Major factors affecting the distribution of Viscum articulatum Burm in an ancient cultivated tea plantation.
-
摘要: 基于单数茶树与样方尺度对影响扁枝槲寄生分布的因子进行回归模拟分析。结果表明:1)扁枝槲寄生的平均寄生株率达40%,株高频度分布为生态分布,分支数为左偏正态分布,常分布在树高的1/3~3/4处;扁枝槲寄生的分布对茶树因子的依赖程度高于环境因子。2)基于单株茶树尺度,影响扁枝槲寄生分布的因子大小顺序为:冠幅地径树高枝下高苔藓/地衣覆盖率。具有较大冠幅、地径≥11 cm、树高≥3.1 m、枝下高在23~55 cm且苔藓覆盖率较高的茶树上寄生较多。3)基于群落样方尺度,影响扁枝槲寄生分布的环境因子大小顺序为:海拔坡向郁闭度坡度。扁枝槲寄生在调查地区主要分布海拔1 420 m以上,山顶或山谷并无分布,西北、东南坡及郁闭度高的环境下更适合生长,坡度越大越有利于其生长。4)光照、水分是影响扁枝槲寄生的主导环境因子,寄主群落因子导致了光照、水分的再分配,从而影响着扁枝槲寄生在茶树上的分布位置。
-
关键词:
- 扁枝槲寄生 /
- 古茶园群落 /
- 分布 /
- TreeNet2TM模型
Abstract: The aims of this study were to explore the distribution of Viscun articulatum in tea comunity and carry out a regression analysis of the factors affecting the distribution of V. articulatum based on the data of individual tea trees at the quadrat level. The results showed that 1) the mean rate of V. articulatum parasitism on tea trees was about 40%, and the frequency distribution of height for V. articulatum followed the ecological distribution while the number of branches was in the left skewed normal distribution, with most of them preferring to grow at 1/3--3/4 of the tree height. The distribution of V. articulatum depended more on tea tree characteristics than on environmental factors. 2) At single tea tree level, tea tree characteristics may have effect on the distribution of V. articulatum in the order of canopy ground diameter tree height height under branch mosses/lichen coverage. The tea trees with a high mosses/lichen coverage, large canopy, ground diameter ≥11 cm, height ≥3.1 m and HUD of 23--55 cm were found to be the most likely hosts of V. articulatum. 3) At the quadrat level, environmental factors affecting the distribution of V. articulatum were ranked as elevation slope aspect canopy density slope degree. V. articulatum is mainly distributed in the study area at elevations higher than 1 420 m, scarcely at mountain top or valleys. It was found to be more abundant in northwest and southeast slopes as well as in the areas with high canopy density. The greater the slope degree is, the better it grows. 4) Light and water were the dominant environmental factors affecting the distribution of V. articulatum, and the host community factors led to the reallocation of light and moisture, thus affecting the distribution position of V. articulatum in tea trees.-
Key words:
- Viscum articulatum Burm /
- ancient cultivated tea plantation /
- distribution /
- TreeNet2TM
-
[1] NICKRENT D. The parasitic plant connection [R]. Carbondale: Southern Illinois University Carbondale, 2007. [2] HUANG X Y,GUAN K Y, LI A R. Biological traits and their ecological significances of parasitic plants: a review[J]. Chinese Journal of Ecology, 2011, 30(8): 1838-1844. [3] CAMERON D D, GENIEZ J M, SEEL W E, et al. Suppression of host photosynthesis by the parasitic plant Rhinanthus minor [J]. Annals of Botany, 2008, 101(4): 573-578. [4] SU C, XUE Q L, HU Y J. Study on in vitro antibacterial effect of Viscum articulatum extracts on Yunnan ancient tea trees [J]. Journal of Anhui Agricultural Sciences, 2012, 40(13): 7919-7920. [5] CAMERON D D, HWANGBO J K, KEITH A M. Interactions between the hemiparasitic angiosperm Rhinanthus minor and its hosts: from the cell to the ecosystem [J]. Folia Geobotanica, 2005, 40(2-3): 217-229. [6] ZHONG W W, PENG W S, YU Z Y, et al. In vitro antioxidant activity of polysaccharides from Viscum articulatum [J]. Food Sciences, 2011, 32 (11 ): 25-28. [7] PRIDER J, WATLING J, FACELLI J M. Impacts of a native parasitic plant on an introduced and a native host species: implications for the control of an invasive weed [J]. Annals of Botany, 2009, 103(1): 107-115. [8] HAN R L, ZHANG D X, HAO G. Geographical distribution of Chinese species of Viscum (Viscaceae) and its hosts [J]. Journal of Tropical and Subtropical Botany, 2002, 10(3): 222-228. [9] 黄新亚, 管开云, 李爱荣. 寄生植物的生物学特性及生态学效应 [J]. 生态学杂志, 2011, 30(8): 1838-1844. [10] WANG X L, LI L Q, LI M R. The chemical research of Viscum articulatum [J] .West China J Pharm Sci, 1992, 7(2):252-257. [11] BARDGETT R D, SMITH R S, SHIEL R S, et al. Parasitic plants indirectly regulate below-ground properties in grassland ecosystems [J]. Nature, 2006, 439(7079): 969-972. [12] CHEN H W. The diversity and sustainable utilization of Xishuangbanna ancient tea tree resource [J]. Journal of Anhui Agricultural Sciences, 2011,39(14): 8529-8530. [13] WATSON D M. Mistletoe: a keystone resource in forests and woodlands worldwide [J]. Annual Review of Ecology and Systematics, 2001,32: 219-249. [14] QI D H, GUO H J, CUI J Y. Plant biodiversity assessment of the ancient tea garden ecosystem in Jingmai of Lancang, Yunnan [J]. Biodiversity Science, 2005,13(3): 221-31. [15] PRESS M C, PHOENIX G K. Impacts of parasitic plants on natural communities [J]. New Phytologist, 2005, 166(3): 737-751. [16] XIAO Z D, CHENG P, MA Y C. Comparison of photosynthesis chemical compositions for characteristics, bud characters and tea in different planting models [J]. Joural of Nanjing Forestry University: Nature Sciences Edition, 2011,35(2): 15-19. [17] MATHIASEN R L, NICKRENT D L, SHAW D C, et al. Mistletoes: pathology, systematics, ecology, and management [J]. Plant Disease, 2008, 92: 988-1006. [18] 苏驰, 薛桥丽, 胡永金. 云南古树茶上寄生的 “螃蟹脚” 提取物的体外抑菌效应研究 [J]. 安徽农业科学, 2012, 40(13): 7919-7920. [19] 钟文武, 彭文书, 余正云. 扁枝槲寄生多糖体外抗氧化活性 [J]. 食品科学, 2011, 32(11): 25-28. [20] 韩荣兰, 张奠湘, 郝刚. 中国槲寄生属植物及其寄主的地理分布 [J]. 热带亚热带植物学报, 2002, 10(3): 222-228. [21] PRADHAN B K, BADOLA H K. Ethnomedicinal plant use by Lepcha tribe of Dzongu Valley, bordering Khangchendzonga Biosphere Reserve in North Sikkim, India[J/OL]. Journal of Ethnobiology and Ethnomedicine, 2008, (2014-01-10)[2013-11-21]. http:∥www.ethnobiomed.com/content/4/1/22, DOI: 10.1186/1746-4269-4-22. [22] 王晓琳,李良琼,李美荣. 扁枝槲寄生化学成分研究 [J]. 华西药学杂志, 1992, 7(2):252-257. [23] BINDU V. Evaluation of antioxidant activity of Viscum articulatum (Burm. f) [D]. Arunachal Pradesh: Rajiv Gandh University, 2011. [24] ARRUDA R, FADINI R F, MOUR O F A. Natural history and ecology of neotropical mistletoes [J]. Tropical Biology and Conservation Management, 2009, 1:133-154. [25] ARRUDA R, FADINI R F, CARVALHO L N. Ecology of neotropical mistletoes: an important canopy-dwelling component of Brazilian ecosystems [J]. Acta Botanica Brasilica, 2012, 26 (2): 264-274. [26] 陈红伟. 西双版纳古茶树资源的多样性与可持续利用 [J]. 安徽农业科学, 2011, 39(14): 8529-8530. [27] 齐丹卉, 郭辉军, 崔景云. 云南澜沧县景迈古茶园生态系统植物多样性评价 [J]. 生物多样性, 2005, 13(3): 221-231. [28] FRIEDMAN J H. Greedy function approximation: a gradient boosting machine [J]. Annals of Statistics, 2001, 29(5):1189-1232. [29] FRIEDMAN J H. Stochastic gradient boosting [J]. Computational Statistics Data Analysis, 2002, 38(4): 367-378. [30] OHSE B, HUETTMANN F, ICKERT-BOND S M, et al. Modeling the distribution of white spruce (Picea glauca) for Alaska with high accuracy: an open access role-model for predicting tree species in last remaining wilderness areas [J]. Polar Biology, 2009, 32(12): 1717-1729. [31] EHLERINGER J R, SCHULZE E D. Mineral concentrations in an autoparasitic Phoradendron californicum growing on a parasitic P. californicum and its host, Cercidium floridum [J]. American Journal of Botany, 1985,72(4): 568-571. [32] KELLY C K, VENABLE D L, ZIMMERER K. Host specialization in Cuscuta costaricensis: an assessment of host use relative to host availability [J]. Oikos, 1988, 53(3):315-320. [33] CAMERON D D. A role for differential host resistance to the hemiparasitic angiosperm, Rhinanthus minor L. in determining the structure of host plant communities [D]. Aberdeen: University of Aberdeen, 2004. [34] 肖正东, 程鹏, 马永春. 不同种植模式下茶树光合特性, 茶芽性状及茶叶化学成分的比较 [J]. 南京林业大学学报: 自然科学版, 2011, 35(2): 15-19. -

计量
- 文章访问数: 623
- HTML全文浏览量: 73
- PDF下载量: 7
- 被引次数: 0