Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

坝上地区典型防护林水源涵养功能对林分结构的响应

崔悦, 闫冰, 李治学, 范明远, 常晓敏, 孙立博

崔悦, 闫冰, 李治学, 范明远, 常晓敏, 孙立博. 坝上地区典型防护林水源涵养功能对林分结构的响应[J]. 北京林业大学学报, 2024, 46(9): 77-86. DOI: 10.12171/j.1000-1522.20240192
引用本文: 崔悦, 闫冰, 李治学, 范明远, 常晓敏, 孙立博. 坝上地区典型防护林水源涵养功能对林分结构的响应[J]. 北京林业大学学报, 2024, 46(9): 77-86. DOI: 10.12171/j.1000-1522.20240192
Cui Yue, Yan Bing, Li Zhixue, Fan Mingyuan, Chang Xiaomin, Sun Libo. Response of water conservation function of typical protective forests in Bashang area of northern China to stand structure[J]. Journal of Beijing Forestry University, 2024, 46(9): 77-86. DOI: 10.12171/j.1000-1522.20240192
Citation: Cui Yue, Yan Bing, Li Zhixue, Fan Mingyuan, Chang Xiaomin, Sun Libo. Response of water conservation function of typical protective forests in Bashang area of northern China to stand structure[J]. Journal of Beijing Forestry University, 2024, 46(9): 77-86. DOI: 10.12171/j.1000-1522.20240192

坝上地区典型防护林水源涵养功能对林分结构的响应

基金项目: 国家自然科学基金青年基金项目(32201630),山西省基础研究计划(202203021212429、202203021222014),山西农业大学“杰青优青培育”工程(2024YQPYGC06),山西农业大学博士科研启动项目(2021BQ105),山西省博士毕业生、博士后研究人员来晋工作奖励经费科研项目(SXBYKY2022052),山西省回国留学人员科研资助项目(2023-017)。
详细信息
    作者简介:

    崔悦。主要研究方向:水土保持与荒漠化防治。Email:cyhlhn@yeah.net 地址:030801 山西省晋中市太谷区铭贤南路1号山西农业大学林学院

    责任作者:

    常晓敏,博士,讲师。主要研究方向:水土保持与森林生态研究。Email:changxiaomin123@126.com 地址:同上。

  • 中图分类号: S715.7

Response of water conservation function of typical protective forests in Bashang area of northern China to stand structure

  • 摘要:
    目的 

    坝上是京津冀地区重要的生态屏障和水源涵养地,探究典型防护林林分结构对枯落物层和土壤层水源涵养功能的影响,为该地区防护林的抚育管理与林分优化提供科学依据。

    方法 

    选取坝上地区御道口林场3种典型防护林(樟子松林、华北落叶松林、樟子松华北落叶松混交林)为研究对象,调查胸径、树高、林龄、密度、郁闭度和叶面积指数等林分结构指标,通过室内浸水法和环刀法进行枯落物层和土壤层持水性能的测定,运用冗余分析探究防护林结构对枯落物层和土壤层持水性能的影响机制。

    结果 

    (1)樟子松华北落叶松混交林的枯落物层厚度、蓄积量、枯落物最大持水量和有效拦蓄量均大于纯林,其中总枯落物厚度差异显著(P<0.05)。(2)土壤总孔隙度、含水量和最大持水量都随着土层的增加而减小。其中土壤总孔隙度和最大持水量在0 ~ 30 cm土层表现为华北落叶松林 > 樟子松华北落叶松混交林 > 樟子松林,在30 ~ 60 cm土层表现为华北落叶松林 > 樟子松林 > 樟子松华北落叶松混交林。(3)冗余分析表明,林分结构与水源涵养功能密切相关,林分密度和树高对不同防护林枯落物层水源涵养能力影响显著,而树高和林龄对不同防护林土壤层水源涵养能力影响显著(P < 0.05)。

    结论 

    3种防护林中枯落物层和土壤层水源涵养能力最好的分别是樟子松华北落叶松混交林和华北落叶松林,林分密度、树高和林龄可以较好地解释水源涵养功能的变化。本研究对坝上地区生态平衡维护与可持续发展具有积极意义。

    Abstract:
    Objective 

    The Bashang area, a crucial ecological barrier and water-conserving region in the Beijing-Tianjin-Hebei region of northern China, is the focus of this study. Our aim is to explore the influence of stand structure of typical protective forests on water conservation function of litter layer and soil layer.

    Method 

    Three types of typical protective forests (Pinus sylvestris var. mongolica forest, Larix principis-rupprechtii forest, Pinus sylvestris var. mongolica and Larix principis-rupprechtii mixed forest) in the Yudaokou Forest Farm of the Bashang area were selected as research objects. Stand structure parameters such as DBH, tree height, stand age, stand density, canopy closure, and leaf area index (LAI) were investigated. The water-holding capacity of both litter layer and soil layer was assessed using the indoor immersion method and the ring-knife technique. Redundancy analysis was employed to explore the influence mechanism of protective forest structure on the water-holding properties of litter layer and soil layer.

    Result 

    (1) The thickness of litter layer, volume of litter, maximum water holding capacity of litter and effective storage capacity of the mixed forest were greater than those of pure forest, and the difference of thickness was significant (P < 0.05). (2) The total soil porosity, water content and maximum water holding capacity of soil decreased as the soil layer deepened. The total soil porosity and maximum water holding capacity in the 0−30 cm soil layer showed Larix principis-rupprechtii forest > Pinus sylvestris var. mongolica and Larix principis-rupprechtii mixed forest > Pinus sylvestris var. mongolica forest, and in the 30−60 cm soil layer, it was showed as Larix principis-rupprechtii forest > Pinus sylvestris var. mongolica forest > Pinus sylvestris var. mongolica and Larix principis-rupprechtii mixed forest. (3) Redundancy analysis demonstrated that stand structure was closely related to the function of water conservation. Stand density and tree height had a significant influence on water conservation capacity of litter layer in different protection forests. Additionally, tree height and stand age had a significant impact on the water conservation capacity of soil layer in different protection forests (P < 0.05).

    Conclusion 

    Among the three types of typical protective forest, the Pinus sylvestris var. mongolica and Larix principis-rupprechtii mixed forest and Larix principis-rupprechtii forest have the best water-conserving capacity in litter layer and soil layer, respectively. Stand density, tree height, and stand age have a significant effect on their hydrological effects. Therefore, when conducting afforestation in the Bashang area, appropriate tree species, reasonable density, and scientific thinning methods should be selected according to the actual situation to improve the efficiency of moisture utilization. This study provides an important scientific basis for the tending management and stand optimization of typical protective forest in the Bashang area and has positive significance for maintaining ecological balance and sustainable development in this area.

  • 森林的枯落物层和土壤层是森林水文循环中至关重要的组成部分,它们共同发挥着水源涵养和水土保持的关键作用[12]。枯落物层是指树木和林下灌草凋落或者死亡产生的茎、叶、枝、花及果实等的总称,具有减少水分蒸发、涵养水源、净化水质、截留降水、维持地温、拦截泥沙等功能[3]。土壤层在调节径流、促进入渗和保持降水方面发挥着关键作用,同时它也是维持大气、植被与土壤间动态平衡的重要介质。作为森林生态系统中蓄水和保持水分的核心组成部分,土壤层对于维持生态平衡和水资源的可持续利用至关重要[45]。孙拥康等[6]发现混交经营模式下枯落物层和土壤层水文性能优于纯林;郭建军等[7]以3种针叶林为研究对象,发现华北落叶松(Larix principis-rupprechtii)林水源涵养能力优于樟子松(Pinus sylvestris var. mongolica)林和油松(Pinus tabuliformi)林,土壤层持水能力比枯落物更强。牛勇等[8]比较八达岭林场不同树种、不同密度、不同立地条件下枯落物层水文效应得出森林的水文性能受树种、海拔、密度、坡向等因素的影响。也有研究[910]指出不同造林树种影响枯落物的分解过程和枯落物层对土壤层的输入过程,从而影响土壤理化性质与土壤水源涵养能力。上述研究表明,森林枯落物层和土壤层水文效应受时空特征和环境异质性的影响,如气候、地形、降水、林分组成等诸多因素[1114]。因此,深入研究生物学特性不同的纯林和混交林的枯落物层和土壤层水源涵养能力,对厘清森林生态系统的水文调节功能具有重要意义。

    坝上地区位于内蒙古高原到华北平原的过渡带,地处华北西北部,是维护京津冀生态安全的重要屏障。在20世纪70—90年代,为改变生态环境,坝上营造了以樟子松和小叶杨(Populus simonii)为代表树种的防护林工程,此工程是“三北”防护林工程的重点地带,在防治“三北”地区沙尘暴、涵养水源、改善农业环境、提高粮食产量等发面发挥了重要作用[15]。前人对森林水源涵养功能的研究多集中在密度、林龄、林分类型、间伐强度、海拔等方面[1617],近年来研究者的重点逐渐趋向于多个林分结构指标与水源涵养功能的关系[1819]。在此基础上,本文以坝上地区华北落叶松林、樟子松林、樟子松华北落叶松混交林为研究对象,调查比较不同防护林枯落物层和土壤层水源涵养能力,利用冗余分析(redundancy analysis,RDA)方法构建多个林分结构指标与枯落物层、土壤层水源涵养能力的关系,旨在为坝上地区防护林水源涵养和减缓水土流失提供科学参考,也为坝上地区防护林后期抚育管理及优化提供指导思路。

    研究区位于河北省围场县御道口林场(42°12′29″ ~ 42°19′27″N,116°58′52″ ~ 117°13′03″E),属寒温带大陆性季风高原气候,气温常年偏低,年平均气温5 ℃,日照时数2 899 h,年降水量460 mm,年潜在蒸发量2 438 mm(图1)。土壤类型分为灰色森林土、风沙土、草甸土和沼泽土4个类型。该地区风沙频繁,年平均风速3.4 m/s,每年风力等级达到6级以上的天数为50 ~ 70 d。常见乔木有樟子松、华北落叶松、小叶杨、榆树(Ulmus pumila)等。主要灌木有沙棘(Hippophae rhamnoides)、柠条锦鸡儿(Caragana korshinskii)等。草本植物有白茅(Imperata cylindrica)和尖裂假还阳参(Crepidiastrum sonchifolium)等[20]

    图  1  研究区概况
    Figure  1.  Overview of study area

    2022年7月对御道口林场全面踏勘后,选取立地条件(坡度、坡向、坡位和海拔)相似且具有代表性的樟子松林、华北落叶松林以及采用行带混交方式(樟子松与华北落叶松比为2∶1,混交造林时华北落叶松和樟子松苗木平均年龄均为3年)的樟子松华北落叶松混交林样地共30块,标准样地面积为20 m×20 m,样地海拔、土壤类型、林分起源、林下植被等信息详见表1。对样地内所有树木进行每木检尺,记录其胸径、树高和林龄等信息。在样地内沿对角线选择3个1 m×1 m的样方,在保持枯落物原状不变的情况下,用钢尺对样方内的枯落物未分解层厚度和半分解层厚度进行测量,并用小铲将同一样方内的枯落物分层取回。在标准样地内沿对角线在样地中挖掘3个土壤剖面,用100 cm3的环刀按照土层0 ~ 10、10 ~ 20、20 ~ 40、40 ~ 60 cm分层取样。

    表  1  典型防护林样地基本特征
    Table  1.  Basic characteristics of sample plots in typical protective forests
    项目 Item 樟子松林
    Pinus sylvestris
    var. mongolica forest
    华北落叶松林
    Larix principis-
    rupprechtii forest
    樟子松华北落叶松混交林
    Pinus sylvestris var. mongolica and
    Larix principis-rupprechtii mixed forest
    样地数量 Number of sample plot 10 10 10
    林分密度/(株·hm−2
    Stand density/(tree·ha−1
    1 833.00 ± 276.51a 1 583.00 ± 554.71a 1 766.00 ± 475.88a
    平均林龄/a Average stand age/year 15.33 ± 2.17a 18.67 ± 2.08a 20.33 ± 2.52a
    株距 Plant space/m 2.17 ± 0. 53a 3.42 ± 0.68a 2.37 ± 0.37a
    行距 Row space/m 2.22 ± 0.45a 3.51 ± 0.57a 2.12 ± 0.44a
    林分起源 Stand origin 人工林 Plantation 人工林 Plantation 人工林 Plantation
    坡度 Slope/(°) 8 8 12
    坡向 Aspect 阳坡 Sunny slope 阳坡 Sunny slope 阳坡 Sunny slope
    坡位 Slope position 中坡位 Mid-slope position 中坡位 Mid-slope position 中坡位 Mid-slope position
    海拔 Elevation/m 1402 1402 1366
    灌木组成 Shrub composition 柠条锦鸡儿 Caragana korshinskii 柠条锦鸡儿 Caragana korshinskii 柠条锦鸡儿 Caragana korshinskii
    林下灌木覆盖率
    Understory shrub coverage/%
    27.00 ± 3.29a 23.54 ± 1.35a 13.18 ± 1.56a
    林下草本覆盖率
    Understory herb coverage/%
    27.60 ± 1.77a 35.47 ± 3.69a 30.18 ± 2.96a
    草本组成
    Herbal composition
    白茅 Imperata cylindrica
    细叶韭 Allium tenuissimum
    瓣蕊唐松草 Thalictrum petaloideum
    路边青 Geum leppicum
    蛇含委陵菜 Potentilla kleiniana
    老鹳草 Geranium wilfordii
    白茅 Imperata cylindrica
    细叶韭 Allium tenuissimum
    老鹳草 Geranium wilfordii
    蛇含委陵菜 Potentilla kleiniana
    猪毛蒿 Artemisia scoparia
    白茅 Imperata cylindrica
    注:表中数据为平均值±标准误,不同小写字母表示不同林分类型间差异显著(P < 0.05)。下同。Notes: data in the table are mean ± standard error, and different lowercase letters indicate significant differences (P < 0.05) between varied stand types. Same as below.
    下载: 导出CSV 
    | 显示表格

    将收集的枯落物样品称质量,并在80 ℃烘箱中烘干至质量恒定,将干燥后的枯落物样品装入尼龙网袋中,后将其完全浸入水中浸泡24 h后取出,将水分控干后立即称质量。

    M=m1100A (1)
    S=(m24m1)×1A (2)
    R=(m2m1)/m1×100% (3)
    W=M×(0.85R24R) (4)

    式中:M为枯落物蓄积量(t/hm2),m1m2m24分别为枯落物鲜质量(g)、烘干质量(g)和吸水24 h质量(g);A为枯落物面积(m2);S为最大持水量(t/hm2);RR24分别是含水率和最大持水率;W为有效拦蓄量(t/hm2)。

    将带土环刀在水中浸泡12 h使其达到饱和后称质量,以计算土壤最大持水量。随后将环刀放在沙表面使土壤孔隙水排出,在置沙2 h和置沙48 h之后称其质量,分别计算土壤毛管持水量和田间持水量。具体参照《森林土壤样品的采集与制备》(LY/T 1210—1999)和《森林土壤水化学分析》(LY/T 1275—1999)。

    Smax=(m12N)/(Nn)×100% (5)
    Sc=(m48N)/(Nn)×100% (6)
    Smin=(m2N)/(Nn)×100% (7)

    式中SmaxScSmin分别为最大持水量(%)、田间持水量(%)和毛管持水量(%);Nn分别是环刀加干土质量(g)、环刀质量(g);m12m48m2分别是浸泡12 h、置沙48 h、置沙2 h带土环刀质量(g)。

    所有绘图与统计分析均在R 4.3.2.中完成。应用“ggplot2”包绘图,应用“stats”包进行单因素方差分析(analysis of variance,ANOVA),由“vegan”包实现林分结构与水源涵养功能的冗余分析。冗余分析前对影响因子进行共线性诊断,均通过(VIF < 10),并对后续分析结果进行蒙特卡洛置换检验,以检验各解释变量的显著性。

    3种防护林的树高、胸径、郁闭度的大小均为樟子松林 > 华北落叶松林 > 樟子松华北落叶松混交林,且樟子松林的树高、胸径显著大于其他两种防护林,郁闭度显著大于樟子松华北落叶松混交林(图2)。叶面积指数(leaf area index,LAI)、密度和林龄无显著性差异(表1图2),LAI均值变化范围2.21 ~ 2.58,密度的均值变化范围在1 583 ~ 1 833株/hm2,平均林龄变化范围在15.33 ~ 20.33年。

    图  2  不同防护林的林分结构特征
    F1~F3分别为樟子松林、华北落叶松林和樟子松华北落叶松混交林。 F1−F3 indicate Pinus sylvestris var. mongolica forest, Larix principis-rupprechtii forest, Pinus sylvestris var. mongolica and Larix principis-rupprechtii mixed forest, respectively.
    Figure  2.  Characteristics of stand structure of different protective forests

    将未分解层和半分解层的枯落物相加得到总枯落物量(表2)。3种防护林枯落物厚度从大到小依次为樟子松华北落叶松混交林、樟子松林和华北落叶松林,枯落物有效拦蓄量从大到小依次为樟子松华北落叶松混交林、华北落叶松林和樟子松林。枯落物最大持水率从大到小依次为华北落叶松林、樟子松华北落叶松混交林和樟子松林。不同林分在蓄积量和枯落物最大持水量方面均无显著差异。

    表  2  不同林分类型枯落物蓄积量和持水特征
    Table  2.  Accumulation and water holding characteristics of litter in different forest types
    林分类型
    Stand type
    枯落物层
    Litter layer
    厚度
    Thickness/cm
    蓄积量/(t·hm−2
    Volume/(t·ha−1
    枯落物最大持水量/(t·hm−2
    Max. water holding
    capacity of
    litter/(t·ha−1
    最大持水率
    Max. water
    holding rate/%
    有效拦蓄
    量/(t·hm−2
    Effective storage
    capacity/(t·ha−1
    樟子松林
    Pinus sylvestris
    var. mongolica forest
    未分解层
    Undecomposed layer
    1.67 ± 0.29a 8.89 ± 3.16a 18.07 ± 6.36a 203.32 ± 28.00b 13.84 ± 2.92a
    半分解层
    Semi-decomposed layer
    0.77 ± 0.25a 16.39 ± 6.59a 31.58 ± 3.68a 177.22 ± 19.67b 19.26 ± 1.16b
    总枯落物层
    Total litter layer
    2.44 ± 0.05b 25.28 ± 2.92a 49.65 ± 9.97a 190.27 ± 5.25b 33.10 ± 3.35b
    华北落叶松林
    Larix principis-
    rupprechtii forest
    未分解层
    Undecomposed layer
    0.77 ± 0.25b 5.02 ± 1.41a 12.72 ± 3.68a 252.48 ± 17.23a 9.79 ± 2.84a
    半分解层
    Semi-decomposed layer
    1.50 ± 0.30a 12.35 ± 2.34a 34.20 ± 8.24a 239.35 ± 27.94a 25.89 ± 2.09a
    总枯落物层
    Total litter layer
    2.27 ± 0.06b 17.37 ± 2.85a 46.92 ± 9.30a 245.92 ± 6.13a 35.68 ± 2.88ab
    樟子松华北落叶松
    混交林
    Pinus sylvestris var.
    mongolica and
    Larix principis-
    rupprechtii
    mixed forest
    未分解层
    Undecomposed layer
    1.93 ± 0.51a 11.76 ± 4.87a 20.50 ± 5.50a 265.45 ± 7.26a 15.19 ± 4.28a
    半分解层
    Semi-decomposed layer
    1.50 ± 0.50a 15.59 ± 5.82a 40.55 ± 2.10a 222.54 ± 13.66a 27.77 ± 4.25a
    总枯落物层
    Total litter layer
    3.43 ± 0.12a 27.35 ± 1.17a 61.05 ± 5.84a 244.00 ± 9.04a 42.96 ± 6.00a
    下载: 导出CSV 
    | 显示表格

    0 ~ 60 cm土层中,土壤密度随深度加深而增加,土壤总孔隙度、土壤含水量、土壤最大持水量、田间持水量以及毛管持水量均随深度加深而减小。华北落叶松林的土壤密度在各土层中均为最小。3种防护林土壤含水量大小依次为为华北落叶松林(5.91 ± 1.14)% > 樟子松林(4.52 ± 1.22)% > 樟子松华北落叶松混交林(4.10 ± 1.08)%(图3)。0 ~ 30 cm土层土壤总孔隙度、土壤最大持水量、田间持水量、毛管持水量均表现为华北落叶松林 > 樟子松华北落叶松混交林 > 樟子松林,在30 ~ 60 cm土层为华北落叶松林 > 樟子松林 > 樟子松华北落叶松混交林。

    图  3  不同林分类型土壤持水量
    Figure  3.  Soil water holding capacity of different stand types

    林分结构与枯落物层水文效应的冗余分析结果表明(图4),林分结构解释了枯落物层水文效应变异的84.51%(P < 0.05)(图4a),解释土壤层水文效应变异的89.90%(P < 0.05)(图4b)。枯落物蓄积量与林分密度、树高、胸径、林龄、郁闭度、LAI等林分结构指标之间呈现正相关关系。在各影响因子中对枯落物层水文效应变异有显著性影响的是密度(F = 17.71,P < 0.01)和树高(F = 8.63,P < 0.05)(图4a表3)。土壤最大持水量与树高、林龄、林分密度、胸径和郁闭度呈现正相关关系,与LAI呈负相关关系。对土壤层水文效应变异有显著性影响的是树高(F = 13.98,P < 0.01)和林龄(F = 5.82,P < 0.05)(图4b表3)。

    图  4  林分结构与枯落物层、土壤层水文效应的冗余分析
    DEN.林分密度;TH.树高;DBH.胸径;Age.林龄;CAN.郁闭度;LAI.叶面积指数;d.枯落物厚度;V.蓄积量;Max-L.枯落物层最大持水量;Rate.最大持水率;ESC.有效拦蓄量;Max-S.土壤层最大持水量; FC.田间持水量;CC.毛管持水量。实线表示林分结构因子,虚线表示枯落物层和土壤层水文特征因子。DEN, stand density; TH, tree height; DBH, diameter at breast height; Age, stand age; CAN, canopy density; LAI, leaf area index; d, litter thickness; V, volume; Max-L, max. water holding capacity of litter layer; Rate, max. water holding rate; ESC, effective storage capacity; Max-S, max. water holding capacity of soil layer; FC, field holding capacity; CC, capillary water capacity. Solid lines indicate stand structure factors and dashed lines indicate individual hydrological characteristic factors of litter and soil layers.
    Figure  4.  Redundancy analysis of hydrological effects in litter and soil layers with respect to each influencing factor
    表  3  林分结构对枯落物层和土壤层水文效应的解释率
    Table  3.  Explanatory rate of stand structure for hydrological effects in litter and soil layers
    林分结构
    Stand structure
    枯落物 Litter 土壤层 Soil layer
    解释率 Explanatory rate/% F P 解释率 Explanatory rate/% F P
    密度 Density 57.10 17.71 < 0.01 0.40 0.10 0.74
    树高 Tree height 18.21 8.63 < 0.05 39.63 13.98 < 0.01
    胸径 DBH 5.13 2.65 0.10 12.70 1.17 0.29
    林龄 Forest age 1.55 0.64 0.47 16.26 5.82 < 0.05
    郁闭度 Canopy density 0.47 0.35 0.62 15.47 4.73 0.06
    叶面积指数 LAI 0.38 0.20 0.68 0.25 < 0.10 0.83
    下载: 导出CSV 
    | 显示表格

    枯落物层持水能力的大小不仅与枯落物总蓄积量、厚度以及分解程度有关,还与小气候、微生物、防护林类型以及林下植被分布有着密切关系[13]。其中枯落物最大持水量主要与蓄积量有关,而枯落物最大持水率主要与枯落物的分解程度有关[21]。在坝上地区的3种防护林中,樟子松华北落叶松混交林的枯落物厚度、最大持水量和有效拦蓄量均为最高。这可能是因为混交针叶树种的枯枝落叶中含有单宁、酚类、萜类等难以分解的物质[22],也可能与混交林的堆叠方式有关,较为蓬松的堆叠方式可使林分的最大持水量增加[23],因此樟子松华北落叶松混交林枯落物层的水源涵养能力表现出较为显著的优势。

    土壤密度和土壤孔隙度是反映土壤水文物理特性的重要指标,分别影响着土壤紧实度和土壤透水通气性[24]。在0 ~ 60 cm土层,土壤密度随着土层的加深而增加,而土壤总孔隙度、土壤含水量、土壤最大持水量、田间持水量以及毛管持水量均随深度的增加而减小,这与兰道云等[25]研究结果一致。这可能是表层土壤容易受到风力侵蚀和水力侵蚀的影响,土壤孔隙较大,粒径相对较高[26];也可能是因为枯落物分解后向土壤层输入有机质等化学物质,致使表层的土壤疏松,下层土壤紧实[27]。各土层土壤含水量都表现为华北落叶松林 > 樟子松林 > 樟子松华北落叶松混交林。这可能跟华北落叶松林根系发达,透水透气性较好有关[2829],也可能与新增枯落物厚度、通气透水性、土壤紧实程度等有关[30]。本研究中,3种防护林土壤持水量存在差异,随着土壤深度的加深均表现出减小的规律,在30 cm深度处其降低的趋势开始减小,30 cm土层向下,樟子松林的持水量逐渐大于樟子松华北落叶松混交林,这有可能与浅层土壤根系和微生物活动相关,也与枯落物对上层土壤结构的改善有关[24,31]

    合理的林分结构对提高森林生产力和森林生态系统服务功能具有重要意义[3233]。由冗余分析可知,各林分结构指标与枯落物层、土壤层水文效应之间存在着紧密且复杂的关系。其中,树高和密度对枯落物层水文效应影响显著。因为树高和林分密度直接影响枯落物量,进而影响枯落物层的水文效应。另一方面,林分密度和树高直接影响林分结构,合理的林分结构能够营造出更好的生长空间,使得树木更有效地获取光照、水分和养分等资源,进而促进树木的生长发育[34]。在生长过程中,枯落物逐年累积,枯落物层的持水能力显著增强。这不仅有助于减少地表径流,降低水土流失的风险,还能够在干旱时期为森林生态系统提供重要的水分来源[2,18]。树高和林龄对土壤层水文效应的变异具有显著影响。这可能是因为较高的树木在水分截留方面发挥着重要作用,大量降雨被拦截在树冠表面,一部分水分沿树干流下或蒸发,减少了直接落到地面的雨量,伴随着雨水从较高位置滴落,较大的重力势能,可能改变土壤表面结构,使地表板结,导致土壤紧实度增加,孔隙度减小,进而降低水分入渗能力[35]。随着林龄增长,树木枯落物积累形成腐殖质层,改善土壤结构和保水性。高林龄树木的根系更加发达,使土壤更加疏松,利于水分入渗和存储[36]。在森林生态系统演替过程中,由于不同林龄的森林物种组成和群落结构不同,随着林龄的增长,森林生态系统更趋于稳定,物种多样性越高,植被覆盖度越大,调节水分循环的能力越强[37]。此外,土壤理化性质的改善还能够促进土壤微生物的活动,提高土壤肥力,进一步增强森林生态系统的稳定性和可持续性[3839]

    然而,林分结构是一个极为复杂的概念,仅仅依靠本研究中有限的指标难以全面反映整个林分结构。因此,未来的研究将进一步拓展林分结构指标,综合更多因素如林下植被、土壤微生物、林分空间结构等,也可以开展长期的定位观测研究,深入分析不同林分结构在不同气候条件和地形地貌下的水文响应。

    本研究分析了坝上地区3种典型防护林的枯落物层和土壤层水源涵养功能。在枯落物层,樟子松华北落叶松混交林的水源涵养功能较好,其枯落物厚度、蓄积量、最大持水量和有效拦蓄量均优于其他林分。在土壤层,随着土壤深度增加,土壤总孔隙度、土壤含水量、土壤最大持水量、田间持水量以及毛管持水量均呈递减趋势,且不同林分在不同土层深度的表现各有差异。密度和树高显著影响枯落物层水文效应,树高和林龄对土壤层水文效应影响显著。

    在后期林分管理中,可以从间伐高密度林分、引入阔叶树种、构建异龄复层混交林等方面优化林分结构,以增强土壤肥力和保水能力。此外,减少人为干扰,保护枯落物的积累和稳定,可提高枯落物层和土壤层水源涵养能力。未来进一步厘清森林生态系统水文调节功能,需开展长期定位监测研究,持续跟踪不同林分结构下森林水文变化动态,综合多学科研究方法,深入剖析森林生态系统水文调节的影响因素和机制。

  • 图  1   研究区概况

    Figure  1.   Overview of study area

    图  2   不同防护林的林分结构特征

    F1~F3分别为樟子松林、华北落叶松林和樟子松华北落叶松混交林。 F1−F3 indicate Pinus sylvestris var. mongolica forest, Larix principis-rupprechtii forest, Pinus sylvestris var. mongolica and Larix principis-rupprechtii mixed forest, respectively.

    Figure  2.   Characteristics of stand structure of different protective forests

    图  3   不同林分类型土壤持水量

    Figure  3.   Soil water holding capacity of different stand types

    图  4   林分结构与枯落物层、土壤层水文效应的冗余分析

    DEN.林分密度;TH.树高;DBH.胸径;Age.林龄;CAN.郁闭度;LAI.叶面积指数;d.枯落物厚度;V.蓄积量;Max-L.枯落物层最大持水量;Rate.最大持水率;ESC.有效拦蓄量;Max-S.土壤层最大持水量; FC.田间持水量;CC.毛管持水量。实线表示林分结构因子,虚线表示枯落物层和土壤层水文特征因子。DEN, stand density; TH, tree height; DBH, diameter at breast height; Age, stand age; CAN, canopy density; LAI, leaf area index; d, litter thickness; V, volume; Max-L, max. water holding capacity of litter layer; Rate, max. water holding rate; ESC, effective storage capacity; Max-S, max. water holding capacity of soil layer; FC, field holding capacity; CC, capillary water capacity. Solid lines indicate stand structure factors and dashed lines indicate individual hydrological characteristic factors of litter and soil layers.

    Figure  4.   Redundancy analysis of hydrological effects in litter and soil layers with respect to each influencing factor

    表  1   典型防护林样地基本特征

    Table  1   Basic characteristics of sample plots in typical protective forests

    项目 Item 樟子松林
    Pinus sylvestris
    var. mongolica forest
    华北落叶松林
    Larix principis-
    rupprechtii forest
    樟子松华北落叶松混交林
    Pinus sylvestris var. mongolica and
    Larix principis-rupprechtii mixed forest
    样地数量 Number of sample plot 10 10 10
    林分密度/(株·hm−2
    Stand density/(tree·ha−1
    1 833.00 ± 276.51a 1 583.00 ± 554.71a 1 766.00 ± 475.88a
    平均林龄/a Average stand age/year 15.33 ± 2.17a 18.67 ± 2.08a 20.33 ± 2.52a
    株距 Plant space/m 2.17 ± 0. 53a 3.42 ± 0.68a 2.37 ± 0.37a
    行距 Row space/m 2.22 ± 0.45a 3.51 ± 0.57a 2.12 ± 0.44a
    林分起源 Stand origin 人工林 Plantation 人工林 Plantation 人工林 Plantation
    坡度 Slope/(°) 8 8 12
    坡向 Aspect 阳坡 Sunny slope 阳坡 Sunny slope 阳坡 Sunny slope
    坡位 Slope position 中坡位 Mid-slope position 中坡位 Mid-slope position 中坡位 Mid-slope position
    海拔 Elevation/m 1402 1402 1366
    灌木组成 Shrub composition 柠条锦鸡儿 Caragana korshinskii 柠条锦鸡儿 Caragana korshinskii 柠条锦鸡儿 Caragana korshinskii
    林下灌木覆盖率
    Understory shrub coverage/%
    27.00 ± 3.29a 23.54 ± 1.35a 13.18 ± 1.56a
    林下草本覆盖率
    Understory herb coverage/%
    27.60 ± 1.77a 35.47 ± 3.69a 30.18 ± 2.96a
    草本组成
    Herbal composition
    白茅 Imperata cylindrica
    细叶韭 Allium tenuissimum
    瓣蕊唐松草 Thalictrum petaloideum
    路边青 Geum leppicum
    蛇含委陵菜 Potentilla kleiniana
    老鹳草 Geranium wilfordii
    白茅 Imperata cylindrica
    细叶韭 Allium tenuissimum
    老鹳草 Geranium wilfordii
    蛇含委陵菜 Potentilla kleiniana
    猪毛蒿 Artemisia scoparia
    白茅 Imperata cylindrica
    注:表中数据为平均值±标准误,不同小写字母表示不同林分类型间差异显著(P < 0.05)。下同。Notes: data in the table are mean ± standard error, and different lowercase letters indicate significant differences (P < 0.05) between varied stand types. Same as below.
    下载: 导出CSV

    表  2   不同林分类型枯落物蓄积量和持水特征

    Table  2   Accumulation and water holding characteristics of litter in different forest types

    林分类型
    Stand type
    枯落物层
    Litter layer
    厚度
    Thickness/cm
    蓄积量/(t·hm−2
    Volume/(t·ha−1
    枯落物最大持水量/(t·hm−2
    Max. water holding
    capacity of
    litter/(t·ha−1
    最大持水率
    Max. water
    holding rate/%
    有效拦蓄
    量/(t·hm−2
    Effective storage
    capacity/(t·ha−1
    樟子松林
    Pinus sylvestris
    var. mongolica forest
    未分解层
    Undecomposed layer
    1.67 ± 0.29a 8.89 ± 3.16a 18.07 ± 6.36a 203.32 ± 28.00b 13.84 ± 2.92a
    半分解层
    Semi-decomposed layer
    0.77 ± 0.25a 16.39 ± 6.59a 31.58 ± 3.68a 177.22 ± 19.67b 19.26 ± 1.16b
    总枯落物层
    Total litter layer
    2.44 ± 0.05b 25.28 ± 2.92a 49.65 ± 9.97a 190.27 ± 5.25b 33.10 ± 3.35b
    华北落叶松林
    Larix principis-
    rupprechtii forest
    未分解层
    Undecomposed layer
    0.77 ± 0.25b 5.02 ± 1.41a 12.72 ± 3.68a 252.48 ± 17.23a 9.79 ± 2.84a
    半分解层
    Semi-decomposed layer
    1.50 ± 0.30a 12.35 ± 2.34a 34.20 ± 8.24a 239.35 ± 27.94a 25.89 ± 2.09a
    总枯落物层
    Total litter layer
    2.27 ± 0.06b 17.37 ± 2.85a 46.92 ± 9.30a 245.92 ± 6.13a 35.68 ± 2.88ab
    樟子松华北落叶松
    混交林
    Pinus sylvestris var.
    mongolica and
    Larix principis-
    rupprechtii
    mixed forest
    未分解层
    Undecomposed layer
    1.93 ± 0.51a 11.76 ± 4.87a 20.50 ± 5.50a 265.45 ± 7.26a 15.19 ± 4.28a
    半分解层
    Semi-decomposed layer
    1.50 ± 0.50a 15.59 ± 5.82a 40.55 ± 2.10a 222.54 ± 13.66a 27.77 ± 4.25a
    总枯落物层
    Total litter layer
    3.43 ± 0.12a 27.35 ± 1.17a 61.05 ± 5.84a 244.00 ± 9.04a 42.96 ± 6.00a
    下载: 导出CSV

    表  3   林分结构对枯落物层和土壤层水文效应的解释率

    Table  3   Explanatory rate of stand structure for hydrological effects in litter and soil layers

    林分结构
    Stand structure
    枯落物 Litter 土壤层 Soil layer
    解释率 Explanatory rate/% F P 解释率 Explanatory rate/% F P
    密度 Density 57.10 17.71 < 0.01 0.40 0.10 0.74
    树高 Tree height 18.21 8.63 < 0.05 39.63 13.98 < 0.01
    胸径 DBH 5.13 2.65 0.10 12.70 1.17 0.29
    林龄 Forest age 1.55 0.64 0.47 16.26 5.82 < 0.05
    郁闭度 Canopy density 0.47 0.35 0.62 15.47 4.73 0.06
    叶面积指数 LAI 0.38 0.20 0.68 0.25 < 0.10 0.83
    下载: 导出CSV
  • [1]

    Han C, Liu Y J, Zhang C U, et al. Effects of three coniferous plantation species on plant-soil feedbacks and soil physical and chemical properties in semiarid mountain ecosystems[J]. Forest Ecosystems, 2021, 8(3): 1−13.

    [2] 张佳楠, 张建军, 张海博, 等. 晋西黄土区典型林分水源涵养能力评价[J]. 北京林业大学学报, 2019, 41(8): 105−114.

    Zhang J N, Zhang J J, Zhang H B, et al. Water conservation capacity of typical forestlands in the Loess Plateau of western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2019, 41(8): 105−114.

    [3] 梁文俊, 魏曦, 赵伟文, 等. 关帝山不同林分结构华北落叶松林枯落物水文效应[J]. 水土保持学报, 2021, 35(2): 324−329, 337.

    Liang W J, Wei X, Zhao W W, et al. Hydrological effects of litter under different forest structures of Larix principis in Guandi Mountain[J]. Journal of Soil and Water Conservation, 2021, 35(2): 324−329, 337.

    [4] 王旭, 贾国栋, 岳永杰, 等. 科尔沁沙地南缘典型林分枯落物层与土壤层水源涵养能力研究[J]. 干旱区资源与环境, 2023, 37(9): 144−153.

    Wang X, Jia G D, Yue Y J, et al. Water holding capacity of litter and soil layers in typical forest stand in the southern margin of Horqin Sandy Land[J]. Journal of Arid Land Resources and Environment, 2023, 37(9): 144−153.

    [5] 陈晶亮, 杨慧, 刘超, 等. 宁夏罗山自然保护区3种典型林分凋落物和土壤层水源涵养能力综合评估[J]. 生态学报, 2023, 43(19): 7987−7997.

    Chen J L, Yang H, Liu C, et al. Comprehensive evaluation of the water conservation capacity of litter and soil layers in three typical forest types in the Luoshan Nature Reserve, Ningxia[J]. Acta Ecologica Sinica, 2023, 43(19): 7987−7997.

    [6] 孙拥康, 汤景明, 王怡. 亚热带日本落叶松人工林枯落物及土壤层水文效应[J]. 北京林业大学学报, 2021, 43(8): 60−69. doi: 10.12171/j.1000-1522.20200259

    Sun Y K, Tang J M, Wang Y. Hydrological effects of litter and soil layers of Larix kaempferi plantation in subtropical regions[J]. Journal of Beijing Forestry University, 2021, 43(8): 60−69. doi: 10.12171/j.1000-1522.20200259

    [7] 郭建军, 王佳欢, 胡静霞, 等. 2022年冬奥会崇礼赛区针叶林枯落物及土壤水文效应[J]. 中国水土保持科学(中英文), 2021, 19(4): 44−50.

    Guo J J, Wang J H, Hu J X, et al. Hydrological effects of litter and soil for the coniferous forest in the Chongli District for 2022 Olympic Winter Games, Hebei Province[J]. Science of Soil and Water Conservation, 2021, 19(4): 44−50.

    [8] 牛勇, 刘洪禄, 张志强. 北京地区典型树种及非生物因子对枯落物水文效应的影响[J]. 农业工程学报, 2015, 31(8): 183−189.

    Niu Y, Liu H L, Zhang Z Q. Effects of typical tree species and abiotic factors on hydrologic characters of forest litter in Beijing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(8): 183−189.

    [9] 刘西刚, 王勇辉, 焦黎. 夏尔希里自然保护区典型植被土壤水源涵养功能探究[J]. 水土保持学报, 2019, 33(3): 121−138.

    Liu X G, Wang Y H, Jiao L. Study on soil water conservation function under typical vegetation in Xarxili Nature Reserve[J]. Journal of Soil and Water Conservation, 2019, 33(3): 121−138.

    [10]

    Zheng X, Chen L, Gong W, et al. Evaluation of the water conservation function of different forest types in northeastern China[J]. Sustainability, 2019, 11(15): 4075−4090. doi: 10.3390/su11154075

    [11] 柳晓娜, 贾国栋, 余新晓. 不同密度杨树人工林的林地涵养水源功能研究[J]. 环境科学与技术, 2017, 40(10): 8−13.

    Liu X N, Jia G D, Yu X X. Study on water conservation function of poplar plantation with different densities[J]. Environmental Science & Technology, 2017, 40(10): 8−13.

    [12] 郝弯弯, 赵鹏, 李思维, 等. 御道口牧场不同类型防护林的枯落物水文效应[J]. 水土保持学报, 2019, 33(6): 197−204.

    Hao W W, Zhao P, Li S W, et al. Hydrologic effects of different forest types shelterbelt litter in Yudaokou Ranch[J]. Journal of Soil and Water Conservation, 2019, 33(6): 197−204.

    [13] 陈继东, 周长亮, 李惠丽. 接坝地区9种典型林分类型枯落物层和土壤层水文效应[J]. 水土保持研究, 2017, 24(6): 216−221, 226.

    Chen J D, Zhou C L, Li H L. Hydrological effects of litter and soils in nine forest types of the Jieba Region[J]. Research of Soil and Water Conservation, 2017, 24(6): 216−221, 226.

    [14] 吴雪铭, 余新晓, 陈丽华, 等. 间伐强度对坝上樟子松林下持水能力的影响[J]. 应用生态学报, 2021, 32(7): 2347−2354.

    Wu X M, Yu X X, Chen L H, et al. Effects of thinning intensity on the understory water-holding capacity of Pinus sylvestris var. mongolica plantation in the Bashang area of north China[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2347−2354.

    [15] 常晓敏, 余新晓, 贾国栋, 等. 基于随机森林的不同径级树木死亡影响因子研究[J]. 生态学报, 2019, 39(21): 8003−8009.

    Chang X M, Yu X X, Jia G D, et al. Influence factors of tree mortality in different size classes based on random forest[J]. Acta Ecologica Sinica, 2019, 39(21): 8003−8009.

    [16] 张引, 黄永梅, 周长亮, 等. 冀北山地5个海拔梯度油松林枯落物与土壤水源涵养功能研究[J]. 水土保持研究, 2019, 26(2): 126−131.

    Zhang Y, Huang Y M, Zhou C L, et al. Study on litter and soil water conservation function of Pinus tabulaeformis forests at 5 altitudinal gradients in mountains of northern Hebei[J]. Research of Soil and Water Conservation, 2019, 26(2): 126−131.

    [17] 郭宇嘉, 牛庆花, 陆贵巧, 等. 承德市第三乡林场不同林分类型枯落物和土壤的持水特性[J]. 水土保持通报, 2018, 38(3): 38−44.

    Guo Y J, Niu Q H, Lu G Q, et al. Water-holding capacity of litters and soil in different forests in Disanxiang Forest Farm of Chengde City[J]. Bulletin of Soil and Water Conservation, 2018, 38(3): 38−44.

    [18] 陈歆宇, 谭伟, 杨深钧. 不同类型马尾松混交林结构与水源涵养功能的耦合关系[J]. 水土保持研究, 2023, 30(5): 217−222.

    Chen X Y, Tan W, Yang S J. Coupling relationship between the structure and water conservation function of different mixed forests of Pinus massoniana[J]. Research of Soil and Water Conservation, 2023, 30(5): 217−222.

    [19]

    Lin S, He K J, Wang Z X, et al. Multifactor relationships between the forest structure and water conservation function of Picea crassifolia Kom. plantations in Qinghai Province, China[J]. Land Degradation & Development, 2022, 33(14): 2596−2605.

    [20] 常晓敏. 华北北部防护林主要树种立地–生长–结构–功能多元耦合关系研究 [D]. 北京:北京林业大学, 2021.

    Chang X M. Multivariate coupling mechanism of site-age-structure-function of main tree species in shelterbelts of northern north China [D]. Beijing: Beijing Forestry University, 2021.

    [21] 赵阳, 王飞, 齐瑞, 等. 白龙江、洮河林区5种典型森林枯落物与土壤层水源涵养效应[J]. 水土保持研究, 2021, 28(3): 118−125.

    Zhao Y, Wang F, Qi R, et al. Water conservation effect of litter and soil layer of five typical forests in Bailongjiang and Taohe River forest of Gansu[J]. Research of Soil and Water Conservation, 2021, 28(3): 118−125.

    [22] 郑淼. 华北土石山区不同林分类型枯落物及土壤水文生态效应[J]. 中国水土保持科学(中英文), 2020, 18(2): 84−91.

    Zheng M. Litter and soil hydro-ecological effects of different stand types in the rocky mountain area of North China[J]. Science of Soil and Water Conservation, 2020, 18(2): 84−91.

    [23] 赵鹏, 马佳明, 李艳茹, 等. 太行山典型区域不同林分类型枯落物水文效应[J]. 水土保持学报, 2020, 34(5): 176−185.

    Zhao P, Ma J M, Li Y R, et al. Hydrological effects of litter in different forest types in the typical areas of Taihang Mountains[J]. Journal of Soil and Water Conservation, 2020, 34(5): 176−185.

    [24] 侯贵荣, 毕华兴, 魏曦, 等. 黄土残塬沟壑区3种林地枯落物和土壤水源涵养功能[J]. 水土保持学报, 2018, 32(2): 357−363, 371.

    Hou G R, Bi H X, Wei X, et al. Water conservation function of litters and soil in three kinds of woodlands in gully region of Loess Plateau[J]. Journal of Soil and Water Conservation, 2018, 32(2): 357−363, 371.

    [25] 兰道云, 毕华兴, 赵丹阳, 等. 晋西黄土区不同密度油松人工林保育土壤功能评价[J]. 水土保持学报, 2022, 36(2): 189−196.

    Lan D Y, Bi H X, Zhao D Y, et al. Evaluation on soil conservation function of Pinus tabuliformis plantation with different densities in the loess area of western Shanxi Province[J]. Journal of Soil and Water Conservation, 2022, 36(2): 189−196.

    [26]

    Neris J, Tejedor M, Rodriguez M, et al. Effect of forest floor characteristics on water repellency, infiltration, runoff and soil loss in andisols of tenerife (Canary Islands, Spain)[J]. Catena, 2013, 108: 50−57.

    [27] 袁秀锦, 肖文发, 潘磊, 等. 马尾松林分结构对枯落物层和土壤层水文效应的影响[J]. 林业科学研究, 2020, 33(4): 26−34.

    Yuan X J, Xiao W F, Pan L, et al. Effect of Pinus massoniana stand structure on hydrological effects of litter layer and soil layer[J]. Forest Research, 2020, 33(4): 26−34.

    [28] 温林生, 邓文平, 钟流, 等. 江西省公益林枯落物层和土壤层水源涵养功能评价[J]. 中国水土保持科学(中英文), 2022, 20(3): 35−43.

    Wen L S, Deng W P, Zhong L, et al. Evaluation of water conservation function of litter layer and soil laver of public welfare forests in different soil texture types in Jiangxi Province[J]. Science of Soil and Water Conservation, 2022, 20(3): 35−43.

    [29] 林立文, 邓羽松, 李佩琦, 等. 桂北地区不同密度杉木林枯落物与土壤水文效应[J]. 水土保持学报, 2020, 34(5): 200−207, 215.

    Lin L W, Deng Y S, Li P Q, et al. Study on the effects of litter and soil hydrology of different density Cunninghamia lanceolata forests in northern Guangxi[J]. Journal of Soil and Water Conservation, 2020, 34(5): 200−207, 215.

    [30] 刘琳, 熊东红, 张宝军, 等. 拉萨河谷杨树人工林枯落物蓄积特征及持水性能[J]. 干旱区研究, 2021, 38(6): 1674−1682.

    Liu L, Xiong D H, Zhang B J, et al. Litter storage and its water-holding capacity of Populus plantations in Lhasa River Valley[J]. Arid Zone Research, 2021, 38(6): 1674−1682.

    [31] 涂志华, 范志平, 孙学凯, 等. 大伙房水库流域不同植被类型枯落物层和土壤层水文效应[J]. 水土保持学报, 2019, 33(1): 127−133.

    Tu Z H, Fan Z P, Sun X K, et al. Hydrological effects of litters layer and soil layer in different vegetation types in Dahyofana Watershed[J]. Journal of Soil and Water Conservation, 2019, 33(1): 127−133.

    [32]

    Adanan I C, Wasli M E B, Perumal M, et al. Characterization of soil properties in relation to Shorea macrophylla growth performance under sandy soils at Sabal Forest Reserve, Sarawak, Malaysia[J]. Biodiversitas, 2020, 21(4): 1467−1475.

    [33]

    Ouyang S, Gou M, Lei P, et al. Plant functional trait diversity and structural diversity co-underpin ecosystem multifunctionality in subtropical forests[J]. Forest Ecosystems, 2023, 10(2): 153−161.

    [34]

    Carrer M, Castagneri D, Popa I, et al. Tree spatial patterns and stand attributes in temperate forests: the importance of plot size, sampling design, and null model[J]. Forest Ecology and Management, 2018, 407: 125−134.

    [35]

    Heydari M, Cheraghi J, Omidipour R, et al. Tree dieback, woody plant diversity, and ecosystem driven by topography in semi-arid mountain forests: implication for ecosystem management[J/OL]. Journal of Environmental Management, 2023, 339: 117892[2024−02−23]. https://doi.org/10.1016/j.jenvman.2023.117892.

    [36]

    Li Y, He J, Yu S, et al. Spatial structures of different-sized tree species in a secondary forest in the early succession stage[J]. European Journal of Forest Research, 2020, 139(5): 709−719. doi: 10.1007/s10342-020-01280-w

    [37] 郭梦娇, 朱江, 程小琴, 等. 辽河源不同林龄油松林水源涵养能力研究[J]. 水土保持学报, 2016, 30(3): 279−284.

    Guo M J, Zhu J, Cheng X Q, et al. Water conservation capacity of Pinus tabulaeformis forests with different ages at Liaohe River[J]. Journal of Soil and Water Conservation, 2016, 30(3): 279−284.

    [38]

    van der Plas F, Ratcliffe S, Ruiz-Benito P, et al. Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality.[J]. Ecology Letters, 2018, 21(1): 31−42.

    [39]

    Valencia E, Maestre F T, Bagousse-Pinguet Y L, et al. Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands[J]. New Phytologist, 2015, 206(2): 660−671.

图(4)  /  表(3)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  25
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-12
  • 修回日期:  2024-08-27
  • 网络出版日期:  2024-09-18
  • 刊出日期:  2024-09-24

目录

/

返回文章
返回