• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

茶藨子属次生木质部导管分子形态学研究

郑宝江, 李国秀

郑宝江, 李国秀. 茶藨子属次生木质部导管分子形态学研究[J]. 北京林业大学学报, 2015, 37(11): 48-58. DOI: 10.13332/j.1000-1522.20140111
引用本文: 郑宝江, 李国秀. 茶藨子属次生木质部导管分子形态学研究[J]. 北京林业大学学报, 2015, 37(11): 48-58. DOI: 10.13332/j.1000-1522.20140111
ZHENG Bao-jiang, LI Guo-xiu.. Morphological observation of vessel elements in secondary xylem of Ribes[J]. Journal of Beijing Forestry University, 2015, 37(11): 48-58. DOI: 10.13332/j.1000-1522.20140111
Citation: ZHENG Bao-jiang, LI Guo-xiu.. Morphological observation of vessel elements in secondary xylem of Ribes[J]. Journal of Beijing Forestry University, 2015, 37(11): 48-58. DOI: 10.13332/j.1000-1522.20140111

茶藨子属次生木质部导管分子形态学研究

基金项目: 

黑龙江省自然科学基金项目(C200843)。

详细信息
    作者简介:

    郑宝江,副教授。主要研究方向:种子植物分类学。Email:zbjnefu@126.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学生命科学学院。

Morphological observation of vessel elements in secondary xylem of Ribes

  • 摘要: 茶藨子属植物是经济价值较高的一个类群,但该属植物形态变异幅度大,拥有两性花和单性花的两大复杂类群,属下分类难度较大。本研究利用光学显微技术和扫描电镜技术,对茶藨子属7个亚属20种植物导管分子的形态结构进行了较系统的研究。结果显示: 1)茶藨子属植物导管分子均具孔纹导管类型,有一些种类兼具螺纹导管类型,该属导管分子均具尾部,尾部长短不一。 2)导管分子长度250~440 μm,直径15~30 μm,该属植物导管分子属于细小类型。 3)穿孔板类型为梯状穿孔板,且穿孔板上横隔数量在5.2~11.0之间,端壁倾斜角度较小,在13.33°~18.95°之间,且种属间变化不大;东北茶藨子、矮茶藨子、木里茶藨子、紫花茶藨子具有网—梯过渡穿孔板,长刺茶藨子、小果茶藨子、华茶藨子具梯—单过渡穿孔板。 4)香茶藨子、老铁山腺毛茶藨子与木里茶藨子个别导管分子具侧壁穿孔板。5)纹孔式样为互列式或兼有互列式和对列式,纹孔形状种间存在较大差异,有圆形、近圆形、菱形、条形以及线形。 6)导管分子内壁形态各异,多为较光滑的内壁,也有较粗糙的内壁,即导管分子内壁有大小不等的圆形点状突起物,或由大小不等的突起物构成网状突起。
    Abstract: The Ribes is a genus with higher economic value while the morphology of this genus varies significantly. Flowers can be unisexual or bisexual as two complex groups; therefore, the classification of its subgenera is considerably difficult. In order to provide valuable reference for the phylogeny of this genus, the morphological structure of vessel elements of 20 species of seven subgenera of Ribes were observed and compared by using light microscope and scanning electron microscope. The main results are as follows. 1) The vessel elements of Ribes are pitted and threaded, and have tails with varied length in all the seven subgenera. 2) The vessel elements of Ribes are thin and small, with the length ranging from 250 to 440 μm and the diameter from 15 to 30 μm. 3) Perforated plate type is mainly scalariform and the average number of bars is 5.2 to 11.0, the angle of side walls is smaller, ranging from 13.33 to 18.95 degree, and does not vary much among species, with R. mandshuricum, R. triste, R. moupinense var. muliense and R. luridum presenting reticulate-scalariform transitional perforated plate and R. alpestre, R. vilmorinii and R. fasciculatum var. chinense bearing scalariform-simple transitional perforated plate. 4) There are lateral-wall perforation plates in R. odoratum, R. girdldii var. polyanthum and R. moupinense var. muliense. 5) There are solely alternate pitting pattern, or both alternate pitting and opposite pitting pattern, while the pit shape shows some variations such as round, near round, rhombus, strip and linear type. 6) The shapes of the inner wall of the vessel elements vary. Most of them are smooth and some are rough ones that have round protrusions of different sizes or reticular projections comprised of round protrusions of varying sizes.
  • [1]

    LU L D, HUANG S M. Flora of China: 35th volume [M]. Beijing: Science Press, 278-362.

    [1]

    SENTERS A E, SOLTIS D E. Phylogenetic relationships in Ribes (Grossulariaceae) inferred from ITS sequence data[J]. Taxon, 2003: 51-66.

    [2]

    FAHN A. Vegetable anatomy [M].WU S M, LIU D Y, tran. Tianjin: Nanjing University Press,1990:102-113 .

    [2] 陆玲娣,黄淑美.中国植物志: 35 卷[M].北京:科学出版社,1995:278-362.
    [3]

    WEIGEND M, BINDER M. A revision of the genus Ribes (Grossulariaceae) in Bolivia[J]. Bot Jahrb Syst, 2001,123:111-134.

    [3]

    WANG Y Y, LIU N. Experiment of plant biology[M].Beijing: Higher Education Press, 2005:143.

    [4]

    VERBEEK-REUVERS A M L. Grossulariaceae[M] //PUNT W, CLARKE G C S . The northwest European pollen flora. New York: Elsevier, 1980: 107-116.

    [4]

    CHEN S S. Anatomy of vessel elements in the secondary xylem of Syzygium samarangense[J]. Chinese Bulletin of Botany, 2006, 23 (6): 677-683.

    [5]

    WEIGEND M, MOHR O, MOTLEY T J. Phylogeny and classification of the genus Ribes (Grossulariaceae) based on 5S-NTS sequences and morphological and anatomical data[J]. Botanische Jahrbücher, 2002, 124(2): 163-182.

    [5]

    YU C H. Relationships between evolution of secondary xylem and vegetable phylogeny[J]. Journal of Integrative Plant Biology, 1954,3(2):183-196.

    [6] FAHN A.植物解剖学[M] .吴树明,刘德仪,译.天津:南开大学出版社,1990:102-113.
    [6]

    WANG J W. Spermatophyte taxonomy[M]. Beijing: Higher Education Press, 1985.

    [7]

    LI H F, REN Y. The variation of perforation plates of vessels in the secondary xylem of Euptelea pleiosperma (Eupleleaceae)[J]. Acta Phytotaxonomica Sinica, 2005,43(1):1-11.

    [7] 王英英,刘宁.植物生物学实验[M].北京:高等教育出版社,2005:143.
    [8]

    ZHANG X H, BAI X. New types of perforation plates of the vessel elements in Decaisnea (Lardizabalaceae)[J]. Acta Botanica Boreali-Occidentalia Sinica, 2011,31(2):223-228.

    [8]

    FUJII T. Application of a resin casting method to wood anatomy of some Japanese Fagaceae species[J]. IAWA J, 1993, 14(3): 273-288.

    [9]

    JANCZEWSKI E. Monographie de groseillier mém[J]. Soc Phys Genève,1907,35(13):199-517.

    [9]

    HUANG W Q, WANG H Y. Study on duct molecules of two types of filix-femina with scanning electron microscope[J]. Journal of Harbin Normal University, 2000,16(5):82-87.

    [10]

    STERN W L, SWEITZER E M, PHILIPPS R E. Comparative anatomy and systematics of woody Saxifragaceae: Ribes[J]. Bot J Linn Soc, 1970, 63(Suppl. 1):215-237.

    [10]

    LI H F, TIAN X H, REN Y. Research progress in vessel and perforation plate of vascular plants and some considerations for future research[J]. Acta Botanica Boreali-Occidentalia Sinica, 2005,25(2): 419-424.

    [11]

    METCALFE C R, CHALK L. Anatomy of the dicotyledons[M]. Oxford: Clarendon Press,1950:34-36.

    [12] 陈树思. 洋蒲桃次生木质部中导管分子的解剖学[J]. 植物学通报,2006, 23 (6): 677-683.
    [13] 喻诚鸿.次生木质部的进化与植物系统发育的关系[J].植物学报,1954,3(2):183-196.
    [14] 汪劲武.种子植物分类学[M].北京:高等教育出版社,1985.
    [15]

    Committee IAWA. Standard list of characters suitable for computerized hardwood identification[J].IAWA Bulletin,1981,2:99-110.

    [16]

    CHALK L.The phylogenetie value of certain anatomical features of dicotyledonous woods[J].Ann Bot ,1937,1:409-428.

    [17]

    TANG Y. Systematic anatomy of the woods of the Hamamelidaceae[J]. Bull Fan Memorial Inst Biol Peking (NS), 1943, 1: 8-62.

    [18]

    GALE R. Some pitfalls in wood identification, with reference to Nothofagus[J]. IAWA Bulletin, 1982, 3: 179-184.

    [19] 李红芳,任毅. 领春木茎次生木质部中导管穿孔板的变异[J].植物分类学报, 2005,43(1):1-11.
    [20] 张小卉,摆霞.猫儿屎导管分子穿孔板新类型的发现[J].西北植物学报, 2011,31(2):223-228.
    [21]

    SCHNEIDER E, CARLQUIST S. SEM studies on vessels in ferns 9 Dicranopteris (Gleicheniaceae) and vessel patterns in leptosporangiate ferns[J]. American journal of botany, 1998, 85(7): 1028-1028.

    [22] 黄文琦,王好友.两种蹄盖蕨导管分子的扫描电镜研究[J].哈尔滨师范大学学报,2000,16(5):82-87.
    [23] 李红芳,田先华,任毅.维管植物导管及其穿孔板的研究进展[J].西北植物学报,2005,25(2): 419-424.
    [24]

    CARLQUIST S, SCHNEIDER E L. SEM studies on vessels in ferns 16 Pacific tree ferns (Blechnaceae, Cyatheaceae, Dicksoniaceae)[J]. Pacific Science.2000,54:75-86

    [25]

    CARLQUIST S, SCHNEIDER E L. Vessels in ferns: structural, ecological, and evolutionary significance[J]. American Journal of Botany, 2001, 88(1): 1-13

    [26]

    CARLQUIST S J. Ecological strategies of xylem evolution[M].NewYork: University of California Press, 1975.

  • 期刊类型引用(12)

    1. 于宏影,闫晓娜,王晓红,王思瑶,韦睿,黄艳. 东北茶藨子果实氨基酸组成分析. 林业科技通讯. 2024(09): 72-76 . 百度学术
    2. 刘哲,叶英,罗黎霞,王虹,张祎睿. 狭果茶藨子营养成分分析与氨基酸提取工艺优化及评价. 食品与发酵工业. 2022(13): 188-195 . 百度学术
    3. 刘九庆,谢力. 植物导管中穿孔板的流体力学建模与流阻分析. 森林工程. 2022(05): 93-103 . 百度学术
    4. 罗敏蓉. 基于不同方法的毛茛族(毛茛科)导管穿孔板比较研究. 广西植物. 2021(01): 123-132 . 百度学术
    5. 邓睿,张梅丽,周明,郑宝江. 中国茶藨子属1新记录种. 南京林业大学学报(自然科学版). 2021(02): 231-233 . 百度学术
    6. 杜习武,叶康,胡永红,邵文,陈奕飞,廖梓洋,曾丽,秦俊. 淹水胁迫对星花玉兰木质部水分运输的影响. 植物生理学报. 2021(10): 1963-1973 . 百度学术
    7. 张丽,乔枫. 茶藨子属植物逆境生理研究进展. 世界林业研究. 2018(01): 18-22 . 百度学术
    8. 王美娟,赵千里,李芯妍,郑宝江. 12种茶藨子属植物叶表皮微形态特征及其分类学意义. 植物研究. 2018(04): 490-496 . 百度学术
    9. 刘虹,薛青,黄文,覃瑞. 茶藨子属ITS2序列二级结构的预测和比较分析. 中南民族大学学报(自然科学版). 2018(03): 42-47 . 百度学术
    10. 杜婉,王丰,潘彪,陈昕. 花楸属3种1变种植物茎次生构造的比较. 安徽农业大学学报. 2017(05): 857-861 . 百度学术
    11. 刘灵,韦睿,于宏影,王千雪,申方圆. 东北茶藨子果实性状变异研究. 西南林业大学学报(自然科学). 2017(06): 23-29 . 百度学术
    12. 韦睿,黄艳,王晓红,刘灵. 东北茶藨子研究现状及开发前景展望. 北方园艺. 2016(14): 202-206 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  1767
  • HTML全文浏览量:  169
  • PDF下载量:  43
  • 被引次数: 24
出版历程
  • 收稿日期:  2014-04-14
  • 发布日期:  2015-11-29

目录

    /

    返回文章
    返回