascular cambium; Sx, secondary xylem; Pi, pith. Scale bar = 1 000 μm.
    Figure  3.  Anatomical structure of rhizomes of different cultivars of herbaceous peony

    ‘种生粉’‘粉玉奴’‘Coral Sunset’和‘Cream Delight’4个品种根茎次生木质部显微结构类似:大小导管有规律地依次排列,口径较大的导管和周围的小导管聚集形成群团状,导管群分布较稀疏,两导管群之间的间隔明显。与‘Cream Delight’相比,‘Coral Sunset’的导管群分布较紧凑。‘Prairie Charm’和‘Going Bananas’根茎的次生木质部大小导管分布较均匀,形成较连续的环带,并不聚集形成团块状(图3)。

    芍药根茎截面在脱水后维管组织凸起,呈白色或淡黄色,间断环状分布,中央髓部组织下凹,位于不同环的维管组织从髓部向皮层呈放射状排列(图4)。

    图  4  芍药‘粉玉奴’根茎横切面结构
    a、b. 2龄生根茎;c、d. 6龄生根茎;Sx:次生木质部;Pi:髓。标尺 = 1 000 μm。a, b, 2 years old rhizome; c, d, 6 years old rhizome; Sx, secondary xylem; Pi, pith. Scale bar = 1 000 μm.
    Figure  4.  Cross section structure of rhizome of Paeonia lactiflora ‘Fenyunu’

    次生木质部显微观察结果显示,口径较大的导管及其周围的小导管聚集呈团块状,导管群切向断续排列成与形成层平行的环,形成清晰的生长轮(图5)。

    图  5  芍药‘粉玉奴’根茎横切面显微结构
    a. 2龄生根茎;b. 4龄生根茎;Vc:维管形成层;Pi:髓。标尺 = 1 000 μm。a, 2 years old rhizome; b, 4 years old rhizome; Vc, vascular cambium; Pi, pith. Scale bar = 1 000 μm.
    Figure  5.  Microstructure of the cross section of the rhizome of Paeonia lactiflora ‘Fenyunu’

    对生长发育正常的芍药不同生长年限根茎进行组织切片观察发现,一年生根茎生长轮数目为1(图6a),2年生根茎生长轮的数目为2(图6b),3年生根茎的生长轮数目为3(图6c),依此类推。生长轮的数目与其实际生长年限一致。

    图  6  芍药根茎不同生长年限生长轮观察
    a. 1龄生根茎;b. 2龄生根茎;c. 3龄生根茎;d. 4龄生根茎;e. 5龄生根茎;f、g. 6龄生根茎;h、i. 7龄生根茎;①. 第1个生长轮;②. 第2个生长轮;③. 第3个生长轮;④. 第4个生长轮;⑤. 第5个生长轮;⑥. 第6个生长轮;⑦. 第7个生长轮。标尺 = 1 000 μm。a, 1 year old rhizome; b, 2 years old rhizome; c, 3 years old rhizome; d, 4 years old rhizome; e, 5 years old rhizome; f, g, 6 years old rhizome; h, i, 7 years old rhizome; ①, the first growth ring; ②, the second growth ring; ③, the third growth ring; ④, the fourth growth ring; ⑤, the fifth growth ring; ⑥, the sixth growth ring; ⑦, the seventh growth ring. Scale bar = 1 000 μm.
    Figure  6.  Observation on the growth rings of the rhizome of herbaceous peony under a stereomicroscope

    根茎的形态及生长年限反映了植物在特定气候环境条件下的生长发育状况。准确判断根茎的年龄结构对预知植物个体乃至种群繁殖发育现状及未来更新的动态发展,由此制定合理的栽培及开发利用措施意义重大[1]。目前,对根茎类植物年龄结构的判断尚无统一标准和方法,一般是根据其实际栽培年限[8, 19-21]、营养繁殖世代特征结合颜色及直径大小等进行判断[2-3]。本研究中,芍药每年夏秋形成的当年生根茎由位于上一年形成的母代根茎芽发育而来,由此逐年进行世代更替,通过这种繁殖世代特征可以初步判断芍药根茎的年龄结构。芍药根茎芽的更新严格受控于顶端优势的调控[22],因而在发育正常的情况下,芍药的根茎一般按照实际生长年限逐级生长[18],但是,在本研究中,我们观察到在一些植株中当年生根茎由2龄或更高级年龄的母代根茎发育而来,若非经全株整体观察及长时间的持续追踪,完全按照根茎由上至下的分级次序来判别每一级根茎的生长年限往往存在一定的困难,对母代根茎的实际生长年限易造成误判。近年来兴起的草本植物生长轮研究为草本植物生长年限的研究提供了新的思路[1, 17, 21]。本研究中,芍药根茎的初生结构与茎的结构基本类似,由表皮、皮层、维管束和中央髓组成[18, 23]。与地上茎不同的是,芍药根茎的次生结构外围形成了具有保护作用的周皮组织,因而其能多年宿存生长。芍药不同龄级根茎中存在明显的生长轮,且生长轮的数目与其对应根茎的实际生长年限一致,可以作为判别芍药根茎实际生长年限的稳定依据。

    芍药根茎生长轮的组织形态和根茎的发育状况受植物本身遗传差异和栽培环境的影响。本研究中,考虑到供试样本栽培环境基本一致,不同品种根茎形态及生长轮的差异可能主要与其亲本来源不同有关。中国芍药品种群和杂种芍药品种群各品种亲本来源于芍药属(Paeonia)的多年生草本植物类群,品种群内各品种根茎生长轮的组织结构类似,木质部导管群断续排列成环,而伊藤杂种品种群内两个品种根茎次生木质部呈现连续的环带分布,主要是由于其亲本融合了芍药属亚灌木的牡丹类群的遗传信息,因而生长轮结构与牡丹茎的次生结构类似[23],据此,可以将其与其他两个品种群的品种进行区分。至于这种次生结构差异对其存活年限的影响有待进一步研究。

    植物多倍体往往具有营养器官大、抗逆性强、生长迅速等特点[24-27]。与二倍体品种相比,芍药多倍体品种往往也表现出茎秆粗壮、直立性强等生长优势[15,28-29]。本研究中,从根茎生长表现来看,四倍体品种‘Cream Delight’相同龄级的根茎体量明显大于二倍体及三倍体品种,由于根茎每年生长量大,加之向地伸展空间有限,因而多呈水平状横向更新。而三倍体品种根茎形态并未表现出与二倍体品种明显的生长差异,可能原因及调控机制有待进一步研究。从根茎生长轮的组织结构特征来看,同一品种群内相同倍性的品种间根茎生长轮特征基本类似,而不同倍性的品种间差异较大;而品种群间不同品种染色体倍性与其根茎形态无明显关联,‘Coral Sunset’‘Prairie Charm’和‘Going Bananas’3个品种均为三倍体,但是根茎次生结构差异明显。因而,仅根据遗传倍性不能区分各品种的根茎生长轮特征。当然,由于生长轮的形成和发育受环境条件影响较大,加之芍药品种遗传背景复杂,关于生长轮的发育特性在芍药中的更普遍规律需要结合更多样本开展更进一步的研究。

    根茎由于随着生长年限的增大,受限于材料的大小以及软硬程度的差异,采用组织切片的方法不能一一鉴别且花费时间较长,因而徒手切片结合体式显微观察可以作为多年生根茎年龄判别的快速方法。在生产实践中,我们可以通过上述徒手切片的一般操作方式快速地区分根茎与根,鉴定根茎的年龄结构。

    芍药不同品种地下根茎组织架构特征基本一致,且存在明显的龄级特征。二倍体及三倍体品种根茎形态发育特征相似,而与四倍体品种不同。不同芍药品种根茎次生结构均由周皮、皮层、次生韧皮部、形成层、次生木质部和中央髓组成,中国芍药及杂种芍药品种群品种根茎生长轮结构相似而与伊藤杂种差异明显,杂种芍药品种群内三倍体及四倍体品种根茎生长轮结构差异较大,根茎生长轮结构特征与其品种倍性无关。芍药根茎中存在生长轮,且其数目能够反映芍药的实际生长年限。

  • 图  1   研究点在北京市的位置分布

    Figure  1.   Distribution of study sites in Beijing

    图  2   不同季节的鸟类构成

    色带的宽度表示种数或个体数。O. 杂食性;H. 植食性;I. 虫食性;C: 肉食性

    Figure  2.   The composition of birds in different seasons

    图  3   鸟类群落特征的季节变化

    柱状图上方的字母代表是否存在显著差异(P < 0.05),有相同的字母代表无显著差异,字母完全不同代表存在显著性差异。

    Figure  3.   Seasonal changes of bird community characteristics

    图  4   留鸟和候鸟的季节变化

    柱状图上方的字母代表是否存在显著差异(P < 0.05),有相同的字母代表无显著差异,字母完全不同代表存在显著性差异。

    Figure  4.   Seasonal changes in resident and migratory birds

    图  5   不同食性鸟类的季节变化

    柱状图上方的字母代表是否存在显著差异(P < 0.05),有相同的字母代表无显著差异,字母完全不同代表存在显著性差异。

    Figure  5.   Seasonal changes of birds with different diets

    图  6   留鸟和候鸟的主坐标分析

    椭圆为95%的置信区间。*: P < 0.05。

    Figure  6.   PcoA of resident and migratory birds

    表  1   鸟类物种丰富度平均模型的参数估计

    Table  1   Parameter estimation of the average model for species richness

    环境因子整体(R2 = 0.406)留鸟(R2 = 0.171)候鸟(R2 = 0.437)
    参数估计标准误P参数估计标准误P参数估计标准误P
    小区面积0.2850.103 < 0.0010.1650.1090.1270.5380.156 < 0.001
    建筑密度−0.2260.1200.033−0.1310.1280.306−0.3850.2030.058
    道路密度−0.1970.0950.038−0.0960.1110.388−0.2470.1920.198
    建筑层数−0.2200.1120.0490.48220.1810.008
    乔木覆盖率0.1920.080.0300.1150.1090.2930.3170.1410.025
    灌木覆盖率0.1410.0980.1490.1400.1080.1970.1960.1560.208
    500 m缓冲区不透水地表覆盖率−0.1160.0900.194−0.1940.1080.072
    下载: 导出CSV

    表  2   鸟类密度平均模型的参数估计

    Table  2   Parameter estimation of the average model for bird density

    环境因子 整体(R2 = 0.368) 留鸟(R2 = 0.357) 候鸟(R2 = 0.181) 麻雀(R2 = 0.395)
    参数估计 标准误 P 参数估计 标准误 P 参数估计 标准误 P 参数估计 标准误 P
    小区面积 −0.111 0.070 0.112 −0.120 0.073 0.100 −0.138 0.055 0.012
    建筑密度 0.089 0.075 0.233 0.092 0.078 0.239 0.081 0.117 0.491
    道路密度 −0.089 0.074 0.229 −0.085 0.077 0.274 −0.108 0.116 0.351 −0.099 0.044 0.024
    建筑层数 −0.103 0.081 0.202 −0.112 0.108 0.297 −0.097 0.048 0.043
    乔木覆盖率 0.278 0.074 < 0.001 0.292 0.077 < 0.001 0.227 0.053 < 0.001
    灌木覆盖率 0.091 0.079 0.254 0.084 0.074 0.251
    500 m缓冲区不透水地表覆盖率 −0.070 0.048 0.148
    注:整体、留鸟和候鸟为剔除了麻雀的结果。
    下载: 导出CSV
  • [1] 张梦园, 冉呈程, 滕雨欣, 等. 北京温榆河生态廊道春季鸟类物种构成与多尺度环境因子的关系[J]. 北京林业大学学报, 2022, 44(6): 115−127.

    Zhang M Y, Ran C C, Teng Y X, et al. Correlation between bird species composition and multi-scale environmental factors in spring in Wenyu River ecological corridor of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(6): 115−127.

    [2]

    Sandstrom U G, Angelstam P, Mikusinski G. Ecological diversity of birds in relation to the structure of urban green space[J]. Landscape and Urban Planning, 2006, 77: 39−53.

    [3] 干靓, 吴志强, 郭光普. 高密度城区建成环境与城市生物多样性的关系研究——以上海浦东新区世纪大道地区为例[J]. 城市发展研究, 2018, 25(4): 97−106.

    Gan J, Wu Z Q, Guo G P. The influence of built environment on urban biodiversity in high-density urban areas: Case study in blocks along Century Avenue, Pudong New District, Shanghai[J]. Urban Development Studies, 2018, 25(4): 97−106.

    [4] 王向荣. 城市荒野与城市生境[J]. 风景园林, 2019, 26(1): 4−5.

    Wang X R. Urban Wilderness and Urban Habitat[J]. Landscape Architecture, 2019, 26(1): 4−5.

    [5]

    Xu X, Xie Y, Qi K, et al. Detecting the response of bird communities and biodiversity to habitat loss and fragmentation due to urbanization[J]. Science of The Total Environment, 2018, 624: 1561−1576. doi: 10.1016/j.scitotenv.2017.12.143

    [6]

    Palmeirim A, Emer C, Benchimol M, et al. Emergent properties of species-habitat networks in an insular forest landscape[J]. Science Advances, 2022, 8: eabm0397. doi: 10.1126/sciadv.abm0397

    [7]

    Xie S, Lu F, Cao L, et al. Multi-scale factors influencing the characteristics of avian communities in urban parks across Beijing during the breeding season[J]. Scientific Reports, 2016, 29350.

    [8]

    Liu J, Bai H, Ma H, et al. Bird diversity in Chinese urban parks was more associated with natural factors than anthropogenic factors[J]. Urban Forestry Urban Greening, 2019, 43: 126358. doi: 10.1016/j.ufug.2019.06.001

    [9]

    Jiao M, Xue H, Yan J, et al. Tree abundance, diversity and their driving and indicative factors in Beijing’s residential areas[J]. Ecological Indicators, 2021, 125: 107462.

    [10] 王沫, 刘畅, 李晓璐, 等. 近自然社区公园的生物多样性特征研究——以北京市中心城区为例[J]. 生态学报, 2022, 42(20): 8254−8264.

    Wang M, Liu C, Li X L, et al. Biodiversity characteristics in near-natural community parks: A case study in the central area of Beijing[J]. Acta Ecologica Sinica, 2022, 42(20): 8254−8264.

    [11] 张皖清, 董丽. 北京城市公园中鸟类对植物生境及种类的偏好研究[J]. 中国园林, 2015, 31(8): 15−19.

    Zhang W Q, Dong L. Study of bird preference to plant habitat and species in Beijing urban park[J]. Chinese Landscape Architecture, 2015, 31(8): 15−19.

    [12] 郭铁英, 杨均炜, 曲媛媛, 等. 北京紫竹院公园鸟类群落多样性分析[J]. 四川动物, 2010, 29(6): 975−980.

    Guo T Y, Yang J W, Qu Y Y, et al. Investigations on diversity of birds at the Black Bamboo Park in Beijing[J]. Sichuan Journal of Zoology, 2010, 29(6): 975−980.

    [13] 范宗骥, 董大颖, 郑然, 等. 北京静福寺侧柏古树林鸟类群落多样性研究[J]. 北京林业大学学报, 2013, 35(5): 46−55.

    Fan Z J, Dong D Y ; Zheng R, et al. Avian community diversity in Platycladus orientalis ancient trees at the Jingfu Temple in Beijing[J]. Journal of Beijing Forestry University, 2013, 35(5): 46−55.

    [14] 陈志强, 付建平, 赵欣如, 等. 北京圆明园遗址公园鸟类组成[J]. 动物学杂志, 2010, 45(4): 21−30.

    Chen Z Q, Fu J P, Zhao X R. The construction of birds in Yuanmingyuan Relic Park, Beijing[J]. Chinese Journal of Zoology, 2010, 45(4): 21−30.

    [15] 隋金玲, 胡德夫, 李凯, 等. 北京市区不同绿化带内夏季鸟类的群落特征[J]. 林业科学, 2006, 42(7): 66−72.

    Sui J L, Hu D F, Li K, et al. Characteristics of bird communities at different green belts of Beijing urban area in summer[J]. Scientia Silvae Sinicae, 2006, 42(7): 66−72.

    [16] 隋金玲, 张香, 胡德夫, 李凯, 王民中, 付瑞海. 北京绿化隔离地区鸟类群落与环境因子关系研究[J]. 北京林业大学学报, 2007, 29(5): 121−126.

    Sui J L, Zhang X, Hu D F, et al. Relationship between bird communities and environment factors at green belts in the urban area of Beijing[J]. Journal of Beijing Forestry University, 2007, 29(5): 121−126.

    [17] 赵欣如. 北京鸟类图鉴(第2版)[M]. 北京: 北京师范大学出版社, 2014.

    Zhao X R. Atlas of Beijing birds [M]. Beijing: Beijing normal university publishing group, 2014.

    [18]

    Franco L S, Francisco V N, Francisco S N, et al. Impervious surface and heterogeneity are opposite drivers to maintain bird richness in a Cerrado city[J]. Landscape and Urban Planning, 2019, 192: 103643. doi: 10.1016/j.landurbplan.2019.103643

    [19] 王勇, 许洁, 杨刚, 等. 城市公共绿地常见木本植物组成对鸟类群落的影响[J]. 生物多样性, 2014, 22(2): 196-207.

    Wang Y, Xu J, Yang G, et al. The composition of common woody plant species and their influence on bird communities in urban green areas[J]. Biodiversity Science, 2014, 22, 196-207.

    [20] 张淑萍, 郑光美, 徐基良. 城市化对城市麻雀栖息地利用的影响: 以北京市为例[J]. 生物多样性, 2006, 14(5): 372−381. doi: 10.1360/biodiv.060013

    Zhang S P, Zheng G M, Xu J L. Habitat use of urban tree sparrows in the process of urbanization: Beijing as a case study[J]. Biodiversity Science, 2006, 14(5): 372−381. doi: 10.1360/biodiv.060013

    [21] 刘娜娜, 寿丹艺, 达良俊. 上海公园绿地鸟类多样性的城市化梯度格局及类群划分[J]. 生态学杂志, 2018, 37(12): 3676−3684.

    Liu N N, Shou D Y, Da L J. Biodiversity pattern and species group classification of park birds along urbanization gradient in Shanghai[J]. Chinese Journal of Ecology, 2018, 37(12): 3676−3684.

    [22] 徐诗, 王成, 韩丹, 等. 北京综合性社区鸟类群落构成及其季节变化: 以中国林业科学研究院社区为例[J]. 中国城市林业, 2021, 19(1): 25−30.

    Xu S, Wang C, Han D, et al. Bird community composition and its seasonal variation in comprehensive communities in Beijing: A case study of Chinese Academy of Forestry[J]. Journal of Chinese Urban Forestry, 2021, 19(1): 25−30.

    [23] 盛和林, 王岐山. 脊椎动物野外实习指导[M]. 北京: 高等教育出版社, 1991: 144-182.

    Sheng H L, Wang Q S. Field Practice Guide for Vertebrates[M]. Beijing: Higher education press, 1991: 144-182.

    [24]

    Mortelliti A, Fagiani S, Battisti C, et al. Independent effects of habitat loss, habitat fragmentation and structural connectivity on forest-dependent birds[J]. Diversity and Distributions, 2010, 16: 941−951.

    [25] 关翔宇. 北京100种常见鸟类名录[J]. 森林与人类, 2016(2): 158−159.

    Guan X Y. List of 100 common birds in Beijing[J]. Forest & Humankind, 2016(2): 158−159.

    [26]

    Huang Y, Zhao Y, Li S, et al. The Effects of habitat area, vegetation structure and insect richness on breeding bird populations in Beijing urban parks. Urban Forestry & Urban Greening, 2015, 14: 1027-1039.

    [27]

    Callaghan C T, Major R E, Lyons M B, et al. The effects of local and landscape habitat attributes on bird diversity in urban greenspaces. Ecosphere, 2018, e02347.

    [28]

    Tiwary N K, Urfi A J. Spatial variations of bird occupancy in Delhi: The significance of woodland habitat patches in urban centres[J]. Urban Forestry & Urban Greening, 2016, 20: 338−347.

    [29]

    Kurucz K, Purger J, Batáry P. Urbanization shapes bird communities and nest survival, but not their food quantity[J]. Global Ecology and Conservation, 2021, 26: e01475. doi: 10.1016/j.gecco.2021.e01475

    [30] 贾丽丽, 陈卓琳, 关文彬. 城市公园鸟类群落多样性与复杂性初探: 以北京地坛公园为例[J]. 安徽农业大学学报, 2016, 43(6): 989−995.

    Jia L L, Chen Z L, Guan W B. The diversity and complexity of the bird community in city park: a case study of Ditan Park in Beijing[J]. Journal of Anhui Agricultural University, 2016, 43(6): 989−995.

    [31]

    Tzortzakaki O, Kati V, Kassara C, et al. Seasonal patterns of urban bird diversity in a Mediterranean coastal city: the positive role of open green spaces[J]. Urban Ecosystems, 2018, 21: 27−39. doi: 10.1007/s11252-017-0695-9

    [32]

    Amaya-espinel J D, Hostetler M, Henríquez C, et al. The influence of building density on Neotropical bird communities found in small urban parks. Landscape and Urban Planning, 2019, 190: 103578.

    [33]

    Geschke A, James S, Bennett A F, et al. Compact cities or sprawling suburbs? Optimising the distribution of people in cities to maximise species diversity[J]. Journal of Applied Ecology, 2018, 55: 2320−2331. doi: 10.1111/1365-2664.13183

    [34] 殷鲁秦, 王成, 韩文静. 基于取食行为探究北京居民区鸟类的食源特征及多样性[J]. 生物多样性, 2023, 31(5): 37−50.

    Yin L Q, Wang C, Han W J. Food source characteristics and diversity of birds based on feeding behavior in residential areas of Beijing[J]. Biodiversity Science, 2023, 31(5): 37−50.

    [35]

    Katerina S, Bonny K, Samuel J, et al. Diet of land birds along an elevational gradient in Papua New Guinea[J]. Scientific Reports, 2017, 7: 44018.

    [36]

    Ferger S W, Schleuning M, Hemp A, et al. Food resources and vegetation structure mediate climatic effects on species richness of birds[J]. Global Ecology and Biogeography, 2014, 23: 541−549.

    [37] 朱光, 王雪, 张文文, 等. 城市景观格局对鸟类群落的影响: 以南京溧水区为例[J]. 生态与农村环境学报, 2022, 38(3): 327−333.

    Zhu G, Wang X, Zhang W W, et al. Effects of urban landscape pattern on bird community: A case study of Lishui District, Nanjing[J]. Journal of Ecology and Rural Environment, 2022, 38(3): 327−333.

    [38]

    Zhu C, Li W, Gregory T, et al. Arboreal camera trapping: a reliable tool to monitor plant-frugivore interactions in the trees on large scales[J]. Remote Sensing in Ecology and Conservation, 2021, 8(1): 92−104.

    [39]

    Ortega-Álvarez R, Ruiz-Gutiérrez V, Robinson O J, et al. Beyond incidence data: Assessing bird habitat use in indigenous working landscapes through the analysis of behavioral variation among land uses[J]. Landscape and Urban Planning, 2021, 211: 104100. doi: 10.1016/j.landurbplan.2021.104100

    [40]

    Zorzal R, Diniz P, Oliveira R, et al. Drivers of avian diversity in urban greenspaces in the Atlantic Forest[J]. Urban Forestry & Urban Greening, 2021, 59: 126908.

    [41]

    Leveau L, Leveau C. Street design in suburban areas and its impact on bird communities: Considering different diversity facets over the year[J]. Urban Forestry & Urban Greening, 2020, 48: 126578.

    [42]

    Keten A, Eroglu E, Kaya S, et al. Bird diversity along a riparian corridor in a moderate urban landscape[J]. Ecological Indicators, 2020, 118: 106751. doi: 10.1016/j.ecolind.2020.106751

    [43]

    Salgueiro P A, Mira A, Rabaça J, et al. Identifying critical thresholds to guide management practices in agro-ecosystems: Insights from bird community response to an open grassland-to-forest gradient[J]. Ecological Indicators, 2018, 88: 205−213. doi: 10.1016/j.ecolind.2018.01.008

    [44]

    Chin A, Ruppert J, Shrestha N, et al. Urban avian conservation planning using species functional traits and habitat suitability mapping[J]. Land, 2022, 11(10): 1831. doi: 10.3390/land11101831

    [45]

    Mirski P. Tree cover density attracts rare bird of prey specialist to nest in urban forest[J]. Urban Forestry & Urban Greening, 2020, 55: 126836.

    [46]

    Yin L, Wang C, Han W, et al. Birds’ flight initiation distance in residential areas of Beijing are lower than in pristine environments: implications for the conservation of urban bird diversity[J]. Sustainability, 2023. 15(6).

    [47]

    Li X, Jia B, Zhang W, et al. Woody plant diversity spatial patterns and the effects of urbanization in Beijing, China[J]. Urban Forestry & Urban Greening, 2020, 56: 126873.

    [48]

    Morelli F, Mikula P, Benedetti Y, et al. Cemeteries support avian diversity likewise urban parks in European cities: Assessing taxonomic, evolutionary and functional diversity[J]. Urban Forestry & Urban Greening, 2018, 36: 90−99.

    [49]

    Francis S, Fabio S. The impact of pruning and mortality on urban tree canopy volume[J]. Urban Forestry & Urban Greening, 2023, 79: 127810.

    [50]

    Exantus J, Beaune D, Cézilly F. The relevance of urban agroforestry and urban remnant forest for avian diversity in a densely-populated developing country: the case of Port-au-Prince, Haiti[J]. Urban Forestry & Urban Greening, 2021, 63: 127217.

  • 期刊类型引用(4)

    1. 王慧娟,王二强,符真珠,李艳敏,王晓晖,袁欣,高杰,王利民,张和臣. 芍药根茎形成发育过程中内源激素和碳水化合物的变化. 河南农业科学. 2024(03): 118-124 . 百度学术
    2. 魏瑶,王娟,张岗,彭亮,颜永刚,陈莹. 不同年限黄芩根结构及黄酮类物质变化特征研究. 中南药学. 2023(01): 116-122 . 百度学术
    3. 董志君,高健洲,于晓南. 烯效唑对盆栽芍药生理特性及显微结构的影响. 北京林业大学学报. 2022(07): 117-125 . 本站查看
    4. 李艳敏,蒋卉,符真珠,张晶,袁欣,王慧娟,高杰,董晓宇,王利民,张和臣. 芍药花药愈伤组织诱导及体细胞胚发生. 植物学报. 2021(04): 443-450 . 百度学术

    其他类型引用(3)

  • 其他相关附件

图(6)  /  表(2)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  10
  • PDF下载量:  8
  • 被引次数: 7
出版历程
  • 收稿日期:  2024-03-09
  • 修回日期:  2024-10-22
  • 录用日期:  2025-03-18
  • 网络出版日期:  2025-03-25

目录

/

返回文章
返回