高级检索

    顾及时空特征的亚热带地区典型树种遥感知识图谱构建

    Construction of remote sensing knowledge graph for typical tree species in subtropical region considering spatiotemporal features

    • 摘要:
      目的 海量多源遥感数据为亚热带地区典型树种的高精度遥感服务需求提供了重要的数据和知识资源。然而,亚热带地区树种类型丰富,且受多云、多雨、多山等复杂环境影响,导致多源遥感特征复杂,树种基本特征和复合特征(状态和过程)的时空知识表达存在诸多困难。针对这些问题,本研究在地理知识图谱的启发下,综合树种基本知识、地学规律知识及多源遥感特征知识,提出顾及时空特征的面向亚热带地区典型树种遥感知识图谱的构建框架,并融合DeepSeek技术构建智能问答系统,旨在为亚热带地区树种遥感知识提供更为有效的知识组织和表达方式。
      方法 为实现上述目标,本研究首先从数据性知识、概念性知识及规律性知识3个层次梳理并整合树种的基本概念、地理规律知识以及遥感解译信息等要素,形成亚热带树种的空间分布、时间变化和地理信息等方面的综合知识体系。接着,以树种林班为解译单元,通过本体建模形成单一时间状态的树种本体知识和遥感本体知识,并根据树种生长状态的演进,通过时间和空间关联构建时空序列树种本体模型,完成亚热带地区典型树种的遥感知识核心要素的知识关系提取。此外,融合森林清查数据、百度百科数据、遥感预解译结果等,进行树种本体知识、遥感预解译信息、属性信息的抽取,丰富数据层。最终,利用Neo4j图数据库存储树种实体关系,构建具有时空特性的亚热带地区典型树种遥感知识图谱,并采用DeepSeek大模型部署树种相关的本地知识库,实现知识图谱驱动的交互式问答服务。
      结果 本研究成功构建了顾及时空特征的亚热带地区典型树种遥感知识图谱,并基于知识图谱与DeepSeek的深度融合,开发了支持自然语言交互的智能问答系统,实现了不同状态的树种知识、地学知识、遥感知识的关联查询及地图可视化。
      结论 这一成果不仅实现了亚热带地区树种“数据—知识”的转换,还通过DeepSeek与知识图谱的协同计算,提供了灵活便捷的遥感知识查询与知识服务能力,能够为知识引导的亚热带地区典型树种遥感智能解译提供数据支撑,也为其他领域的遥感知识图谱提供了应用示范。未来研究需进一步扩充典型树种知识图谱的知识规模,以满足高精度林业遥感监测对高质量知识服务的需求。

       

      Abstract:
      Objective Massive multi-source remote-sensing data are a critical resource for delivering high-precision services for typical tree species in subtropical regions. Yet the great diversity of species and the cloudy, rainy, mountainous environment characteristics of these regions complicate multi-source remote-sensing features, hindering clear spatio-temporal expression of both basic and composite (state and process) tree-species characteristics. Inspired by geographic knowledge mapping, this study integrated tree-species fundamentals, geomorphological patterns, and multi-source remote-sensing feature knowledge. It proposes a framework for constructing a spatio-temporal remote-sensing knowledge graph for typical subtropical tree species, and by incorporating the DeepSeek large language model (LLM), develops an intelligent Q&A system organizing and expressing tree-species remote-sensing knowledge more effectively.
      Method To achieve the above objectives, the study first organized and integrated the basic concepts of tree species, geographic-law knowledge, and remote-sensing interpretation information at three levels: data knowledge, conceptual knowledge, and rule knowledge to build a comprehensive system describing the spatial distribution, temporal dynamics, and geographic context of subtropical tree species. Taking forest class as the interpretation unit, ontology modelling was used to build tree-species ontology knowledge and remote-sensing ontology knowledge for individual temporal states. Temporal and spatial correlations reflecting tree-growth evolution were then introduced to form a spatio-temporal sequence ontology model and to extract relationships among core elements of remote-sensing knowledge for typical subtropical tree species. In addition, forest-inventory data, Baidu Encyclopaedia entries, and remote-sensing pre-interpretation results were fused to enrich the data layer with ontology and attribute information. Finally, entity relationships were stored in a Neo4j graph database to construct the spatio-temporal remote-sensing knowledge graph, while the DeepSeek LLM deployed a local knowledge base to enable knowledge-graph-driven interactive Q&A services.
      Result The study successfully constructed a spatio-temporal remote-sensing knowledge graph for typical subtropical tree species, and through deep integration with DeepSeek, developed an intelligent Q&A system supporting natural-language interaction. The system enables associated queries and map-based visualisation of tree-species knowledge, geomorphological knowledge, and remote-sensing knowledge across different states.
      Conclusion The proposed approach realises the transformation from “data to knowledge” for subtropical tree species and through the synergistic computing of DeepSeek and the knowledge graph, offers flexible, convenient remote-sensing knowledge queries and services. It supplies data support for knowledge-guided, intelligent remote-sensing interpretation of typical subtropical tree species and provides a demonstrative application for remote-sensing knowledge mapping in other domains. Future work will expand the scale of the knowledge graph to meet the demand for high-quality knowledge services in high-precision forestry remote-sensing monitoring.

       

    /

    返回文章
    返回