• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

不同构型集成竹格栅夹芯板抗弯性能

王智丰, 周李承

王智丰, 周李承. 不同构型集成竹格栅夹芯板抗弯性能[J]. 北京林业大学学报, 2025, 47(1): 147-155. DOI: 10.12171/j.1000-1522.20240088
引用本文: 王智丰, 周李承. 不同构型集成竹格栅夹芯板抗弯性能[J]. 北京林业大学学报, 2025, 47(1): 147-155. DOI: 10.12171/j.1000-1522.20240088
Wang Zhifeng, Zhou Licheng. Bending performance of laminated bamboo sandwich panels with different lattice configurations[J]. Journal of Beijing Forestry University, 2025, 47(1): 147-155. DOI: 10.12171/j.1000-1522.20240088
Citation: Wang Zhifeng, Zhou Licheng. Bending performance of laminated bamboo sandwich panels with different lattice configurations[J]. Journal of Beijing Forestry University, 2025, 47(1): 147-155. DOI: 10.12171/j.1000-1522.20240088

不同构型集成竹格栅夹芯板抗弯性能

基金项目: 国家自然科学基金面上项目(32471984),湖南省自然科学基金面上项目(2024JJ5631),湖南省教育厅优青项目(23B0236),湖南省研究生科研创新项目(QL20230192),中南林业科技大学引进人才项目(2019YJ048)。
详细信息
    作者简介:

    王智丰,博士,副教授。主要研究方向:现代竹木结构理论及应用基础研究。Email:wangzhifeng_1984@163.com 地址:410004 湖南省长沙市韶山南路498号中南林业科技大学

  • 中图分类号: S781.9

Bending performance of laminated bamboo sandwich panels with different lattice configurations

  • 摘要:
    目的 

    针对集成竹利用效率不高,使用形式较为单一的问题,探索其轻质、高效特性的先进结构形式,这对推动竹材在工程领域的应用方面具有重要意义。本研究旨在探究不同构型格栅芯体对集成竹格栅夹芯板弯曲性能的影响,选出不同格栅构型中抗弯性能最优的结构,为其在实际工程的应用提供理论依据。

    方法 

    以集成竹为原材料,通过嵌锁法分别设计加工3种具有不同构型(三角形格栅、方形格栅和Kagome形格栅)的集成竹格栅夹芯板。对不同格栅芯体的集成竹格栅夹芯板进行四点弯曲试验,探讨夹芯板结构的受弯性能,分析夹芯板结构在受弯荷载下的破坏机理、跨中挠度、抗弯刚度和极限承载力的变化规律,并对3种不同芯体集成竹格栅夹芯板结构的比强度和比刚度进行对比。同时,采用有限元方法建立集成竹格栅夹芯板四点弯曲试验模型,并进行数值模拟分析。

    结果 

    3种不同构型格栅芯体的集成竹格栅夹芯板结构在受弯加载过程中均表现为剪切破坏。三角形集成竹格栅夹芯板的承载能力最好,三角形和Kagome形格栅极限承载力分别为38.7 和27.5 kN,较极限承载力22.5 kN的方形格栅增加了71.9%和22.2%;同时三角形集成竹格栅夹芯板的比强度为133.5 kN·m/kg,较方形(94.6 kN·m/kg)和Kagome形(96.7 kN·m/kg)分别提高了41.2%和38.1%。有限元模型的模拟结果与试验结果较一致,能有效预测集成竹格栅夹芯板的弯曲性能。

    结论 

    3种格栅构型中三角形集成竹夹芯板弯曲性能最优,能够更好地发挥集成竹轻质高强的性能优势。研究结果可为竹材在工程领域的应用提供一种高效的结构形式及理论依据。

    Abstract:
    Objective 

    Integrated bamboo has low utilization efficiency and is used in a rather limited variety of forms in engineering applications. So exploring advanced structural forms that integrate the lightweight and high-efficiency characteristics of bamboo is of great significance in promoting the application of bamboo in the field of engineering. This study aims to investigate the impact of different lattice configurations on bending performance of laminated bamboo sandwich panels, select the structure with the best bending resistance among various lattice configurations, and provide a theoretical basis for its application in practical engineering.

    Method 

    Three kinds of laminated bamboo sandwich panels with different lattice cores, namely triangular lattice, square lattice and Kagome lattice, were designed and processed with laminated bamboo as raw material by interlocking method in this study. A four-point bending test was carried out on laminated bamboo sandwich panels with different lattice cores, and the bending performance of sandwich panels was discussed. The failure mechanism of sandwich panels under bending load, as well as the variation law of mid-span deflection, bending stiffness and ultimate bearing capacity, were analyzed, and the specific strength and specific stiffness of laminated bamboo sandwich panels with three different core layers were compared. At the same time, a four-point bending test model of laminated bamboo sandwich panels was established by finite element method, and numerical simulation was carried out.

    Result 

    Three kinds of sandwich panels with different lattice cores all showed shear failure during the bending loading, among which the triangular lattice sandwich panel had the best bearing capacity. Compared with square lattice sandwich panel with ultimate bearing capacity of 22.5 kN, the ultimate bearing capacity of sandwich panels with triangular lattice and Kagome lattice was 38.7 and 27.5 kN, increased by 71.9% and 22.2%, respectively. The specific strength of laminated bamboo sandwich panel with triangular lattice was 133.5 kN·m/kg, which was 41.2% and 38.1% higher than that of square lattice and Kagome lattice with specific strength of 94.6 and 96.7 kN·m/kg, respectively. The finite element model was in good agreement with the test results, which can effectively predict bending performance of laminated bamboo sandwich panels.

    Conclusion 

    Among three kinds of lattice cores, the laminated bamboo triangular lattice sandwich panel has the best bending performance, which can better present the lightweight and high-strength advantages of laminated bamboo. The research results can provide an effective structural form and theoretical basis for the application of bamboo in the engineering field.

  • 图  1   格栅夹芯板芯体构型

    Figure  1.   Lattice core of laminated bamboo sandwich panel

    图  2   嵌锁法加工集成竹格栅夹芯板示意图

    Figure  2.   Schematic diagram of laminated bamboo sandwich panel processed by interlocking method

    图  3   嵌锁法加工集成竹格栅夹芯板加工流程图

    Figure  3.   Process flowchart of laminated bamboo sandwich panel processed by interlocking method

    图  4   集成竹格栅夹芯板弯曲试验加载示意(a)与测点布置(b)

    Figure  4.   Loading diagram (a) and measuring point arrangement (b) of bending test for laminated bamboo sandwich panel

    图  5   集成竹本构模型

    Figure  5.   Constitutive model of laminated bamboo

    图  6   四点弯曲的有限元模型

    Figure  6.   Finite element model of four-point bending test

    图  7   集成竹格栅夹芯板的四点抗弯试验破坏形态

    Figure  7.   Failure mode of four-point bending test for laminated bamboo sandwich panel

    图  8   荷载–跨中位移曲线

    Figure  8.   Load-mid span displacement curve

    图  9   荷载–应变曲线

    Figure  9.   Load-strain curve

    图  10   集成竹格栅夹芯板应力分布

    Figure  10.   Stress distribution of laminated bamboo sandwich panel

    表  1   集成竹的密度和主要力学性能

    Table  1   Density and main mechanical properties of laminated bamboo

    材料密度/(g·cm−3顺纹抗拉强度/MPa顺纹抗压强度/MPa顺纹剪切强度/MPa
    集成竹0.64 ± 0.02114.5 ± 6.759.7 ± 4.018.9 ± 1.1
    变异系数/%2.55.86.76.0
    下载: 导出CSV

    表  2   集成竹格栅夹芯板结构的几何参数

    Table  2   Geometric parameters of laminated bamboo sandwich panel

    试件构型试件数量夹芯板竹板厚度/mm芯体厚度/mm面层厚度/mm长格栅数量短格栅数量
    长度/mm宽度/mm厚度/mm
    三角形格栅31 2003846484885
    方形格栅31 200384648488515
    Kagome形格栅31 2003846484884
    下载: 导出CSV

    表  3   集成竹材料参数

    Table  3   Material parameters of laminated bamboo

    弹性模量/MPa 泊松比 剪切模量/MPa
    E11 E22 E33 μ12 μ13 μ23 G12 G13 G23
    9 200 920 460 0.36 0.30 0.29 690 552 158
    注:1、2、3分别表示试件跨度方向、试件截面宽度方向、试件截面高度方向。数据引自参考文献[19]。
    下载: 导出CSV

    表  4   极限荷载、跨中最大位移以及应变的试验和有限元模拟结果对比

    Table  4   Comparison of experimental and finite element simulation results for ultimate load, maximum displacement at midspan and strain

    试件构型试验值模拟值相对误差/%
    Pu/kNΔu/mmεc × 106εt × 106Pu/kNΔu/mmεc × 106εt × 106PuΔuεcεt
    三角形格栅38.725.1−5 693.84 424.938.525.2−5 865.74 235.30.50.4−3.04.3
    方形格栅22.514.7−2 575.82 580.323.515.3−2 558.22 549.84.44.0−0.71.2
    Kagome形格栅27.516.8−3 142.43 124.527.017.0−3 049.43 004.51.91.0−3.03.8
    注:试验值为同组试件弯曲试验下的平均值;Pu为极限荷载,Δu为跨中最大位移,εc为压应变,εt为拉应变。
    下载: 导出CSV

    表  5   集成竹格栅夹芯板刚度、强度性能

    Table  5   Stiffness and strength properties of laminated bamboo sandwich panel

    试件构型相对密度/(g·cm−3抗弯刚度/(kN·m2抗弯强度/MPa比刚度 × 103/(kN·m5·kg−1比强度/(kN·m·kg−1
    三角形格栅0.3045.7 ± 0.240.7149.9 ± 5.0133.5
    方形格栅0.2640.6 ± 0.124.4157.5 ± 2.194.6
    Kagome形格栅0.2943.1 ± 0.228.5146.1 ± 5.196.7
    注:比刚度为结构的抗弯刚度与其相对密度的比值,比强度为结构的抗弯强度与其相对密度的比值。
    下载: 导出CSV
  • [1]

    Flander K D, Rovers R. One laminated bamboo-frame house per hectare per year[J]. Construction and Building Materials, 2009, 23(1): 210−218. doi: 10.1016/j.conbuildmat.2008.01.004

    [2] 卿彦. “双碳”战略目标下木竹基先进功能材料研究进展[J]. 中南林业科技大学学报, 2022, 42(12): 13−25.

    Qing Y. Advanced functional materials derived from natural wood and bamboo resources under the double carbon strategy in China[J]. Journal of Central South University of Forestry & Technology, 2022, 42(12): 13−25.

    [3] 黄东梅, 周培国, 张齐生. 竹结构民宅的生命周期评价[J]. 北京林业大学学报, 2012, 34(5): 148−152.

    Huang D M, Zhou P G, Zhang Q S. Life cycle assessment of bamboo-constructed house[J]. Journal of Beijing Forestry University, 2012, 34(5): 148−152.

    [4]

    Li Z H, Chen C J, Mi R Y, et al. A strong, tough, and scalable structural material from fast-growing bamboo[J]. Advanced Materials, 2020, 32(10): 1906308. doi: 10.1002/adma.201906308

    [5]

    Lurie S A, Solyaev Y O, Volkov-Bogorodskiy D B, et al. Design of the corrugated-core sandwich panel for the arctic rescue vehicle[J]. Composite Structures, 2017, 160: 1007−1019. doi: 10.1016/j.compstruct.2016.10.123

    [6]

    Hopkins P M, Norris T, Chen A. Creep behavior of insulated concrete sandwich panels with fiber-reinforced polymer shear connectors[J]. Composite Structures, 2017, 172: 137−146. doi: 10.1016/j.compstruct.2017.03.038

    [7] 罗熠民, 郑毅, 李荣. 纤维增强复材混合芯层夹芯板受弯性能试验研究[J]. 工业建筑, 2020, 50(3): 167−171.

    Luo Y M, Zheng Y, Li R. Experimental research on flexural behavior of FRP sandwich panels with hybrid core[J]. Industrial Construction, 2020, 50(3): 167−171.

    [8]

    Wang Z, Yang X L, Lai W G, et al. A VAM-based equivalent model for triangular honeycomb sandwich panels: comparison with numerical and experimental data[J]. Materials, 2022, 15(14): 4766. doi: 10.3390/ma15144766

    [9]

    Manalo A C, Aravinthan T, Karunasena W. Flexural behaviour of glue-laminated fibre composite sandwich beams[J]. Composite Structures, 2010, 92(11): 2703−2711. doi: 10.1016/j.compstruct.2010.03.006

    [10]

    Ashby M F. The properties of foams and lattices[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 364(1838): 15−30. doi: 10.1098/rsta.2005.1678

    [11] 范华林, 金丰年, 方岱宁. 格栅结构力学性能研究进展[J]. 力学进展, 2008(1): 35−52. doi: 10.3321/j.issn:1000-0992.2008.01.002

    Fan H L, Jin F N, Fang D N. Structural mechanics of lattice grids[J]. Advances in Mechanics, 2008(1): 35−52. doi: 10.3321/j.issn:1000-0992.2008.01.002

    [12] 吴启凡, 方海, 高峰, 等. 复合材料格栅板受弯性能试验研究与数值分析[J]. 复合材料科学与工程, 2020(1): 12−20. doi: 10.3969/j.issn.1003-0999.2020.01.002

    Wu Q F, Fang H, Gao F, et al. Experimental testing and numerical simulation on flexural behavior of composite grid panels[J]. Composites Science and Engineering, 2020(1): 12−20. doi: 10.3969/j.issn.1003-0999.2020.01.002

    [13] 王亚楠, 梅志远, 李华东, 等. 格栅增强夹芯板弯曲刚度影响因素及规律研究[J]. 复合材料科学与工程, 2018(2): 47−51. doi: 10.3969/j.issn.1003-0999.2018.02.008

    Wang Y N, Mei Z Y, Li H D, et al. Research on the influencing factors and laws about bending stiffness of grille reinforced sandwich panel[J]. Composites Science and Engineering, 2018(2): 47−51. doi: 10.3969/j.issn.1003-0999.2018.02.008

    [14]

    Li J H, Hunt J F, Gong S Q, et al. Fatigue behavior of wood-fiber-based tri-axial engineered sandwich composite panels (ESCP)[J]. Holzforschung, 2016, 70(6): 567−575. doi: 10.1515/hf-2015-0091

    [15]

    Wang Z G, Li Z D, Xiong W. Experimental investigation on bending behavior of honeycomb sandwich panel with ceramic tile face-sheet[J]. Composites Part B: Engineering, 2019, 164: 280−286. doi: 10.1016/j.compositesb.2018.10.077

    [16]

    Fan H L, Meng F H, Yang W. Sandwich panels with Kagome lattice cores reinforced by carbon fibers[J]. Composite Structures, 2007, 81(4): 533−539. doi: 10.1016/j.compstruct.2006.09.011

    [17] 国家标准化管理委员会. 无疵小试样木材物理力学性质试验方法 第2部分 取样方法和一般要求: GB/T 1927.2—2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration. Test methods for physical and mechanical properties of small clear wood specimens (part 2): sampling methods and general requirements: GB/T 1927.2—2021[S]. Beijing: Standards Press of China, 2021.

    [18] 中华人民共和国住房和城乡建设部. 木结构试验方法标准: GB/T 50329—2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for test methods of timber structures: GB/T 50329—2012[S]. Beijing: China Architecture & Building Press, 2012.

    [19] 朱其伟. 竹木复合梁层间剪切与弯剪性能试验研究[D]. 南京: 南京林业大学, 2023.

    Zhu Q W. Experimental study on Interlaminar shear and bending shear properties of bamboo-wood composite beams[D]. Nanjing: Nanjing Forestry University, 2023.

    [20] 徐秉业, 刘信声, 沈新普. 应用弹塑性力学 [M]. 北京: 清华大学出版社, 2017.

    Xu B Y, Liu X S, Shen X P. Applied elastoplastic mechanics [M]. Beijing: Tsinghua University Press, 2017.

    [21] 王智丰, 李贤军, 易锦, 等. 大跨胶合木拱桥人致振动及其优化控制[J]. 土木工程学报, 2021, 54(4): 79−94.

    Wang Z F, Li X J, Yi J, et al. Human-induced vibration and optimal control of long-span glulam arch bridges[J]. China Civil Engineering Journal, 2021, 54(4): 79−94.

  • 期刊类型引用(12)

    1. 吴生海,王玉莹,檀婷婷,李黎明,兰雪涵,杜凤国. 针刺仪在林木检测中的应用现状及展望. 吉林林业科技. 2023(02): 36-40 . 百度学术
    2. 柳苏洋,辛振波,张厚江,王辉,张典. 基于红外热成像的古建筑望板腐朽状况无损检测研究. 北京林业大学学报. 2023(07): 139-152 . 本站查看
    3. 徐鹏飞,管成,张厚江,宋海欧,袁江玉,段超,郭旺. 用于树干内部缺陷筛查的应力波临界波速确定研究. 西北林学院学报. 2022(01): 222-229 . 百度学术
    4. 谢军明,王立海,林文树,郝泉龄,解光强,孟庆凯,李怡娜,阚相成. 随机森林在红松活立木腐朽分级中的应用. 东北林业大学学报. 2022(04): 99-103+110 . 百度学术
    5. 梁星宇,丁叶蔚,何宇航,黄俣劼,王正. 电学无损检测法在活立木中的应用与展望. 木工机床. 2022(02): 12-15 . 百度学术
    6. 杨露露,董喜斌,徐华东. 电阻法和应力波法在活立木内部腐朽缺陷检测中的对比. 森林工程. 2022(04): 82-88 . 百度学术
    7. 常旭东,金光泽. 地形和土壤因子对红松活立木腐朽的影响. 林业科学. 2022(11): 71-82 . 百度学术
    8. 刘唱. 基于反距离加权插值法的木材内部缺陷检测. 电子制作. 2021(03): 60-63 . 百度学术
    9. 郝泉龄,徐国祺,王立海,时小龙,许明贤,纪文文,张广晖. 基于Logistic回归模型的红松立木腐朽分级预测. 南京林业大学学报(自然科学版). 2020(02): 150-158 . 百度学术
    10. 徐群,徐华东,李其哲,程智星. 基于阻抗仪的红松活立木年轮宽度辨识方法. 森林工程. 2019(03): 32-35+40 . 百度学术
    11. 王明谦,王昆,许清风. 木结构无损检测技术研究进展. 施工技术. 2019(21): 85-90 . 百度学术
    12. 金川,申晓刚,陆萍. 扬州瘦西湖景区古树健康监测与评价. 扬州职业大学学报. 2018(02): 47-51 . 百度学术

    其他类型引用(7)

图(10)  /  表(5)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  17
  • PDF下载量:  42
  • 被引次数: 19
出版历程
  • 收稿日期:  2024-03-24
  • 修回日期:  2024-09-29
  • 录用日期:  2024-10-07
  • 网络出版日期:  2024-10-10
  • 刊出日期:  2025-01-24

目录

    /

    返回文章
    返回