Absorption features of PAHs in leaves of common tree species at different PM2.5 polluted places
-
摘要: 采集了北京市奥林匹克森林公园和西直门北大街2个不同PM2.5污染区的6种植物叶片样品,应用高效液相色谱法测定叶片中多环芳烃(PAHs)的含量,比较6种常见树种叶片对PAHs的吸收特征,并对PAHs的成分具体分析。结果表明:不同树种吸收PAHs的能力有差异。在2个采样点,圆柏、油松针叶树种叶片对PAHs的吸收含量均高于阔叶树种;阔叶树种中碧桃叶片对PAHs的吸收含量最高,其次是毛白扬。此外,随着污染的加重,树种能够增强其吸收PAHs的能力以适应环境污染。6种树种叶片对PAHs的吸收含量均表现为污染较重的西直门高于污染较轻的森林公园。对6种树种叶片的PAHs成分分析表明,叶片中PAHs的主要成分为3环化合物,其次是2环、4环和5~6环化合物,叶片对不同环数化合物的吸收含量也表现为西直门高于森林公园。西直门样品中3环化合物的组分略多于森林公园样品,且组分的含量也高于森林公园样品。6种树种叶片对PAHs吸收含量的主成分分析指出,树种吸收PAHs能力大小依次为圆柏碧桃油松毛白杨榆树紫叶李。Abstract: Leaves of six tree species were collected from two sites with different atmospheric PM2.5 levels in Beijing, i.e., the National Olympic Forest Park and Xizhimen traffic hub. The components and concentrations of PAHs absorbed were measured using high performance liquid chromatography, and were compared among the six tree species. The relationship between leaf PAHs concentration and atmospheric PM2.5 level was preliminarily investigated. The results showed that PAHs contents in the leaves of coniferous trees such as Sabina chinensis and Pinus tabuliformis were higher than those of broadleaf trees. The content of PAHs in Amygdalus persica was the highest, followed by Populus tomentosa. In addition, as the pollution was aggravating, tree species could enhance the ability to absorb PAHs to adapt to the environmental pollution. For all the six tree species, PAHs contents in leaves sampled from the Xizhimen traffic hub with higher PM2.5 level were higher than those from the National Olympic Forest Park. Three-ring compounds were the major component in leaf-absorbed PAHs, followed by two-ring, four-ring and five- or six-ring compounds. The contents of compounds with different ring numbers in the leaf samples from Xizhimen traffic hub were higher than those from National Olympic Forest Park. Both three-ring compounds and contents in the leaf samples from Xizhimen traffic hub were higher than those from National Olympic Forest Park. A principal component analysis based on the contents of different PAHs components suggested that the ability of the species to absorb PAHs followed the order of Sabina chinensisAmygdalus persicaPinus tabuliformisPopulus tomentosaUlmus pumilaPrunus cerasifera.
-
Keywords:
- Beijing /
- common tree species /
- PM2.5 /
- PAHs /
- principal component analysis
-
-
[1] MANTIS J, CHALOULAKOU A, SAMARA C. PM10-bound polycyclic aromatic hydrocarbons (PAHs) in the Greater Area of Athens, Greece[J]. Chemosphere, 2005, 59(5): 593- 604.
[1] LI C R, LI Y H, JING L J. Study on polycyclic aromatic hydrocarbons in the atmosphere[J]. Energy and environment, 2005(4): 45- 47.
[2] YAN B Z, BOPP R F, ABRAJANO T A, et al. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) into central park lake, New York city, over a century of deposition[J]. Environmental Toxicology and Chemistry, 2014, 33(5): 985- 992.
[2] ZENG F G, WANG W, LIANG B S, et al. Study on polycyclic aromatic hydrocarbons (PAHs) in particulate matters from vehicle emission[J]. Research of Environmental Sciences, 2001, 14(4): 32- 35.
[3] PENG G, TIAN D L, YAN W D, et al. Relationship between polycyclic aromatic hydrocarbons accumulation and surface structure of leaves in four urban street tree species[J]. Acta Ecologica Sinica, 2010, 30(14): 3700- 3706.
[3] 李成日, 李英华, 景丽洁. 大气中多环芳烃的研究进展[J]. 能源与环境, 2005(4): 45- 47. [4] TIAN X X, ZHOU G Y, PENG P A. Concentrations and influence factors of polycyclic aromatic hydrocarbons in leaves of dominant species in the Pearl River Delta,South China[J]. Environment Science, 2008, 29(4): 849- 854.
[4] 曾凡刚, 王玮, 梁宝生, 等. 机动车排放颗粒物中多环芳烃化合物的研究[J]. 环境科学研究, 2001, 14(4): 32- 35. [5] SHI J, LIU Q Q, AN H L, et al. A comparative study of the stomata and PM2.5 particles on the leaf surface of Chinese white poplar (Populus tomentosa) in different polluted places[J]. Acta Ecologica Sinica, 2015, 35(22): 1- 9.
[5] MENEZES H C, CARDEAL Z L. Study of polycyclic aromatic hydrocarbons in atmospheric particulate matter of an urban area with iron and steel mills[J]. Environmental Toxicology and Chemistry, 2012, 31(7): 1470- 1477.
[6] KIM K H, JAHAN S A, KABIR E, et al. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects[J]. Environment International, 2013, 60: 71- 80.
[6] ZHAO X Y, REN L H, JI Y Q, et al. Source apportionment of polycyclic aromatic hydrocarbons in PM10 and PM2.5 in spring in Chongqing[J]. Research of Environmental Sciences, 2014, 27(12): 1395- 1402.
[7] GOUIN T, THOMAS G O, COUSINS I, et al. Air-surface exchange of polybrominated diphenyl ethers and polychlorinated biphenyls[J]. Environmental Science Technology, 2002, 36(7): 1426- 1434.
[7] WANG L, HA S, LIU L Y, et al. Physico-chemical characteristics of ambient particles settling upon leaf surface of six conifers in Beijing[J]. Chinese Journal of Applied Ecolog, 2007, 18(3): 487- 492.
[8] HWANG H M, WADE T L, SERICANO J L. Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico, and United States[J]. Atmospheric Environment, 2003, 37(16): 2259- 2267.
[8] WANG Y Q, ZUO Q, JIAO X C, et al. Polycyclic aromatic hydrocarbons in plant leaves from Peking University campus and nearby in summer season[J]. Environment Science, 2004, 25(4): 23- 27.
[9] FAN Z H, JUNG K H, LIOY P J. Development of a passive sampler to measure personal exposure to gaseous PAHs in community settings[J]. Environmental Science Technology, 2006, 40(19): 6051- 6057.
[9] WANG W, YUE X, CHEN J H, et al. Pollution property of particulates in the air at the traffic crossing in Beijing(Ⅲ): pollution property of PAHs in the particulates in the air[J]. Research of Environmental Sciences, 2005, 18(2): 43- 47.
[10] DUAN F K, HE K B, MA Y L. Concentration and sources of atmospheric polycyclic aromatic hydrocarbons (PAHs) in PM2.5 in Beijing[J]. Acta Scientiae Circumstantiae, 2009, 29(7): 1363- 1371.
[10] PRAJAPATI S K, TRIPATHI B D. Biomonitoring seasonal variation of urban air polycyclic aromatic hydrocarbons (PAHs) using Ficus benghalensis leaves[J]. Environmental Pollution, 2008, 151(3): 543- 548.
[11] GUO H W, DING G D, ZHAO Y Y, et al. Diurnal variations in the mass concentration of suspended Particulate Matter 2.5 (PM2.5) of different urban green space[J]. Science of Soil and Water Conservation, 2013, 11(4): 99- 103.
[11] BARBER J L, THOMAS G O, KERSTIENS G, et al. Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs[J]. Environmental Pollution, 2004, 128(1- 2): 99- 138.
[12] 彭钢, 田大伦, 闫文德, 等. 4种城市绿化树种叶片PAHs含量特征与叶面结构的关系[J]. 生态学报, 2010, 30(14): 3700- 3706. [12] BI X H, SHENG G Y, TAN J H, et al. Phase partitioning of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere[J]. Acta Scientiae Circumstantiae, 2004, 24(1): 101- 106.
[13] 田晓雪, 周国逸, 彭平安. 珠江三角洲地区主要树种叶片多环芳烃含量特征及影响因素分析[J]. 环境科学, 2008, 29(4): 849- 854. [13] LI J H, GUO Y H. Principal component evaluation: a multivariate evaluate method expanded from principal component analysis[J]. Journal of Industrial Engineering and Engineering Management, 2002, 16(1): 39- 43.
[14] HE P. Data statistics and multivariate statistics[M]. Chengdu: Xi’nan Jiaotong University Press, 2004:172- 179.
[14] 石婕, 刘庆倩, 安海龙, 等. 不同污染程度下毛白杨叶表面PM2.5颗粒的数量及性质和叶片气孔形态的比较研究[J]. 生态学报, 2015, 35(22): 1- 9. [15] KUMAR B, VERMA V K, GAUR R, et al. Validation of HPLC method for determination of priority polycyclic aromatic hydrocarbons (PAHs) in waste water and sediments[J]. Advances in Applied Science Research, 2014, 5(1): 201- 209.
[16] HUANG Y J, WEI J, SONG J, et al. Determination of low levels of polycyclic aromatic hydrocarbons in soil by high performance liquid chromatography with tandem fluorescence and diode-array detectors[J]. Chemosphere, 2013, 92(8): 1010- 1016.
[17] 赵雪艳, 任丽红, 姬亚芹, 等. 重庆主城区春季大气PM10及PM2.5中多环芳烃来源解析[J]. 环境科学研究, 2014, 27(12): 1395- 1402. [18] 王蕾, 哈斯, 刘连友, 等. 北京市六种针叶树叶面附着颗粒物的理化特征[J]. 应用生态学报, 2007, 18(3): 487- 492. [19] TALLIS M, TAYLOR G, SINNETT D, et al. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments[J]. Landscape and Urban Planning, 2011, 103(2): 129- 138.
[20] 王雅琴, 左谦, 焦杏春, 等. 北京大学及周边地区非取暖期植物叶片中的多环芳烃[J]. 环境科学, 2004, 25(4): 23- 27. [21] 王玮, 岳欣, 陈建华, 等. 北京市交通路口大气颗粒物污染特征研究(Ⅲ):大气颗粒物中多环芳烃污染特征[J]. 环境科学研究, 2005, 18(2): 43- 47. [22] LIU D M, GAO S P, AN X H. Distribution and source apportionment of polycyclic aromatic hydrocarbons from atmospheric particulate matter PM2.5 in Beijing[J]. Advances in Atmospheric Sciences, 2008, 25(2): 297- 305.
[23] 段凤魁, 贺克斌, 马永亮. 北京PM2.5中多环芳烃的污染特征及来源研究[J]. 环境科学学报, 2009, 29(7): 1363- 1371. [24] 郭含文, 丁国栋, 赵媛媛, 等. 城市不同绿地 PM2.5 质量浓度日变化规律[J]. 中国水土保持科学, 2013, 11(4): 99- 103. [25] SIMONICH S L, HITES R A. Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons[J]. Environmental Science Technology, 1994, 28(5): 939- 943.
[26] 毕新慧, 盛国英, 谭吉华, 等. 多环芳烃(PAHs)在大气中的相分布[J]. 环境科学学报, 2004, 24(1): 101- 106. [27] SMITH K E C, JONES K C. Particles and vegetation: implications for the transfer of particle-bound organic contaminants to vegetation[J]. The Science of the Total Environment, 2000, 246(2- 3): 207- 236.
[28] FRANZARING J, EERDEN L J M V D. Accumulation of airborne persistent organic pollutants (POPs) in plants[J]. Basic and Applied Ecology, 2000, 1(1): 25- 30.
[29] 李靖华, 郭耀煌. 主成分分析用于多指标评价的方法研究:主成分评价[J]. 管理工程学报, 2002, 16(1): 39- 43. [30] 何平. 数理统计与多元统计[M]. 成都: 西南交通大学出版社, 2004: 172- 179. -
期刊类型引用(3)
1. 韩丽冬,沃晓棠,张苏,刁云飞,毕连东. 环境胁迫下雌雄异株植物的生理差异响应特征. 中国林副特产. 2021(05): 75-77 . 百度学术
2. 唐学玺. 环境胁迫下雌雄异株植物的差异响应特征及研究进展. 中国海洋大学学报(自然科学版). 2020(07): 74-81 . 百度学术
3. 史全萍. 高温及持续时间对华北落叶松SOD、POD活性的影响. 中国农学通报. 2018(19): 33-38 . 百度学术
其他类型引用(8)
计量
- 文章访问数: 1652
- HTML全文浏览量: 158
- PDF下载量: 25
- 被引次数: 11