Physiological differences and variations in male and female plants of Salix viminalis under high temperature stress
-
摘要: 利用人工气候箱模拟高温环境,研究40 ℃/30 ℃(白天温度/晚上温度)处理下蒿柳雌株与雄株叶片电导率(EC)、超氧阴离子自由基(O·-2)产生速率、渗透调节物质含量以及抗氧化物酶活性的差异,分析各生理指标在雌株与雄株间的变异系数(VC)及分化系数(VST)。结果表明:高温胁迫下,蒿柳EC值、O·-2产生速率显著上升,但雌株EC值和O·-2产生速率显著大于雄株;脯氨酸(Pro)含量、可溶性蛋白(SP)含量显著升高,但雄株的渗透调节物质含量显著高于雌株;超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、抗坏血酸过氧化物酶(AsA-POD)活性显著上升,过氧化物酶(POD)活性显著下降,但雄株的4种酶活性显著高于雌株。高温处理下,蒿柳雌株与雄株各生理性状的变异系数(VC)较为接近,说明各生理性状在雌性个体与雄性个体间的变异较为一致。各生理性状的平均分化系数(VST)为17.06%,说明高温胁迫下各生理性状在雌、雄株间的变异小于雌、雄株内(无性系之间)的变异。综上所述,高温胁迫下蒿柳无性系在生理性状上存在丰富的变异,但雄株具有较强的调节、适应能力。因此,在育种工作中适当多选择雄株优树,有助于获得耐热性强的新种质。Abstract: In this study, we detected the physiological differences of male and female plants of Salix viminalis in electrical conductivity (EC), superoxide (O·-2) production rate, contents of osmotic adjustment substances and activities of antioxidant enzymes at 40 ℃/30 ℃(day temperature/night temperature), and analyzed the variable coefficient (VC) and differentiation coefficient (VST) of all physiological traits. The aim of this study was to provide reference for variety breeding and introduction. Under high temperature stress, EC value and O·-2 production rate increased significantly, but they were significantly higher in female plants than in male plants. Proline (Pro) and solute protein (SP) contents rose significantly, but the two contents in male plants were significantly higher than in female plants. The activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (AsA-POD) went up significantly, the activity of peroxidase (POD) declined markedly, but the activities of the four enzymes in male plants were significantly higher than those in female plants. Similar VC values of all physiological traits in both sexes indicated that the variation of all physiological traits for male and female plants were consistent. The mean VST of all physiological traits (VST =17.06%) indicated that the variation between male and female plants was smaller than that within male and female plants (clones). In general, abundant physiological variations under high temperature stress exist in clones of Salix viminalis, yet male plants possess more strongly regulated and adaptive ability. Thus, to obtain heat-resistance germplasm, male Salix viminalis plants should be selected in future breeding project.
-
Keywords:
- Salix viminalis /
- female plant /
- male plant /
- sexual difference /
- heat resistance
-
-
[1] RENNER S S, RICKLEFS R E. Dioecy and its correlates in the flowering plants[J]. American Journal of Botany, 1995, 82(5): 596- 606.
[1] HUANG W W, ZHANG N N, HU T X,et al. Effects of high-temperature stress on physiological characteristics of leaves of Simmondsia chinensis seedlings from different provenances[J]. Acta Ecologica Sinica, 2011, 31(23): 7047- 7055.
[2] BERLIN S, TRYBUSH S O, FOGELQVIST J, et al. Genetic diversity, population structure and phenotypic variation in European Salix viminalis L. (Salicaceae)[J]. Tree Genetics Genomes, 2014, 10(6): 1595- 1610.
[2] LIU R X, YANG J, GAO L. Changes in contents of proline, soluble saccharin and endogenous hormone in leaves of Chinese seabuckthorn and Russian seabuckthorn under different soil water content[J]. Journal of Soil Water Conservation, 2005, 19(3): 148- 151.
[3] PRZYBOROWSKIJ A, SULIMA P. The analysis of genetic diversity of Salix viminalis genotypes as a potential source of biomass by RAPD markers[J]. Industrial Crops and Products, 2010, 31(2): 395- 400.
[3] GUO X M, GAO Z M, LIU Z L, et al. Comparative anatomy of vessel elements in staminate and pistillate plants of Fraxinus pennsylvanica[J]. Scientia Silvae Sinicae, 2010, 46(8): 51- 55.
[4] KOCIK A, TRUCHAN M, ROZEN A. Application of willows (Salix viminalis) and earthworms (Eisenia fetida) in sewage sludge treatment[J]. European Journal of Soil Biology, 2007, 43: 327- 331.
[4] CHEN J X, WANG X F.Experiment instruction of plant physiology experiment instruction[M]. 2nd ed. Guangzhou: South China University of Technology Press, 2006.
[5] MLECZEK M, RUTKOWSKI P, RISSMANN I, et al. Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis[J]. Biomass and Bioenergy, 2010, 34(9): 1410- 1418.
[5] GAO J F. Experiment instruction of plant physiology experiment instruction[M]. Beijing: Higher Education Press, 2006.
[6] LASCOUX M, THORSN J, GULLBERG U. Population structure of a riparian willow species, Salix viminalis L[J]. Genetical Research, 1996, 68(1): 45- 54.
[6] ZHANG D Z, WANG P H, ZHAO H X. Determination of the content of free proline in wheat leaves[J]. Plant Physiology Communications, 1990(4): 62- 65.
[7] CAI Y P. Experiment instruction of plant physiology experiment instruction[M]. Beijing: China Agricultural University Press, 2014.
[7] HASANUZZAMAN M, NAHAR K, ALAM M M, et al. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants[J]. International Journal of Molecular Sciences, 2013, 14(5): 9643- 9684.
[8] LI B, GU W C, LU B M.A study on phenotypic diversity of seeds and cones characteristics in Pinus bungeana[J]. Chinese Biodiversity, 2002, 10(2): 181- 188.
[8] 黄溦溦, 张念念, 胡庭兴, 等. 高温胁迫对不同种源希蒙得木叶片生理特性的影响[J]. 生态学报, 2011, 31(23): 7047- 7055. [9] LI W, LIN F R, ZHENG Y Q, et al.Phenotypic diversity of pods and seeds in natural populations of Gleditsia sinensis in southern China[J]. Chinese Journal of Plant Ecology, 2013, 37(1): 61- 69.
[9] APEL K, HIRT H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373- 399.
[10] WAHID A, GELANI S, ASHRAF M, et al. Heat tolerance in plants: an overview[J]. Environmental and Experimental Botany, 2007, 61(3): 199- 223.
[10] DU Y J, YU L, SUN J X, et al.Comprehensive assessment of cold resistance of three Zoysia japonica varieties[J]. Acta Prataculturae Sinica, 2008, 17(3): 6- 16.
[11] XU K, ZHENG G S. Effects of soil water stress on photosynthesis and protective enzyme activity of ginger[J]. Acta Horticulturae Sinica, 2000, 27(1): 47- 51.
[11] MARSHALL J D, DAWSON T E, EHLERINGER J R. Gender-related differences in gas exchange are not related to host quality in the xylem-tapping mistleoe, Phoradendron juniperinum (Viscaceae)[J]. American Journal of Botany, 1993, 80(6): 641- 645.
[12] UENO N, KANNO H, SEIWA K. Sexual differences in shoot and leaf dynamics in the dioecious tree Salix sachalinensis[J]. Canadian Journal of Botany, 2006, 84: 1852- 1859.
[12] ZHANG G L, CHEN L Y, ZHANG S T, et al.Effect of high temperature stress on protective enzyme activities and membrane permeability of flag leaf in rice[J]. Acta Agronomica Sinica, 2006, 32(9): 1306- 1310.
[13] DAWSON T E, EHLERINGER J R. Gender-specific physiology, carbon isotope discrimination, and habitat distribution in boxelder, Acer negundo[J]. Ecology, 1993, 74(3): 798- 815.
[13] LIU X H, LI Y G, ZHAO J,et al.Phenotypic siversity in natural populations of Styrax tonkinensis[J]. Forest Research, 2011, 24(6): 694- 700.
[14] ZHANG S, CHEN L, DUAN B, et al. Populus cathayana males exhibit more efficient protective mechanisms than females under drought stress[J]. Forest Ecology and Management, 2012, 275: 68- 78.
[14] WEI Z Z, PAN W, ZHAO X, et al.Morphological and physiological genetic diversity of Populus simonii in northeastern and north China[J]. Journal of Beijing Forestry University, 2010, 32(5): 8- 14.
[15] GUO J L, ZHANG W J, HOU Y Q, et al. Effects of high temperature stress on lipid peroxidation and protective enzyme activities in Sedum plants[J]. Chinese Agricultural Science Bulletin, 2012, 28(34): 230- 233.
[15] 刘瑞香, 杨劼, 高丽. 中国沙棘和俄罗斯沙棘叶片在不同土壤水分条件下脯氨酸、可溶性糖及内源激素含量的变化[J]. 水土保持学报, 2005, 19(3): 148- 151. [16] ZHENG D J, WANG C, LIU J, et al.Effect of high temperature stress on morphological and physiological characteristics of Clerodendrum trichotomum[J]. Journal of Northeast Forestry University, 2013, 41(3): 90- 94.
[16] 郭学民, 高忠明, 刘振林, 等. 美国红梣雄株和雌株茎导管分子的形态解剖比较[J]. 林业科学, 2010, 46(8): 51- 55. [17] LI L, LIU Y M, WANG M, et al.Physiological response mechanism of three kinds of Acer rubrum L. under continuous high temperature and drought stress[J]. Acta Ecologica Sinica, 2014, 34(22): 6471- 6480.
[17] 陈建勋, 王晓峰. 植物生理学实验指导[M]. 2版. 广州: 华南理工大学出版社, 2006. [18] 高峻凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. [18] XU G F, ZHANG Z Y.Effect of high-temperature stress on physiological and biochemical indices of four Lysimachia plants[J]. Chinese Journal of Eco-Agriculture, 2009, 17(3): 565- 569.
[19] XIA Q, HE B H, LIU Y M, et al.Effects of high temperature stress on the morphological and physiological characteristics in Scaevola albida cutting seedlings[J]. Acta Ecologica Sinica, 2010, 30(19): 5217- 5224.
[19] 张殿忠, 汪沛洪, 赵会贤. 测定小麦叶片游离脯氨酸含量的方法[J]. 植物生理学通讯, 1990(4): 62- 65. [20] LIU D F.Studies on the response of sand pear to high-temperature and heat-tolerance mechanism[D]. Hangzhou: Zhejiang University, 2014: 7- 8.
[20] 蔡永萍. 植物生理学实验指导[M]. 北京: 中国农业大学出版社, 2014. [21] YANG S S, GAO J F.Influence of active oxygen and free radicals on plant senescence[J]. Acta Botanica Boreali-occidentalia Sinica, 2001, 21(2): 215- 220.
[21] 李斌, 顾万春, 卢宝明. 白皮松天然群体种实性状表型多样性研究[J]. 生物多样性, 2002, 10(2): 181- 188. [22] 李伟, 林富荣, 郑勇奇, 等. 皂荚南方天然群体种实表型多样性[J]. 植物生态学报, 2013, 37(1): 61- 69. [22] GUO Y T, FAN K, BAI G, et al.Physiological-biochemical response of Potentilla fruticosato high temperature stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(9): 1815- 1820.
[23] WU G S, CAO W H, WANG Y J, et al. Cell membrane thermostability, protective enzymes and heat tolerance in Chinese cabbage[J]. Acta Horticulturae Sinica, 1995, 22(4): 353- 358.
[23] 杜永吉, 于磊, 孙吉雄, 等. 结缕草3个品种抗寒性的综合评价[J]. 草业学报, 2008, 17(3): 6- 16. [24] 徐坤, 郑国生. 水分胁迫对生姜光合作用及保护酶活性的影响[J]. 园艺学报, 2000, 27(1): 47- 51. [24] GAO L, YANG J, LIU R X.Leaf morphological structure and physiological and biochemical characteristics of female and male Hippophae Rhamnoides subsp. sinensis under different soil moisture condition[J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2201- 2208.
[25] 张桂莲, 陈立云, 张顺堂, 等. 高温胁迫对水稻剑叶保护酶活性和膜透性的影响[J]. 作物学报, 2006, 32(9): 1306- 1310. [26] 柳新红, 李因刚, 赵勋, 等. 白花树天然群体表型多样性研究[J]. 林业科学研究, 2011, 24(6): 694- 700. [27] 卫尊征, 潘炜, 赵杏, 等. 我国东北及华北地区小叶杨形态及生理性状遗传多样性研究[J]. 北京林业大学学报, 2010, 32(5): 8- 14. [28] 郭金丽, 张文娟, 侯雅琼, 等. 高温胁迫对景天植物膜脂过氧化及保护酶活性的影响[J]. 中国农学通报, 2012, 28(34): 230- 233. [29] 曾德静, 王铖, 刘军, 等. 高温胁迫对海州常山形态和生理特性的影响[J]. 东北林业大学学报, 2013, 41(3): 90- 94. [30] 李力, 刘玉民, 王敏, 等. 3 种北美红枫对持续高温干旱胁迫的生理响应机制[J]. 生态学报, 2014, 34(22): 6471- 6480. [31] 许桂芳, 张朝阳. 高温胁迫对4种珍珠菜属植物抗性生理生化指标的影响[J]. 中国生态农业学报, 2009, 17(3): 565- 569. [32] 夏钦, 何丙辉, 刘玉民, 等. 高温胁迫对粉带扦插苗形态和生理特征的影响[J]. 生态学报, 2010, 30(19): 5217- 5224. [33] 刘冬峰. 砂梨对高温胁迫的响应及耐热机理研究[D]. 杭州:浙江大学, 2014: 7- 8. [34] 杨淑慎, 高俊凤. 活性氧、自由基与植物的衰老[J]. 西北植物学报, 2001, 21(2): 215- 220. [35] 郭盈添, 范琨, 白果, 等. 金露梅幼苗对高温胁迫的生理生化响应[J]. 西北植物学报, 2014, 34(9): 1815- 1820. [36] 吴国胜, 曹婉虹, 王永健, 等. 细胞膜热稳定性及保护酶和大白菜耐热性的关系[J]. 园艺学报, 1995, 22(4): 353- 358. [37] ZHANG S, JIANG H, PENG S, et al. Sex-related differences in morphological, physiological, and ultrastructural responses of Populus cathayana to chilling[J]. Journal of Experimental Botany, 2011, 62(2): 675- 686.
[38] ESPRITO-SANTO M M, MADEIRA B G, NEVES F S, et al. Sexual differences in reproductive phenology and their consequences for the demography of Baccharis dracunculifolia (Asteraceae), a dioecious tropical shrub[J]. Annals of Botany, 2003, 91(1): 13- 19.
[39] 高丽, 杨劼, 刘瑞香. 不同土壤水分条件下中国沙棘雌雄株叶片形态结构及生理生化特征[J]. 应用生态学报, 2010, 21(9): 2201- 2208. -
期刊类型引用(3)
1. 韩丽冬,沃晓棠,张苏,刁云飞,毕连东. 环境胁迫下雌雄异株植物的生理差异响应特征. 中国林副特产. 2021(05): 75-77 . 百度学术
2. 唐学玺. 环境胁迫下雌雄异株植物的差异响应特征及研究进展. 中国海洋大学学报(自然科学版). 2020(07): 74-81 . 百度学术
3. 史全萍. 高温及持续时间对华北落叶松SOD、POD活性的影响. 中国农学通报. 2018(19): 33-38 . 百度学术
其他类型引用(8)
计量
- 文章访问数: 1982
- HTML全文浏览量: 205
- PDF下载量: 31
- 被引次数: 11