高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同优势等级杨树人工林吸收臭氧特征

陈波 鲁绍伟 李少宁

陈波, 鲁绍伟, 李少宁. 不同优势等级杨树人工林吸收臭氧特征[J]. 北京林业大学学报, 2015, 37(7): 29-36. doi: 10.13332/j.1000-1522.20140012
引用本文: 陈波, 鲁绍伟, 李少宁. 不同优势等级杨树人工林吸收臭氧特征[J]. 北京林业大学学报, 2015, 37(7): 29-36. doi: 10.13332/j.1000-1522.20140012
CHEN Bo, LU Shao-wei, LI Shao-ning. Ozone uptake characteristics in different dominance hierarchies of poplar plantation[J]. Journal of Beijing Forestry University, 2015, 37(7): 29-36. doi: 10.13332/j.1000-1522.20140012
Citation: CHEN Bo, LU Shao-wei, LI Shao-ning. Ozone uptake characteristics in different dominance hierarchies of poplar plantation[J]. Journal of Beijing Forestry University, 2015, 37(7): 29-36. doi: 10.13332/j.1000-1522.20140012

不同优势等级杨树人工林吸收臭氧特征

doi: 10.13332/j.1000-1522.20140012
基金项目: 

北京市优秀人才个人项目(2012D002020000003)

详细信息
    作者简介:

    陈波,研究实习员。主要研究方向:水土保持。Email:zhyechb2010@163.com 地址:100093北京市海淀区香山瑞王坟甲12号北京市农林科学院林业果树研究所312室。

    责任作者:

    鲁绍伟,博士,研究员。主要研究方向:水土保持、森林生态服务功能。Email:hblsw8@163.com 地址:同上。

Ozone uptake characteristics in different dominance hierarchies of poplar plantation

  • 摘要: 本文基于树干液流的技术方法,在自然状态下对不同优势等级杨树吸收臭氧特征进行了研究。结果表明:臭氧浓度日变化呈单峰型,其变化范围在25.5~175.0μg/m3之间,臭氧浓度变化趋势与温度变化趋势一致;不同优势等级杨树臭氧吸收速率和臭氧冠层导度日变化均为单峰型;臭氧吸收速率表现为劣势木(43.24nmol/(m2·s))>中等木(29.77nmol/(m2·s))>优势木(24.56nmol/(m2·s)),臭氧冠层导度为优势木(101.59mmol/(m2·s))>劣势木(92.92mmol/(m2·s))>中等木(81.60mmol/(m2·s))。不同优势等级臭氧吸收速率均值为(32.52±7.87)nmol/(m2·s),臭氧冠层导度均值为(92.04±8.18)mmol/(m2·s)。不同优势等级太阳辐射、水汽压亏缺和温度对臭氧冠层导度和臭氧吸收速率的影响均表现为优势木>劣势木>中等木。臭氧浓度的峰值滞后于液流密度的峰值,过高的臭氧浓度会抑制树木蒸腾,大气臭氧浓度变化和树干液流密度具有较好的一致性,树干液流技术适用于计算植物的臭氧吸收量。

     

  • [1] MEI T T, WANG C K, ZHAO P, et al. Dynamics of trunk sap flux density of Schima superba [J]. Scientia Silvae Sinicae, 2010, 46(1): 40-47.
    [1] WU J G. Making the case for landscape ecology an effective approach to urban sustainability [J]. Landscape Journal, 2008,27(1):41-50.
    [2] ZHAO P, RAO X Q, MA L, et al.The variations of sap flux density and whole-tree transpiration across individuals of Acacia mangium [J]. Acta Ecologica Sinica, 2006, 26(12): 4050-4058.
    [2] HAO J M, WANG L T, LI L, et al. Air pollutants contribution and control strategies of energy-use related sources in Beijing[J]. Science in China Series D, 2005,48 (Suppl. II):138-146.
    [3] LI S N, CHEN B, LU S W, et al. The effects of tree height and DBH of poplar plantation on sap flow[J]. Journal of irrigation and drainage,2013,32(5):141-144.
    [3] CHAN C K, YAO X H. Air pollution in mega cities in China [J]. Atmospheric Environment,2008,42(1):1-42.
    [4] MCPHERSON E G, NOWAK D, HEISLER G. Quantifying urban forest structure, function, and value: the Chicago Urban Forest Climate Project[J]. Urban Ecosystems,1997,1(1):49-61.
    [5] MATYSSEK R, SANDERMANN H J. Impact of ozone on trees: an ecophysiological perspective[J]. Progress in Botany, 2003, 64:349-404.
    [6] SKARBY L, RO-POULSEN H, WELLBURN F A M, et al. Impacts of ozone on forests: a European perspective[J]. New Phytologist, 1998,139(1):109-122.
    [7] FUHRER J, SKARBY L, ASHMORE M R. Critical levels for ozone effects on vegetation in Europe[J]. Environmental Pollution, 1997,97(1): 91-106.
    [8] LANDOLT W, KELLER T. Uptake and effects of air pollutants on woody plants[J]. Experientia, 1985,41(3):301-309.
    [9] REICH P B. Quantifying plant response to ozone: a unifying theory [J]. Tree Physiology,1987,3(1): 63-91.
    [10] KARLSSON P E, UDDLING J, BRAUN S, et al. Do see response relationships for ozone impact on the biomass accumulation of young trees of different European species based on AOT40 and cumulative leaf uptake of ozone [J]. Atmospheric Environment, 2004, 38: 2283-2294
    [11] WELLBURN F A M, WELLBURN A R. Atmospheric ozone affects carbohydrate allocation and winter hardiness of Pinus halepensis Mill [J]. Journal of Experimental Botany, 1994,45(5):607-614.
    [12] SAMUELSON L, KELLY J M. Carbon partitioning and allocation in northern red oak seedlings and mature trees in response to ozone [J]. Physiology, 1996,16(10):853-858.
    [13] MCLAUGHLIN S B, KOHUT R J. The effects of chemosphere deposition and ozone on carbon allocation and associated physiological processes [M]//EAGAR C, ADAMS M B. Ecology and decline of red spruce in the Eastern United States. New York: Springer Verlag, 1992:338-382.
    [14] PEARSON M, MANSFIELD T A. Interacting effects of ozone and water stress on the stomatal resistance of beech ( Fagus sylvatica L.) [J]. New Phytologist, 1993, 123(2):351-358.
    [15] MAIER M U, KOCH W. Experiments on the control capacity of stomata of Picea abies (L.) Karst. after fumigation with ozone and in environmentally damaged material [J]. Plant, Cell and Environment, 1991,14(2):175-184.
    [16] SABINE B, CHRISTIAN S, SEBASTIAN L. Use of sap flow measurements to validate stomatal functions for mature beech ( Fagus sylvatica ) in view of ozone uptake calculations[J]. Environmental Pollution,2010,158(3): 2954-2963.
    [17] NOWAK D J, DWYER J F. Understanding the benefits and costs of urban forest ecosystems [M]// KUSER J E. Urban and community forestry in the northeast. New York: Springer Science and Business Media, 2007: 25-46.
    [18] WIESER G, MATYSSEK R, KSTNER B, et al. Quantifying ozone uptake at the canopy level of spruce, pine and larch trees at the alpine timberline: an approach based on sap flow measurement [J]. Environmental Pollution, 2003, 126(1):5-8.
    [19] MATYSSEK R, GNTHARDT M S, MAURER S, et al. Nighttime exposure to ozone reduces whole-plant production in Betula pendula [J]. Tree Physiology, 1995, 15(3):159-165.
    [20] WANG H, ZHOU W Q, WANG X K, et al. Ozone uptake by adult urban trees based on sap flow measurement [J]. Environmental Pollution, 2012, 162(3): 275-286.
    [21] WIESER G, LUIS V C, CUEVAS E. Quantification of ozone uptake at the stand level in a Pinus canariensis forest in Tenerife, Canary Islands: an approach based on sap flow measurements [J]. Environmental Pollution, 2006,140(3):383-386.
    [22] EMBERSON L D, WIESER G, ASHMORE M R. Modeling of stomatal conductance and ozone flux of Norway spruce: comparison with field data [J]. Environmental Pollution, 2000, 109(3):393-402.
    [23] WIESER G, HSLER R, GTZ B, et al. Role of climate, crown position, tree age and altitude in calculated ozone flux into needles of Picea abies and Pinus cembra : a synthesis [J]. Environmental Pollution, 2000,109(3): 415-422.
    [24] NUNN A J, WIESER G, METZGER U, et al. Exemplifying whole-plant ozone uptake in adult forest trees of contrasting species and site conditions [J]. Environmental Pollution, 2007,146(3):629-639.
    [25] 梅婷婷,王传宽,赵平,等. 木荷树干液流的密度特征[J].林业科学, 2010, 46(1): 40-47.
    [26] GRANIER A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements [J]. Tree Physiology,1987,3(4):309-320.
    [27] 赵平,饶兴权,马玲,等. 马占相思( Acacia mangium )树干液流密度和整树蒸腾的个体差异[J].生态学报, 2006, 26(12): 4050-4058.
    [28] MONTEITH J L. A reinterpretation of stomatal response to humidity[J]. Plant, Cell and Environment, 1995,18(4):357-364.
    [29] CAMPBELL G S, NORMAN J M. An introduction to environmental biophysics[J]. Photosynthetica,1999, 36(1-2): 36-51.
    [30] KÖSTNER B M M, SCHULZE E D, KELLIHER F M, et al. Transpiration and canopy conductance in a pristine broad-leaved forest of Nothofagus: an analysis of xylem sap flow and eddy correlation measurements[J]. Oecologia,1992,91(3):350-359.
    [31] WIESER G, HAVRANEK W. Environmental control of ozone uptake in Larix decidua Mill: a comparison between different altitudes[J]. Tree Physiology, 1995, 15(2): 253-258.
    [32] YANG J, MCBRIDE J, ZHOU J, et al. The urban forest in Beijing and its role in air pollution reduction[J]. Urban Forestry & Urban Greening, 2005, 3(2):65-78.
    [33] NOWAK D J, CIVEROLO K L, RAO S T, et al. A modeling study of the impact of urban trees on ozone[J]. Atmospheric Environment,2000,34(10):1601-1613.
    [34] 李少宁,陈波,鲁绍伟,等. 杨树树高和胸径对液流的影响[J].灌溉排水学报,2013,32(5):141-144.
  • 加载中
计量
  • 文章访问数:  898
  • HTML全文浏览量:  148
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-14
  • 修回日期:  2014-04-14
  • 刊出日期:  2015-07-31

目录

    /

    返回文章
    返回