Composition analysis and structural identification of polyphenols from Pinus sylvestris var. mongolica barks
-
摘要: 本文采用紫外吸收光谱、红外光谱、高效液相色谱和液质联用方法对樟子松树皮中多酚化合物进行成分分析和结构鉴定。结果表明:通过UV-VIS分析松多酚在240~280、300~400 nm这2个波长范围内均有吸收峰,推断松多酚中含有黄酮类物质。通过IR分析可以得到松多酚的酚羟基Ar—OH在3 400 cm-1νO—H对称伸缩振动产生强而宽的特征吸收峰以及在1 390~1 315 cm-1的羟基δO—H 面内弯曲振动吸收峰,说明松多酚分子中存在酚羟基,属于酚类物质。经HPLC和LC-MS分析可以推断樟子松多酚中主要有7种组成成分,分别为儿茶素、芦丁、绿原酸、没食子酸、芥子酸-- 葡糖苷、芍药-3-葡萄糖(半乳糖)糖苷或者矢车菊-3-(6-O-乙酰基)-- 葡糖(半乳糖)糖苷、芥子酸芍药色素-3-槐糖苷。Abstract: The composition of polyphenols from Pinus sylvestris L. var. mongolica were analyzed and their structures were identified with UV-VIS, IR, HPLC and LC-MS. The UV-VIS results showed that there are absorption peaks in regions of 240-- 280 nm and 300-- 400 nm, indicating that flavonoids exist in the pine polyphenols. Fourier Transform Infrared Spectrum analysis showed that a strong and broad absorption peak at 3 400 cm-1 is generated from stretching and vibration of phenolic hydroxyl Ar-OH and absorption peaks at 1 390-- 1 315 cm-1 due to characteristics of in-plane bending vibration of hydroxyl δO—H, which indicated that hydroxyl groups existed in the pine polyphenols. Combined application of HPLC and LC-MS showed that there are seven components in P. sylvestris L. var. mongolica polyphenols, i.e., catechuic acid, rutin, chlorogenic acid, gallic acid, sinapic acid-dextrose glucoside, peony-3- glucoside or centaurea-3-(6-o-acetyl)-glucose glycoside, and sinapic acid peonidin-3-sophoroside composition.
-
-
[1] LIAZID A, SCHWARZ M, VARELA R M, et al. Evaluation of various extraction techniques for obtaining bioactive extracts from pine seeds[J]. Food and Bioproducts Processing, 2010, 88(2): 247- 252.
[1] ZHAO H T, WANG Z Y, CHENG C L, et al.Advances in antioxidant activity mechanism research and structure-activity relationship of pine polyphenols[J]. Science and Technology of Food Industry, 2012, 33(2): 458- 461.
[2] PINELO M, RUBILAR M, SINEIRO J, et al. Extraction of antioxidant phenolics from almond hulls (Prunus amygdalus) and pine sawdust (Pinus pinaster)[J]. Food Chemistry, 2004, 85(2): 267- 273.
[2] GU J, ZHANG Y.Effective components of the pine bark[J]. Heilongjiang Medical Science, 2009, 32(3): 4- 9.
[3] ZHAO Y H, ZHAI Y N, WANG Z Y. Extraction of polyphenlols from Pinus sylvestris var mongolica and comparison of extraction method[J]. Science and Technology of Food Industry, 2013, 34(4): 304- 309.
[3] 赵海田,王振宇,程翠林,等. 松多酚类活性物质抗氧化构效关系与作用机制研究进展[J]. 食品工业科技, 2012, 33(2): 458- 461. [4] BRAGA M E M, SANROS R, SEABRA I J, et al. Fractioned SFE of antioxidants from maritime pine bark[J]. The Journal of Supercritical Fluids, 2008, 47(1): 37- 48.
[4] ZHAO Y H, ZHAI Y N, DANG Y, et al. Optimization of purification conditions of polyphenols from Pinus sylvestris var. mongolica using response surface methodology[J].Journal of Beijing Forestry University, 2014, 36(1): 138- 142.
[5] ANN S T, JAN O, ANETA W. Antioxidant activity of the phenolic compounds of hawthorn, pine and skullcap[J]. Food Chemistry, 2007,103:853- 859.
[5] LIU R, HE J,WANG Z Y. Purification of polyphenols from Pinus sylvestris L.var. mongolica barks by macroporous resin[J]. Science and Technology of Food Industry, 2013, 34(11): 201- 209.
[6] SEKIDO Y. Genomic abnormalities and signal transduction dysregulation in malignant mesothelioma cells[J]. Cancer Science, 2010, 101(1): 1- 6.
[7] NIGAM N, BHUI K, PRASAD S, et al. [6]-gingerol induces reactive oxygen species regulated mitochondrial cell death pathway in human epidermoid carcinoma A431 cells[J]. Chemico-biological Interactions, 2009, 181(1): 77- 84.
[8] BONELLO P, BLODGETT J T. Pinus nigra-Sphaeropsis sapinea as a model pathosystem to investigate local and systemic effects of fungal infection of pines[J]. Physiological and Molecular Plant Pathology, 2003, 63(5): 249- 261.
[9] FREITAS A M, ALMEIDA M T R. ALMEIDA C R. Antiviral activity-guided fractionation from Araucaria angustifolia leaves extract[J]. Journal of Ethno Pharmacology, 2009, 126(3): 512- 517.
[10] TURTOLA S, SALLAS L, HOLOPAINEN J K, et al. Long-term exposure to enhanced UV-B radiation has no significant effects on growth or secondary compounds of outdoor-grown Scots pine and Norway spruce seedlings[J]. Environmental Pollution, 2006, 144(1): 166- 171.
[11] 顾剑, 张宇. 樟子松树皮有效成分的初步研究[J]. 黑龙江医药科学, 2009, 32(3): 4- 9. [12] 赵玉红, 翟亚楠, 王振宇. 樟子松树皮中松多酚的提取工艺研究及提取方法比较[J]. 食品工业科技, 2013, 34(4): 304- 309. [13] 赵玉红, 翟亚楠, 党媛,等. 响应面法优化樟子松树皮松多酚纯化工艺研究[J]. 北京林业大学学报, 2014, 36(1): 138- 142. [14] 刘荣, 何娇, 王振宇. 大孔树脂对樟子松树皮多酚的纯化工艺研究[J]. 食品工业科技, 2013, 34(11): 201- 209. -
期刊类型引用(3)
1. 韩丽冬,沃晓棠,张苏,刁云飞,毕连东. 环境胁迫下雌雄异株植物的生理差异响应特征. 中国林副特产. 2021(05): 75-77 . 百度学术
2. 唐学玺. 环境胁迫下雌雄异株植物的差异响应特征及研究进展. 中国海洋大学学报(自然科学版). 2020(07): 74-81 . 百度学术
3. 史全萍. 高温及持续时间对华北落叶松SOD、POD活性的影响. 中国农学通报. 2018(19): 33-38 . 百度学术
其他类型引用(8)
计量
- 文章访问数: 2192
- HTML全文浏览量: 151
- PDF下载量: 37
- 被引次数: 11