Floral syndrome and breeding system of Physocarpus amurensis
-
摘要: 风箱果属濒危灌木且分布范围狭窄,自然条件下有性更新能力差,局部种群有消失的趋势。通过野外观察和人工授粉试验对风箱果的传粉生物学特征和繁育系统进行研究。结果表明:单花花期(5.1±0.23)d,花序花期(8.4±0.98)d。单花花期依其形态和散粉时间可以分为5个时期,即初花期、散粉前期、散粉初期、散粉盛期、散粉末期。通过花粉/胚珠测定,结合人工授粉和套袋试验可以确定风箱果的繁育系统属于专性异交、自交不亲和、传粉过程需要传粉者。自然状态下风箱果的结实率(23.02±6.08)%和结籽率(9.86±2.86)%均较低,这与当前片断化生境中传粉昆虫种类和数量少、效率低下等有关,说明生境片断化影响风箱果植株的早期生殖成功。异株异花授粉可显著提高结实率及结籽率,分别可达(60.17±4.67)% 和(49.61±4.04)%。Abstract: Physocarpus amurensis is an endangered shrub with an extremely narrow distribution in fragmented habitats. Its sexual reproductive capacity is low, and local population may be disappeared gradually. We studied the characteristics of pollination biology and breeding system of P. amurensis in the fragmented habitats through field observation and artificial pollination. Results showed that the life spans of single flowers and inflorescences were (5.1±0.23) d and (8.4±0.98) d, respectively. The flowering phase of a single flower can be divided into five periods in terms of flower morphology and dehiscence: “flower bud”, “pre-dehiscence”, “initial dehiscence”, “full dehiscence”, and “end-dehiscence”. Based on the results of pollen/ovule ratio, emasculation, bagging and artificial pollination studies, we found that the breeding system of P. amurensis is outcrossed and self-incompatible, and demands for pollinators. The fruit-setting ratio and seed-bearing ratio under natural conditions were low, (23.02±6.08)% and (9.86±2.86)%, respectively. The main reason might be that there are less species and quantities of pollinators and the pollination efficiency was lower in the fragmented habitats, suggesting that habitat fragmentation affects the early-stage reproduction success of P. amurensis. Artificial xenogamous pollination can significantly promote the fruit-setting and seed bearing ratios, reaching (60.17±4.67)% and (49.61±4.04)%, respectively.
-
Keywords:
- endangered plant /
- Physocarpus amurensis /
- floral syndrome /
- breeding system
-
-
[1] 黄双全, 郭友好. 传粉生物学的研究进展[J]. 科学通报, 2000, 45(3): 225- 237. [1] HUANG S Q, GUO Y H. Research progress of pollination biology[J]. Science Bulletin, 2000, 45(3): 225- 237.
[2] HE Y J, LIU J Q. A review on recent advances in the studies of plant breeding system[J]. Acta Phytoecologica Sinica, 2003, 27(2): 151- 163.
[2] 何亚平, 刘建全. 植物繁育系统研究的最新进展和评述[J]. 植物生态学报, 2003, 27(2): 151- 163. [3] SHI X, LIU H L, ZHANG D Y, et al. The flower sydrome and pollination adaptation of desert rare species Eremosparton songoricum (litv.) Vass.(Fabaceae) [J]. Acta Ecologica Sinica, 2013, 33(18): 5516- 5522.
[3] 施翔, 刘会良, 张道远, 等. 沙丘稀有种准噶尔无叶豆花部综合特征与传粉适应性[J]. 生态学报, 2013, 33(18): 5516- 5522. [4] PARSONSA K, HERMANUTZB L. Conservation of rare, endemic Braya species (Brassicaceae): breeding system variation, potential hybridization and human disturbance[J]. Biological Conservation, 2006, 128: 201- 214
[4] MU Y, ZHANG Y H, LOU A R. A preliminary study on floral syndrome and breeding system of the rare plant Rhodiola dumulosa[J]. Acta Phytoecologica Sinica, 2007, 31 (3): 528- 535.
[5] LI J L, PAN B, GE R L, et al. Pollination insects and their flower visiting behaviors on endangered plant Amygdalus pedunculata[J]. Chinese Journal of Ecology, 2011, 30(7): 1370- 1374.
[5] 牟勇, 张云红, 娄安如. 稀有植物小丛红景天花部综合特征与繁育系统[J]. 植物生态学报, 2007, 31 (3): 528- 535. [6] PEARSE I S, KOENIG W D, FUNK K A, et al. Pollen limitation and flower abortion in a wind-pollinated, masting tree[J]. Ecology, 2015, 96(2): 587- 593.
[6] WU Y, LIU Y R, PENG H, et al. Pollination ecology of alpine herb Meconopsis integrifolia at different altitudes[J]. Acta Phytoecologica Sinica, 2015, 39 (1): 1- 13.
[7] HESSE E, PANNELL J R. Density-dependent pollen limitation and reproductive assurance in a wind-pollinated herb with contrasting sexual systems[J]. Journal of Ecology, 2011, 99, 1531- 1539.
[7] GAO Z R, ZHANG C Q, HAN Z Q, et al. Pollination biology and breeding system of Craigia yunnanensis in fragmented habitat[J]. Chinese Journal of Ecology, 2012, 31(9): 2217- 2224.
[8] YIN D S, SHEN H L, LAN S B. Pollen viability, stigma receptivity and pollinators of Physocarpus amurensis[J]. Journal of Northeast Forestry University, 2010, 38(4): 80- 81, 113.
[8] RAPP J M, MCINTIRE J B E, CRONE E E. Sex allocation, pollen limitation and masting in whitebark pine[J]. Journal of Ecology, 2013, 101: 1345- 1352.
[9] QIN R M, WANG D, CHI F C. Rare and endangered plants of Heilongjiang province[M]. Harbin: Northeast Forestry University Press, 1993: 97- 99.
[9] 李俊兰, 潘斌, 格日勒, 等. 濒危植物柄扁桃的传粉者及其访花行为[J]. 生态学杂志, 2011, 30(7): 1370- 1374. [10] 吴云, 刘玉蓉, 彭瀚, 等. 高山植物全缘叶绿绒蒿在不同海拔地区的传粉生态学研究[J]. 植物生态学报, 2015, 39 (1): 1- 13. [10] YIN D S, LIU H M, SUN H B, et al. Effect of environment factors on seed germination of Physocarpus amurensis[J]. The Development of Forestry Science and Technology, 2011, 25(2): 31- 35.
[11] WEI X H, YIN D S, SHEN H L. Seed Yield and Seed Characteristics of Physocarpus amurensis[J]. Journal of Northeast Forestry University, 2013, 41(10): 46- 49.
[11] CHEN M, ZHAO X Y. Pollen limitation and breeding system of Tamarix ramosissima (Ledeb) in patched habitats[J]. South African Journal of Botany, 2015, 99: 36- 43.
[12] WEI X H, YIN D S, SHEN H L. Technique of accelerating germination of Physocarpus amurensis[J]. Bulletin of Botanical Research, 2013, 33(6): 709- 712.
[12] 高则睿, 张长芹, 韩智强, 等. 片断化生境中滇桐传粉生物学和繁育系统[J]. 生态学杂志, 2012, 31(9): 2217- 2224. [13] PFLUGSHAUPT K, KOLLMANN J, FISCHER M, et al. Pollen quantity and quality affect fruit abortion in small populations of a rare fleshy-fruited shrub[J]. Basic and Applied Ecology, 2002, 3: 319- 327.
[13] YU Y Y, ZHANG H Y, PAN J, et al. Cross-breeding of Physocarpus plants[J]. Journal of Northeast Forestry University, 2010, 38(7): 16- 18.
[14] AIZEN M A, HARDER L D. Expanding the limits of the pollen-limitation concept: effects of pollen quantity and quality[J]. Ecology, 2007, 88: 271- 281.
[14] WANG Y Q, ZHANG D X, CHEN Z Y. A preliminary study of the pollination biology of Alpinia oxyphylla[J]. Acta Phytoecologica Sinica, 2005, 29(4): 599- 609.
[15] PIAS B, GUITIAN P. Breeding system and pollen limitation in the masting tree Sorbus aucuparia L. (Rosaceae) in the NW Iberian Peninsula[J]. Acta Oecologica, 2006, 29: 97- 103.
[15] LI L, DANG C L. Floral syndrome and breeding system of Erigeron breviscapus[J]. Acta Ecologica Sinica, 2007, 27(2): 571- 578.
[16] GONZALEZ-VARO J P, ARROYO J, APARICIO A. Effects of fragmentation on pollinator assemblage, pollen limitation and seed production of Mediterranean myrtle (Myrtus communis) [J]. Biological Conservation, 2009, 142: 1058- 1065.
[16] XIAO Y A, HE P, LI X H. Floral syndrome and breeding system of the endangered plant Disanthus cercidifolous Maxim. var. longipes[J]. Acta Phytoecologica Sinica, 2004, 28(3): 333- 340.
[17] DAVIDSONL J B, DURHAM S L, WOLF P G. Breeding system of the threatened endemic Primula cusickiana var. maguirei (Primulaceae) [J]. Plant Species Biology, 2014, 29(3): 55- 63.
[17] LIU L D, ZHANG H J, ZHU N, et al. Pollen viability and stigma receptivity of Eleutherococcus senticosus (Araliaceae) [J]. Bulletin of Botanical Research, 2001, 21(3): 375- 379.
[18] ZHANG J J, YE Q G, YAO X H, et al. Preliminary studies on the floral biology, breeding system and reproductive success of Sinojackia huangmeiensis, an endangered plant in a fragmented habitat in Hubei province, China[J]. Acta Phytoecologica Sinica, 2008, 32 (4): 743- 750.
[18] FRANKHAM R, BALLOU J D, BRISCOE D A. Introduction to conservation genetics[M]. Cambridge: Cambridge University Press, 2002.
[19] 殷东生, 沈海龙, 兰士波. 风箱果花粉生活力、柱头可授性及传粉者的观察[J]. 东北林业大学学报, 2010, 38(4): 80- 81, 113. [20] 秦瑞明, 王迪, 迟福昌. 黑龙江省稀有濒危植物[M]. 哈尔滨: 东北林业大学出版社, 1993: 97- 99. [21] 殷东生, 刘红民, 孙海滨, 等. 环境因素对风箱果种子萌发的影响[J]. 林业科技开发, 2011, 25(2): 31- 35. [22] 魏晓慧, 殷东生, 沈海龙. 风箱果结实量及种子特性[J]. 东北林业大学学报, 2013, 41(10): 46- 49. [23] 魏晓慧, 殷东生, 沈海龙. 风箱果种子催芽技术研究[J]. 植物研究, 2013, 33(6): 709- 712. [24] 郁永英, 张华艳, 潘杰, 等. 风箱果属植物杂交育种[J]. 东北林业大学学报, 2010, 38(7): 16- 18. [25] 王英强, 张奠湘, 陈忠毅. 益智传粉生物学的研究[J]. 植物生态学报, 2005, 29(4): 599- 609. [26] CRUDEN R W. Pollen-ovule ratios: a conservative indictor of breeding systems in flowering plants[J]. Evolution, 1977, 31: 32- 36.
[27] DAFNI A. Pollination ecology: a practical approach[M]. New York: Oxford University Press, 1992:1- 57.
[28] 李鹂, 党承林. 短葶飞蓬(Erigeron breviscapus)的花部综合特征与繁育系统[J]. 生态学报, 2007, 27(2): 571- 578. [29] 肖宜安, 何平, 李晓红. 濒危植物长柄双花木的花部综合特征与繁育系统[J]. 植物生态学报, 2004, 28(3): 333- 340. [30] 刘林德, 张洪军, 祝宁, 等. 刺五加花粉活力和柱头可授性的研究[J]. 植物研究, 2001, 21(3): 375- 379. [31] 张金菊, 叶其刚, 姚小洪, 等. 片断化生境中濒危植物黄梅秤锤树的开花生物学、繁育系统与生殖成功的因素[J]. 植物生态学报, 2008, 32 (4): 743- 750. [32] STEINACHER G, WAGNER J. Flower longevity and duration of pistil receptivity in high mountain plants[J]. Flora-Morphology, Distribution, Functional Ecology of Plants, 2010, 205: 376- 387.
[33] RASMUSSEN K K, KOLLMANN J. Poor sexual reproduction on the distribution limit of the rare tree Sorbus torminalis[J]. Acta Oecologica, 2004, 25: 211- 218.
-
期刊类型引用(3)
1. 韩丽冬,沃晓棠,张苏,刁云飞,毕连东. 环境胁迫下雌雄异株植物的生理差异响应特征. 中国林副特产. 2021(05): 75-77 . 百度学术
2. 唐学玺. 环境胁迫下雌雄异株植物的差异响应特征及研究进展. 中国海洋大学学报(自然科学版). 2020(07): 74-81 . 百度学术
3. 史全萍. 高温及持续时间对华北落叶松SOD、POD活性的影响. 中国农学通报. 2018(19): 33-38 . 百度学术
其他类型引用(8)
计量
- 文章访问数: 2271
- HTML全文浏览量: 133
- PDF下载量: 28
- 被引次数: 11