高级检索

    东北阔叶红松林净初级生产力模拟及参数优化

    Modeling and parameter optimization of net primary productivity in the Korean pine-broadleaved forests of northeast China

    • 摘要:
      目的 本研究旨在通过优化生物地球化学循环模型(Biome-BGC)的参数估计,提高东北阔叶红松林净初级生产力(NPP)的模拟精度,并探讨关键敏感参数对NPP的影响机制。
      方法 以中国东北阔叶红松林为研究对象,基于中分辨率成像光谱仪获取的叶面积指数数据,结合参数估计模型(PEST),对Biome-BGC模型中针叶树和阔叶树的28个生理生态参数进行优化,并评估参数敏感性。通过对比优化前后的模拟结果,使用线性回归模型评价NPP模拟精度的变化;同时,运用结构方程模型量化高敏感性参数(敏感性指数 > 0.2)对模拟NPP的影响路径。
      结果 (1)参数优化后,模拟NPP的拟合优度显著提高(p < 0.01),决定系数由0.15提升到0.31,均方根误差降低了59%。(2)针叶树和阔叶树共有的高敏感性参数包括:植物受火灾影响的年死亡率、最大气孔导度、边界层导度和二磷酸核酮糖羧化酶(Rubisco)中的叶氮含量。(3)结构方程模型的结果显示,Rubisco中的叶氮含量和最大气孔导度是影响模拟NPP的主要参数,分别通过羧化限制作用和二氧化碳扩散限制调控光合能力。然而,气孔导度的调控作用易受环境条件影响,可能对光合作用产生促进或抑制作用。
      结论 在Biome-BGC模型的参数优化过程中,结合观测数据与PEST模型,重点关注Rubisco中的叶氮含量和最大气孔导度等关键参数,可显著提升NPP模拟的精度和效率。本研究为东北阔叶红松林生态系统碳循环模拟和植被参数研究提供了理论依据和方法支持。

       

      Abstract:
      Objective This study aims to enhance the accuracy of Net Primary Productivity (NPP) simulations by optimizing parameter estimation in the Biome-BGC model. It also seeks to analyze the pathways through which key sensitive parameters influence NPP.
      Method The research focuses on the Korean pine-broadleaved forests in northeastern China. In the Biome-BGC model, 28 physiological and ecological parameters for conifers and broadleaved trees were optimized separately using the Parameter Estimation System (PEST), based on leaf area index data obtained from the Moderate-resolution Imaging Spectroradiometer (MODIS). A sensitivity analysis was conducted to identify parameters with sensitivity indices above 0.2. Simulation accuracy before and after optimization was evaluated using linear regression models. Additionally, structural equation models were employed to quantify the response of NPP to changes in highly sensitive parameters (sensitivity index > 0.2).
      Result (1) Parameter optimization significantly improved the goodness of fit for NPP simulations (p < 0.01), with the coefficient of determination (R2) increasing from 0.15 to 0.31 and the root mean squared error (RMSE) decreasing by 59%. (2) The highly sensitive parameters shared by conifers and broadleaf trees include four key parameters: the annual fire mortality fraction, maximum stomatal conductance, boundary layer conductance, and the fraction of leaf nitrogen content in Rubisco. (3) Structural equation modeling indicated that leaf nitrogen content in Rubisco and maximum stomatal conductance are key parameters affecting simulated NPP. These parameters regulate photosynthetic capacity through carboxylation limitation and carbon dioxide diffusion. However, the regulatory effect of stomatal conductance on photosynthesis may vary with environmental conditions, potentially promoting or inhibiting photosynthetic activity.
      Conclusion Integrating observational data with the PEST system, while focusing on critical parameters such as leaf nitrogen content in Rubisco and maximum stomatal conductance, can significantly improve the accuracy and efficiency of NPP simulations in the Biome-BGC model. This study provides a theoretical foundation and methodological support for vegetation parameterization and carbon cycle simulations in the Korean pine-broadleaved forest ecosystems in northeastern China.

       

    /

    返回文章
    返回