• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

TSIT-PatchTST模型:一种净生态系统交换量(NEE)缺失值插补方法

齐建东, 石成城, 吴鹏

齐建东, 石成城, 吴鹏. TSIT-PatchTST模型:一种净生态系统交换量(NEE)缺失值插补方法[J]. 北京林业大学学报, 2025, 47(2): 105-118. DOI: 10.12171/j.1000-1522.20240187
引用本文: 齐建东, 石成城, 吴鹏. TSIT-PatchTST模型:一种净生态系统交换量(NEE)缺失值插补方法[J]. 北京林业大学学报, 2025, 47(2): 105-118. DOI: 10.12171/j.1000-1522.20240187
Qi Jiandong, Shi Chengcheng, Wu Peng. TSIT-PatchTST model: a missing value interpolation method for net ecosystem exchange (NEE)[J]. Journal of Beijing Forestry University, 2025, 47(2): 105-118. DOI: 10.12171/j.1000-1522.20240187
Citation: Qi Jiandong, Shi Chengcheng, Wu Peng. TSIT-PatchTST model: a missing value interpolation method for net ecosystem exchange (NEE)[J]. Journal of Beijing Forestry University, 2025, 47(2): 105-118. DOI: 10.12171/j.1000-1522.20240187

TSIT-PatchTST模型:一种净生态系统交换量(NEE)缺失值插补方法

基金项目: 国家自然科学基金项目(32071842),国家重点研发计划项目(2022YFD2200304)。
详细信息
    作者简介:

    齐建东,博士,教授。主要研究方向:生态信息学、智能信息处理。Email:qijd@bjfu.edu.cn 地址:100083北京市海淀区清华东路35号北京林业大学信息学院

  • 中图分类号: S718.5;TP181

TSIT-PatchTST model: a missing value interpolation method for net ecosystem exchange (NEE)

  • 摘要:
    目的 

    净生态系统交换量(NEE)是评估陆地生态系统在全球碳循环中作用的重要指标,NEE原始观测数据缺失值的插补精度会直接影响生态系统关键参数的可靠性和精确性。为提高不同植被NEE在长时间连续性数据缺失情景下的插补精度,提出一种融合时间序列表征向量的TSIT-PatchTST深度学习模型。

    方法 

    以全球长期通量观测网络站点的碳通量因子数据为研究对象,通过构造短缺失(1 d)、中缺失(7 d)、长缺失(30 d)3种随机连续数据缺失场景,评估边际分布采样法(MDS)、PatchTST模型、TS2Vec-PatchTST模型和TSIT-PatchTST模型在8种不同植被类型下NEE的插补结果。

    结果 

    在短缺失场景下,4种插补方法都表现出最优的性能。随着连续缺失天数的增多,MDS的插补精度逐渐下降,该方法在长缺失场景下已不能对NEE进行有效插补,而其他3种深度学习模型能够有效地插补NEE缺失数据。综合3种缺失场景,TSIT-PatchTST模型表现出最优的插补性能,尤其在长缺失场景下该模型具有较高的插补精度。长缺失场景下,TSIT-PatchTST模型对31个站点插补结果的平均均方误差(MSE)为0.942 μmol/(m2·s),平均绝对误差(MAE)为0.628 μmol/(m2·s),平均R2为0.457。与PatchTST模型的插补结果相比,TSIT-PatchTST模型平均MSE下降了53.3%, 平均MAE下降了39.7%,平均R2相持平。

    结论 

    综合8种植被类型和3种缺失场景的应用结果,得出TSIT-PatchTST模型的插补效果最佳,并具有适应性。TSIT-PatchTST模型可应用于时间序列数据缺失场景以提高数据插补精度。

    Abstract:
    Objective 

    Net ecosystem exchange (NEE) is an important indicator for evaluating the role of terrestrial ecosystems in the global carbon cycle. The accuracy of imputation of missing values in NEE raw observation data directly affects the reliability and precision of key ecosystem parameters. To enhance the imputation accuracy of NEE in scenarios of continuous long-term data gaps across different vegetation types, a TSIT-PatchTST model was proposed based on deep learning.

    Method 

    Using carbon flux factor data from sites within the global long-term flux observation network as the research object, three types of random continuous data gap scenarios were constructed, including short missing (1 d), medium missing (7 d), and long missing (30 d). The imputation results of marginal distribution sampling (MDS) method, PatchTST model, TS2Vec-PatchTST model, and TSIT-PatchTST model under eight different vegetation types were evaluated.

    Result 

    In the scenario of short missing, all imputation methods demonstrated optimal performance. As the number of consecutive missing days increased, the imputation accuracy of MDS method gradually declined, and it was no longer effective for imputing NEE in the long missing scenario. In contrast, the three deep learning models were capable of effectively imputing missing NEE data. Considering all three missing scenarios, the TSIT-PatchTST model exhibited the best imputation performance, particularly with a high accuracy in long missing scenarios. In the long missing scenario, the TSIT-PatchTST model achieved an average mean squared error (MSE) of 0.942 μmol/(m2·s), an average mean absolute error (MAE) of 0.628 μmol/(m2·s), and an average R2 of 0.457 across 31 sites. Compared with PatchTST model, the TSIT-PatchTST model reduced the average MSE by 53.3%, average MAE by 39.7% and the average R2 remained unchanged.

    Conclusion 

    Integrating the performance across eight vegetation types and three missing scenarios, the TSIT-PatchTST model demonstrates the best imputation effect and adaptability. It can be applied to the problem of missing data in time series to improve the accuracy of data imputation.

  • 图  1   TSIT-PatchTST模型结构

    Figure  1.   TSIT-PatchTST model structure

    图  2   短缺失泰勒图

    Figure  2.   Short missing Taylor diagram

    图  3   中缺失泰勒图

    Figure  3.   Middle missing Taylor diagram

    图  4   长缺失泰勒图

    Figure  4.   Long missing Taylor diagram

    图  5   TSIT-PatchTST模型插补效果折线图

    稀树草原以AU-Cpr站点为例,落叶阔叶林以DE-Lnf站点为例,常绿针叶林以US-GLE站点为例,草地以US-SRG站点为例,开放灌木地以US-Whs站点为例,农田以DE-Geb站点为例,混合林以US-Syv站点为例,木本灌草丛以US-Ton站点为例。

    Figure  5.   Effect line chart of TSIT-PatchTST model interpolation

    表  1   站点数据集植被分类

    Table  1   Vegetation classification of site dataset

    站点纬度经度时间区间(年月日时刻)数据量/条植被类型
    罗林斯 US-GLE41°21′59″N106°14′24″W201205241430 − 20140622153036 435常绿针叶林
    梅托利乌斯 US-Me244°27′08″N121°33′27″W200401181300 − 20060104153034 422常绿针叶林
    尼沃特岭 US-NR140°01′58″N105°32′47″W201009281530 − 20120810190032 744常绿针叶林
    内华达 US-Var38°24′48″N120°57′03″W201303280000 − 20140707003022 370草地
    埃尔福特 DE-Geb51°05′59″N10°54′53″E201202171030 − 20130314113018 771农田
    波特科尔伯恩 CA-TP342°42′25″N80°20′54″W200512160530 − 20061226093018 009常绿针叶林
    科奇斯 US-SRG31°47′22″N110°49′40″W201101270030 − 20120116030016 998草地
    坦普斯通 US-Whs31°44′38″N110°03′08″W201007281300 − 20110608113015 118开放灌木地
    埃森纳赫 DE-Hai51°04′45″N10°27′08″E200602280300 − 20061224023014 352落叶阔叶林
    默里桥 AU-Lox34°28′14″S140°39′18″E200808191630 − 20090609100014 100落叶阔叶林
    诺福克 CA-TP142°39′39″N80°33′34″W200512311330 − 20061013123013 727常绿针叶林
    库特韦克 NL-Loo52°09′59″N5°44′37″E200205220830 − 20030303123013 689常绿针叶林
    内珀维尔 US-IB241°50′26″N88°14′28″W200508221300 − 20060531020013 515草地
    韦兰德 CA-TP442°42′37″N80°21′27″W200207201400 − 20030427190013 499常绿针叶林
    斯普林斯 AU-TTE22°17′13″S133°38′24″E201305220130 − 20140118023011 571草地
    先锋市 US-Ton38°25′51″N120°57′58″W201305081200 − 20131231220011 397木本灌草丛
    沙欣尼 US-LWW34°57′38″N97°58′44″W199802181030 − 19981004000010 924草地
    罗尔斯顿 AU-Emr23°51′31″S148°28′29″E201202062100 − 20120919150010 837草地
    巴梅拉 AU-Cpr34°00′08″S140°35′21″E201206020930 − 20130104110010 372稀树草原
    鲍威 US-Wkg31°44′12″N109°56′31″W200506171000 − 20060117023010 258草地
    科菲维尔 US-Goo34°15′17″N89°52′25″W200510170000 − 20060516103010 150草地
    埃尔奥拜德 SD-Dem13°16′58″N30°28′42″E200810141400 − 2009050314009 649稀树草原
    拉龙日 CA-SF154°29′06″N105°49′04″W200603130130 − 2006092021009 208常绿针叶林
    诺德豪森 DE-Lnf51°19′42″N10°22′04″E200302221030 − 2003083110309 121落叶阔叶林
    凯瑟琳 AU-DaS14°09′34″S131°23′17″E201104081600 − 2011101422309 086稀树草原
    西姆科 CA-TP242°46′28″N80°27′32″W200505171330 − 2005111907308 917常绿针叶林
    西斯特斯 US-Me444°29′57″N121°37′21″W200006081300 − 2000120706308 724常绿针叶林
    伍德拉夫 US-Syv46°14′31″N89°20′52″W200305310000 − 2003112419308 536混合林
    塞拉维斯塔 US-SRM31°49′17″N110°51′58″W200910211530 − 2010041313008 348木本灌草丛
    纽伦比 AU-DaP14°03′48″S131°19′05″E200905081630 − 2009102721008 266草地
    比格里弗 CA-SF354°05′30″N106°00′20″W200405051330 − 2004102308308 199开放灌木地
    注:混合林由树木主导,覆盖百分比超过60%,高度超过2 m。包括交错混合或其他4种森林类型的树木,且任何一种植被类型都不超过60%。
    下载: 导出CSV

    表  2   NEE响应因子字段

    Table  2   NEE response factor field

    字段名称中文名称单位
    SW_IN_F短波辐射W/m2
    VPD_F_MDS饱和水汽压差hPa
    TA_F_MDS空气温度
    NETRAD净辐射能量W/m2
    WS风速m/s
    WD风向
    G_F_MDS土壤热通量
    TS_F_MDS土壤温度
    RH相对湿度%
    SWC_F_MDS土壤含水量%
    下载: 导出CSV

    表  3   模型主要超参数设置

    Table  3   Primary hyper-parameter setting of models

    超参数含义设定值
    top_k准确率5
    layers2
    dmin, dmax深度范围(64, 128)
    batch_size批量大小1500
    learning_rate学习率0.001
    epoch迭代次数10
    注:因长缺失场景需要制造连续1 440条数据缺失,故模型批量大小设置为1 500;上述超参数设置可以满足模型对NEE缺失数据插补的需要。
    下载: 导出CSV

    表  4   数据插补结果

    Table  4   Data imputation results

    缺失情况 植被类型 PatchTST TS2Vec-PatchTST TSIT-PatchTST 边际分布采样法 MDS
    MSE/
    (μmol·m−2·s−1)
    MAE/
    (μmol·m−2·s−1)
    R2 MSE/
    (μmol·m−2·s−1)
    MAE/
    (μmol·m−2·s−1)
    R2 MSE/
    (μmol·m−2·s−1)
    MAE/
    (μmol·m−2·s−1)
    R2 MSE/
    (μmol·m−2·s−1)
    MAE/
    (μmol·m−2·s−1)
    R2
    短缺失 农田 1.547 0.950 0.886 0.736 0.570 0.641 0.191 0.230 0.879 0.233 0.293 0.002
    落叶阔叶林 1.550 0.936 0.611 0.824 0.657 0.450 0.457 0.465 0.596 2.201 0.813 0.014
    常绿针叶林 1.208 0.865 0.448 0.913 0.690 0.323 0.617 0.518 0.439 4.792 1.014 0.045
    草地 2.057 1.046 0.329 1.804 0.935 0.247 1.428 0.798 0.309 17.340 1.542 0.039
    混合林 2.596 1.223 0.834 1.176 0.771 0.591 0.377 0.392 0.847 2.307 0.677 0.064
    开放灌木地 1.116 0.856 0.423 1.007 0.745 0.304 0.750 0.592 0.439 1.114 0.521 0.025
    稀树草原 2.232 1.175 0.388 2.043 1.085 0.284 1.534 0.895 0.409 3.551 0.864 0.032
    木本灌草丛 3.853 1.289 0.531 2.141 1.026 0.391 1.149 0.726 0.536 18.586 1.816 0.023
    中缺失 农田 1.501 0.939 0.875 0.903 0.607 0.633 0.237 0.224 0.874 0.810 0.529 0.026
    落叶阔叶林 1.577 0.942 0.647 0.738 0.621 0.476 0.403 0.426 0.652 5.777 1.308 0.034
    常绿针叶林 1.198 0.862 0.475 0.910 0.683 0.351 0.588 0.502 0.475 14.790 1.574 0.119
    草地 2.046 1.044 0.313 1.888 0.954 0.218 1.452 0.796 0.316 16.691 1.547 0.102
    混合林 2.610 1.223 0.850 1.178 0.757 0.604 0.371 0.355 0.844 2.370 0.684 0.087
    开放灌木地 1.084 0.844 0.612 0.967 0.718 0.399 0.590 0.486 0.601 1.027 0.516 0.045
    稀树草原 2.159 1.160 0.403 2.277 1.136 0.293 1.615 0.914 0.394 2.804 0.755 0.091
    木本灌草丛 3.927 1.290 0.529 2.078 1.026 0.372 1.141 0.732 0.528 14.882 2.472 0.055
    长缺失 农田 1.538 0.948 0.901 0.835 0.598 0.648 0.177 0.209 0.903 1.248 0.733 0.008
    落叶阔叶林 1.559 0.939 0.603 0.695 0.607 0.447 0.398 0.436 0.607 6.709 1.539 0.013
    常绿针叶林 1.206 0.864 0.442 0.912 0.690 0.323 0.610 0.518 0.439 20.316 2.492 0.047
    草地 2.052 1.046 0.292 1.877 0.954 0.204 1.458 0.801 0.297 38.533 2.238 0.041
    混合林 2.603 1.223 0.851 1.136 0.778 0.615 0.354 0.401 0.850 4.565 1.006 0.065
    开放灌木地 1.106 0.852 0.589 1.028 0.745 0.389 0.640 0.506 0.579 2.098 0.699 0.021
    稀树草原 2.205 1.170 0.423 2.290 1.138 0.310 1.593 0.907 0.422 8.449 1.237 0.031
    木本灌草丛 3.878 1.290 0.548 2.006 1.014 0.385 1.092 0.714 0.544 37.945 2.534 0.013
    注:加粗字体表示在同一植被类型下插补效果最佳方法。下同。
    下载: 导出CSV

    表  5   长缺失下数据插补结果的平均R2对比

    Table  5   Comparison of average R2 of data imputation results under long missing

    插补方法 农田 落叶阔叶林 常绿针叶林 草地 混合林 开放灌木地 稀树草原 木本灌草丛
    TSIT-PatchTST 0.903 0.607 0.439 0.297 0.850 0.579 0.422 0.544
    RFR10[20] 0.700 0.623 0.547 0.638 0.689 0.397 0.784 0.437
    下载: 导出CSV

    表  6   US-GLE站点日间与夜间NEE插补结果

    Table  6   Daytime and nighttime NEE imputation results of US-GLE station

    时间段 评价指标 短缺失 中缺失 长缺失
    日间 MSE 0.509 0.635 0.709
    MAE 0.429 0.514 0.502
    R2 0.479 0.285 0.321
    夜间 MSE 0.448 0.537 0.498
    MAE 0.387 0.418 0.404
    R2 0.439 0.386 0.429
    注:日间时间段为上午10点至下午16点,夜间时间段为下午16点至次日上午10点。
    下载: 导出CSV

    表  7   US-GLE站点生长季与非生长季NEE插补结果

    Table  7   NEE imputation results during growing and non-growing seasons of US-GLE station

    时期 评价指标 短缺失 中缺失 长缺失
    生长季  MSE 0.424 0.429 0.451
    MAE 0.402 0.411 0.416
    R2 0.486 0.398 0.392
    非生长季 MSE 1.005 0.913 0.647
    MAE 0.552 0.578 0.480
    R2 0.191 0.105 0.204
    注:生长季为4月到10月,非生长季为10月到次年4月。
    下载: 导出CSV
  • [1] 田容才, 文双雅, 阳会兵. 基于涡度相关法的农田生态系统碳通量研究进展[J]. 激光生物学报, 2019, 28(5): 415−420. doi: 10.3969/j.issn.1007-7146.2019.05.005

    Tian R C, Wen S Y, Yang H B. Research progress on carbon flux in agro-ecosystem based on eddy covariance system[J]. Acta Laser Biology Sinica, 2019, 28(5): 415−420. doi: 10.3969/j.issn.1007-7146.2019.05.005

    [2] 王秀英, 周秉荣, 苏淑兰, 等. 青藏高原高寒草甸和荒漠碳交换特征及其气象影响机制[J]. 生态学报, 2023, 43(3): 1194−1208.

    Wang X Y, Zhou B R, Su S L, et al. Carbon exchange characteristics and meteorological influence mechanism of alpine meadow and desert in Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica, 2023, 43(3): 1194−1208.

    [3]

    Bopucki R, Kiersztyn A, Pitucha G, et al. Handling missing data in ecological studies: ignoring gaps in the dataset can distort the inference[J]. Ecological Modelling, 2022, 468: 109964. doi: 10.1016/j.ecolmodel.2022.109964

    [4] 周宇, 黄辉, 张劲松, 等. 森林生态系统涡度相关法碳通量长时间连续性缺失数据插补方法的比较[J]. 中国农业气象, 2021, 42(4): 330−343. doi: 10.3969/j.issn.1000-6362.2021.04.007

    Zhou Y, Huang H, Zhang J S, et al. Comparison of gap-filling methods for long-term continuous missing data in carbon flux observation by eddy covariance method of forest ecosystem[J]. Chinese Journal of Agrometeorology, 2021, 42(4): 330−343. doi: 10.3969/j.issn.1000-6362.2021.04.007

    [5]

    Reichstein M, Falge E, Baldocchi D, et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm[J]. Global Change Biology, 2005, 11(9): 1424−1439. doi: 10.1111/j.1365-2486.2005.001002.x

    [6] 王少影, 张宇, 孟宪红, 等. 机器学习算法对涡动相关缺失通量数据的插补研究[J]. 高原气象, 2020, 39(6): 1348−1360. doi: 10.7522/j.issn.1000-0534.2019.00142

    Wang S Y, Zhang Y, Meng X H, et al. Fill the gaps of eddy covariance fluxes using machine learning algorithms[J]. Plateau Meteorology, 2020, 39(6): 1348−1360. doi: 10.7522/j.issn.1000-0534.2019.00142

    [7]

    Xiao Q, Geng G, Cheng J, et al. Evaluation of gap-filling approaches in satellite-based daily PM2.5 prediction models[J]. Atmospheric Environment, 2021, 244: 117921. doi: 10.1016/j.atmosenv.2020.117921

    [8]

    Mahabbati A, Beringer J, Leopold M, et al. A comparison of gap-filling algorithms for eddy covariance fluxes and their drivers[J]. Geoscientific Instrumentation, Methods and Data Systems, 2021, 10(1): 123−140. doi: 10.5194/gi-10-123-2021

    [9]

    Soloway A D, Amiro B D, Dunn A L, et al. Carbon neutral or a sink? uncertainty caused by gap-filling long-term flux measurements for an old-growth boreal black spruce forest[J]. Agricultural and Forest Meteorology, 2017, 233: 110−121. doi: 10.1016/j.agrformet.2016.11.005

    [10]

    Yang L, Fan X, Zhang Z. Your time series is worth a binary image: machine vision assisted deep framework for time series forecasting[J/OL]. arXiv: 2302.14390v1. [2024−07−14]. https://arxiv.org/pdf/2302.14390.

    [11]

    Irvin J, Zhou S, Mcnicol G, et al. Gap-filling eddy covariance methane fluxes: comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands[J]. Agricultural and Forest Meteorology, 2021, 308−309: 108528. doi: 10.1016/j.agrformet.2021.108528

    [12]

    Zhu S, Clement R, Mccalmont J, et al. Stable gap-filling for longer eddy covariance data gaps: a globally validated machine-learning approach for carbon dioxide, water, and energy fluxes[J]. Agricultural and Forest Meteorology, 2022, 314: 108777. doi: 10.1016/j.agrformet.2021.108777

    [13]

    Vu M T, Jardani A, Massei N, et al. Reconstruction of missing groundwater level data by using long short-term memory (LSTM) deep neural network[J]. Journal of Hydrology, 2021, 597: 125776. doi: 10.1016/j.jhydrol.2020.125776

    [14]

    Guo X, Yao Y, Tang Q, et al. Multimodel ensemble estimation of Landsat-like global terrestrial latent heat flux using a generalized deep CNN-LSTM integration algorithm[J]. Agricultural and Forest Meteorology, 2024, 349: 109962. doi: 10.1016/j.agrformet.2024.109962

    [15] 冯新妍, 贾昕, 黄金泽, 等. ANN-BiLSTM模型在温带荒漠灌丛碳通量数据缺失值插补中的应用[J]. 北京林业大学学报, 2023, 45(9): 62−72. doi: 10.12171/j.1000-1522.20220510

    Feng X Y, Jia X, Huang J Z, et al. Application of ANN-BiLSTM model to long-term gap-filling of carbon flux data in temperate desert shrub[J]. Journal of Beijing Forestry University, 2023, 45(9): 62−72. doi: 10.12171/j.1000-1522.20220510

    [16]

    Qian L, Wu L, Zhang Z, et al. A gap filling method for daily evapotranspiration of global flux data sets based on deep learning[J]. Journal of Hydrology, 2024, 641: 131787. doi: 10.1016/j.jhydrol.2024.131787

    [17]

    Jerse G, Marcucci A. Deep learning LSTM-based approaches for 10.7 cm solar radio flux forecasting up to 45-days[J]. Astronomy and Computing, 2024, 46: 100786. doi: 10.1016/j.ascom.2024.100786

    [18]

    Chen Z, Xu H, Jiang P, et al. A transfer learning-based LSTM strategy for imputing large-scale consecutive missing data and its application in a water quality prediction system[J]. Journal of Hydrology, 2021, 602: 126573. doi: 10.1016/j.jhydrol.2021.126573

    [19]

    Lucarini A, Cascio M L, Marras S, et al. Artificial intelligence and eddy covariance: a review[J]. Science of the Total Environment, 2024, 950: 175406. doi: 10.1016/j.scitotenv.2024.175406

    [20]

    Trotta C, Canfora E, Cheah Y, et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data[J]. Scientific Data, 2020, 7(1): 225−227. doi: 10.1038/s41597-020-0534-3

    [21]

    Vekuri H, Tuovinen J, Kulmala L, et al. A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates[J]. Scientific Reports, 2023, 13(1): 1720. doi: 10.1038/s41598-023-28827-2

    [22] 宋亮, 万建洲. 缺失数据插补方法的比较研究[J]. 统计与决策, 2020, 36(18): 10−14.

    Song L, Wan J Z. Comparative research on interpolation method of missing data[J]. Statistics and Decision, 2020, 36(18): 10−14.

    [23] 郑小波. 基于机器学习的MIMIC数据库缺失数据插补研究[D]. 合肥: 安徽大学, 2021.

    Zheng X B. Study on missing data imputation in MIMIC database based on machine learning [D]. Hefei: Anhui University, 2021.

    [24]

    Nie Y, Nguyen N H, Sinthong P, et al. A time series is worth 64 words: long-term forecasting with transformers[J/OL]. arXiv: 2211.14730v2. [2024−07−14]. https://arxiv.org/pdf/2211.14730.

    [25]

    Yue Z, Wang Y, Duan J, et al. TS2Vec: towards universal representation of time series[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(8): 8980−8987. doi: 10.1609/aaai.v36i8.20881

    [26]

    Liu Y, Hu T, Zhang H, et al. iTransformer: inverted transformers are effective for time series forecasting[J/OL]. arXiv: 2310.06625v3. [2024−08−14]. https://arxiv.org/pdf/2310.06625v3.

    [27]

    Wu H, Hu T, Liu Y, et al. TimesNet: temporal 2D-variation modeling for general time series analysis[J/OL]. arXiv: 2210.02186v3. [2024−08−14]. https://arxiv.org/pdf/2210.02186.

    [28]

    Rivera-Muñoz L M, Giraldo-Forero A F, Martinez-Vargas J D. Deep matrix factorization models for estimation of missing data in a low-cost sensor network to measure air quality[J]. Ecological informatics, 2022, 71: 101775. doi: 10.1016/j.ecoinf.2022.101775

    [29] 李润东, 范雅倩, 冯沛, 等. 北京松山天然落叶阔叶林生态系统净碳交换特征及其影响因子[J]. 应用生态学报, 2020, 31(11): 3621−3630.

    Li R D, Fan Y Q, Feng P, et al. Net ecosystem carbon exchange and its affecting factors in a deciduous broad-leaved forest in Songshan, Beijing, China[J]. Chinese Journal of Applied Ecology, 2020, 31(11): 3621−3630.

    [30] 张弥, 于贵瑞, 张雷明, 等. 太阳辐射对长白山阔叶红松林净生态系统碳交换的影响[J]. 植物生态学报, 2009, 33(2): 270−282. doi: 10.3773/j.issn.1005-264x.2009.02.004

    Zhang M, Yu G R, Zhang L M, et al. Effects of solar radiation on net ecosystem exchange of broadleaved-Korean pine mixed forest in changbai mountain, china[J]. Chinese Journal of Plant Ecology, 2009, 33(2): 270−282. doi: 10.3773/j.issn.1005-264x.2009.02.004

    [31] 游桂莹, 张志渊, 张仁铎. 全球陆地生态系统光合作用与呼吸作用的温度敏感性[J]. 生态学报, 2018, 38(23): 8392−8399.

    You G Y, Zhang Z Y, Zhang R D. Temperature sensitivity of photosynthesis and respiration in terrestrial ecosystems globally[J]. Acta Ecologica Sinica, 2018, 38(23): 8392−8399.

  • 期刊类型引用(4)

    1. 张苗苗,罗于洋,王树森,张丽娜,马成功,于胜利,王景圆. 内蒙古旺业甸华北落叶松人工林空间结构分析及其优化. 西北林学院学报. 2024(01): 81-87+107 . 百度学术
    2. 荆媛,魏爽,史文辉,马梓贺,王德宇,戎可. 天然次生林中小斑啄木鸟的取食偏好. 野生动物学报. 2024(01): 84-94 . 百度学术
    3. 孙宇,刘盛,田佳歆,程福山,赵士博,王诗俊. 基于空间结构优化的长白落叶松人工林分间伐模型构建. 中南林业科技大学学报. 2023(01): 72-83 . 百度学术
    4. 刘鑫,黄浪,卿东升,李建军. 基于Voronoi空间单元的林分空间结构智能优化研究. 林业资源管理. 2023(04): 27-35 . 百度学术

    其他类型引用(2)

图(5)  /  表(7)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  35
  • PDF下载量:  49
  • 被引次数: 6
出版历程
  • 收稿日期:  2024-06-10
  • 修回日期:  2024-12-28
  • 录用日期:  2024-12-30
  • 网络出版日期:  2025-01-03
  • 刊出日期:  2025-02-24

目录

    /

    返回文章
    返回