高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

牡丹遗传作图最适F1分离群体的选择

蔡长福 刘改秀 成仿云 吴静 钟原 李敏

蔡长福, 刘改秀, 成仿云, 吴静, 钟原, 李敏. 牡丹遗传作图最适F1分离群体的选择[J]. 北京林业大学学报, 2015, 37(3): 139-147. doi: 10.13332/j.1000-1522.20140134
引用本文: 蔡长福, 刘改秀, 成仿云, 吴静, 钟原, 李敏. 牡丹遗传作图最适F1分离群体的选择[J]. 北京林业大学学报, 2015, 37(3): 139-147. doi: 10.13332/j.1000-1522.20140134
CAI Chang-fu, LIU Gai-xiu, CHENG Fang-yun, WU Jing, ZHONG Yuan, LI Min. Selecting optimal F1 segregation population for genetic linkage mapping in tree peony[J]. Journal of Beijing Forestry University, 2015, 37(3): 139-147. doi: 10.13332/j.1000-1522.20140134
Citation: CAI Chang-fu, LIU Gai-xiu, CHENG Fang-yun, WU Jing, ZHONG Yuan, LI Min. Selecting optimal F1 segregation population for genetic linkage mapping in tree peony[J]. Journal of Beijing Forestry University, 2015, 37(3): 139-147. doi: 10.13332/j.1000-1522.20140134

牡丹遗传作图最适F1分离群体的选择

doi: 10.13332/j.1000-1522.20140134
基金项目: 

“十二五”国家科技支撑计划课题(2012BAD01B0704)

详细信息
    作者简介:

    第一作者: 蔡长福。主要研究方向:园林植物遗传育种。Email: caizhf@163.com 地址:100083 北京市清华东路35号北京林业大学园林学院。责任作者: 成仿云,博士,教授。主要研究方向:园林植物资源与育种。Email: chengfy8@263.net 地址:同上。

    第一作者: 蔡长福。主要研究方向:园林植物遗传育种。Email: caizhf@163.com 地址:100083 北京市清华东路35号北京林业大学园林学院。责任作者: 成仿云,博士,教授。主要研究方向:园林植物资源与育种。Email: chengfy8@263.net 地址:同上。

Selecting optimal F1 segregation population for genetic linkage mapping in tree peony

  • 摘要: 以3株‘凤丹’植株M24、M49、M68为母本,分别以中原牡丹‘红乔’、日本牡丹‘花王’和‘黑龙锦’为父本,采用控制授粉杂交方式,制备了3个规模较大的F1杂交分离群体(个体数量分别为366、233、197)。采用简单重复序列(SSR)标记技术,对这3个分离群体亲本进行多态性检测,结果表明,‘凤丹’M24ב红乔’分离群体亲本间的多态性水平最高,19对SSR引物共检测到27个多态性位点,亲本间遗传距离为0.707 0;因此,选取了该分离群体作为构建牡丹遗传图谱的作图群体。在此基础上,利用SSR标记技术对作图群体中随机抽取的195株子代个体进行了基因型检测,结果显示19对SSR引物在作图群体中有15对具有多态性,其中13对引物在P0.01水平上符合孟德尔期望分离比,占多态性标记总数的86.7%;测量分析了这195株子代个体的苗高、地径、当年生枝长、复叶长、复叶宽和叶柄长等6个表型性状,结果显示这6个表型性状在作图群体中变异明显,表型值的变异系数均超过15%。综上所述,‘凤丹’M24ב红乔’F1分离群体适合作为构建牡丹遗传连锁图谱的作图群体。

     

  • [1] CHENG F Y, CHEN D Z. Breeding of new varieties in flare tree peony and varieties classification in tree peonies[J]. Journal of Beijing Forestry University, 1998, 20(2): 27-32.
    [1] CHENG F Y. Advances in the breeding of tree peonies and a cultivar system for the cultivar group[J]. International Journal for Plant Breeding, 2007, 1(2): 89-104.
    [2] XIAO J J. A study on the crossing compatibility and hybrid abortion of Paeonia[D]. Beijing: Beijing Forestry University, 2010.
    [2] ANDERSON J A, CHURCHIL G A, AUTRUQUE J E. Optimizing parental selection for genetic linkage maps[J]. Genome, 1993, 36(1): 181-185.
    [3] WANG Y L. Cross-breeding in tree peony and fertility research of intersectional hybrids[D]. Beijing: Beijing Forestry University, 2009.
    [3] 成仿云,陈德忠. 紫斑牡丹新品种选育及牡丹品种分类研究[J]. 北京林业大学学报, 1998, 20(2): 27-32.
    [4] WU J, CHENG F Y, ZHANG D. Utilizing ‘High Noon’ in the crossing breeding of tree peonies and early identification of some hybrids by AFLP markers[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(8): 1551-1557.
    [4] 肖佳佳. 芍药属杂交亲和性及杂种败育研究[D]. 北京: 北京林业大学, 2010.
    [5] 王越岚. 牡丹的杂交育种及组间杂种育性的研究[D]. 北京: 北京林业大学, 2009.
    [5] LIU G X, WANG H G, LI M, et al. A study of hybrid seeding of F1 progeny in tree peonies[J]. Modern Agricultural Science and Technology, 2012(22): 155-176.
    [6] 吴静,成仿云,张栋. ‘正午’牡丹的杂交利用及部分杂种AFLP鉴定[J]. 西北植物学报, 2013, 33(8): 1551-1557.
    [6] PANG L Z, CHENG F Y, ZHONG Y, et al. Phenotypic analysis of association population for flare tree peony[J]. Journal of Beijing Forestry University, 2012, 34(6): 115-120.
    [7] XU Y B, ZHU L H. Molecular quantitative genetics[M]. Beijing: China Agriculture Press, 1994: 291.
    [7] 刘改秀,王海歌,李敏,等. 牡丹杂种F1代育苗研究[J]. 现代农业科技, 2012(22): 155-176.
    [8] 庞利铮,成仿云,钟原,等. 紫斑牡丹关联分析群体的表型分析[J]. 北京林业大学学报, 2012, 34(6): 115-120.
    [8] SU M H. Breeding technology of Paeonia suffruticosa and analysis of genetic diversity of F1 progenies of Paeonia suffruticosa[D]. Tai'an: Shandong Agricultural University, 2013.
    [9] HOU X G, GUO D L, CHENG S P, et al. Development of thirty new polymorphic microsatellite primers for Paeonia suffruticosa[J]. Biologia Plantarum, 2011, 55(4): 708-710.
    [9] HAN X, CHENG F Y, XIAO J J, et al. Crosses of Paeonia ostii ‘Feng Dan Bai’ as maternal parents and an analysis on the potential in tree peony breeding[J]. Journal of Beijing Forestry University, 2014, 36(4): 121-125.
    [10] HOMOLKA A, BERENYI M, BURG K, et al. Microsatellite markers in the tree peony,Paeonia suffruticosa (Paeoniaceae)[J]. American Journal of Botany, 2010, 97(6): e42-e44.
    [10] MIAO M J, LI C Q, SI J. SSR markers and their application in horticulture plant breeding[J]. Journal of Changjiang Vegetables, 2010(10): 1-5.
    [11] ZHANG D Q, ZHANG Z Y, SONG W, et al. Optimizing segregation population selection for genetic linkage maps in Populus tomentosa[J]. Journal of Beijing Forestry University, 2003, 25(4): 21-24.
    [11] WANG J X, XIA T, ZHANG J M, et al. Isolation and characterization of fourteen microsatellites from a tree peony (Paeonia suffruticosa)[J]. Conservation Genetics, 2009, 10(4): 1029-1031.
    [12] YU H P, CHENG F Y, ZHONG Y, et al. Development of simple sequence repeat (SSR) markers from Paeonia ostii to study the genetic relationships among tree peonies (Paeoniaceae)[J]. Scientia Horticulturae, 2013, 164: 58-64.
    [12] LIU Y, CAI M, HE D, et al. Construction of F1 segregation population for genetic linkage maps in Lagerstroemia[J]. Journal of Northeast Forestry University, 2013, 41(9): 72-75.
    [13] WANG X Q. Studies on genetic diversity of Paeonia delavayi in Shangri-la[D]. Beijing: Beijing Forestry University, 2009.
    [13] LIU K J, MUSE S V. PowerMarker: an integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9): 2128-2129.
    [14] LI Z Y, ZHANG H Y. Morphological variation and diversity in populations of Paeonia lutea[J]. Journal of Northwest Forestry University, 2011, 26(4): 117-122.
    [14] VAN OOIJEN J W. JoinMap 4: software for the calculation of genetic linkage maps in experimental populations[DB/CD]. Wageningen: Plant Research International, 2006.
    [15] HELENTJARIS T. A genetic linkage map for maize based on RFLPs[J]. Trends in Genetics, 1987, 3: 217-221.
    [15] LI Y, WANG D W, LI Z Q, et al. Establishment of mapping population in Eucammia ulmoides[J]. Journal of Northwest Forestry University, 2012, 27(2): 62-65.
    [16] HE D, TANG W, LIU Y, et al. Linkage analysis of phonotypic traits of Lagerstroemia caudata and L. indica F1 population uing SSR markers[J]. Journal of Beijing Forestry University, 2012, 34(6): 121-125.
    [16] 徐云碧,朱立煌. 分子数量遗传学[M]. 北京: 中国农业出版社, 1994: 291.
    [17] YUAN J H, CORNILLE A, GIRAUD T, et al. Independent domestications of cultivated tree peonies from different wild peony species[J]. Molecular Ecology, 2014, 23(1): 82-95.
    [18] 苏美和. 牡丹育种技术及杂交一代遗传多样性的研究[D]. 泰安: 山东农业大学, 2013.
    [19] 韩欣,成仿云,肖佳佳,等. 以‘凤丹白’为母本的杂交及其育种潜力分析[J]. 北京林业大学学报, 2014, 36(4): 121-125.
    [20] 苗明军,李成琼,司军. SSR标记及其在园艺植物育种中的应用[J]. 长江蔬菜, 2010(10): 1-5.
    [21] MOGHADDAMH H, LEUS L, DE RIEK J, et al. Construction of a genetic linkage map with SSR, AFLP and morphological markers to locate QTLs controlling pathotype-specific powdery mildew resistance in diploid roses[J]. Euphytica, 2012, 184(3): 413-427.
    [22] SUN L D, YANG W R, ZHANG Q X, et al. Genome-wide characterization and linkage mapping of simple sequence repeats in mei (Prunus mume Sieb. et Zucc.)[J]. PLoS ONE, 2013, 8(3): e59562.
    [23] YAGI M, YAMAMOTO T, ISOBE S, et al. Identification of tightly linked SSR markers for flower type in carnation (Dianthus caryophyllus L.)[J]. Euphytica, 2014, 198(2): 175-183.
    [24] YAGI M, YAMAMOTO T, ISOBE S, et al. Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.)[J]. BMC Genomics, 2013, 14(1): 734.
    [25] GAI S P, ZHANG Y X, MU P, et al. Transcriptome analysis of tree peony during chilling requirement fulfillment:assembling, annotation and markers discovering[J]. Gene, 2012, 497(2): 256-262.
    [26] ZHANG J J, SHU Q Y, LIU Z A, et al. Two EST-derived marker systems for cultivar identification in tree peony[J]. Plant Cell Reports, 2012, 31(2): 299-310.
    [27] 张德强,张志毅,宋婉,等. 毛白杨遗传作图最适分离群体的选择[J]. 北京林业大学学报, 2003, 25(4): 21-24.
    [28] ZHANG D Q, ZHANG Z Y, YANG K, et al. Genetic mapping in (Populus tomentosa× Populus bolleana) and P. tomentosa Carr. using AFLP markers[J]. Theoretical and Applied Genetics, 2004, 108(4): 657-662.
    [29] ZHANG F, CHEN S, CHEN F, et al. SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium)[J]. Molecular Breeding, 2011, 27(1): 11-23.
    [30] HIBRAND-SAINT OYANT L, CRESPEL L, RAJAPAKSE S, et al. Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits[J]. Tree Genetics Genomes, 2007, 4(1): 11-23.
    [31] HE D, LIU Y, CAI M, et al. The first genetic linkage map of crape myrtle (Lagerstroemia) based on amplification fragment length polymorphisms and simple sequence repeats markers[J]. Plant Breeding, 2014, 133(1): 138-144.
    [32] 刘阳,蔡明,贺丹,等. 紫薇遗传作图F1分离群体的选择[J]. 东北林业大学学报, 2013, 41(9): 72-75.
    [33] 王晓琴. 香格里拉滇牡丹遗传多样性研究[D]. 北京: 北京林业大学, 2009.
    [34] 李宗艳,张海燕. 黄牡丹表型变异及多样性研究[J]. 西北林学院学报, 2011, 26(4): 117-122.
    [35] 李煜,王大玮,李周岐,等. 杜仲遗传作图群体的建立[J]. 西北林学院学报, 2012, 27(2): 62-65.
    [36] 贺丹,唐婉,刘阳,等. 尾叶紫薇与紫薇F1代群体主要表型性状与SSR标记的连锁分析[J]. 北京林业大学学报, 2012, 34(6): 121-125.
  • 加载中
计量
  • 文章访问数:  1291
  • HTML全文浏览量:  141
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-18
  • 修回日期:  2014-07-19
  • 刊出日期:  2015-03-31

目录

    /

    返回文章
    返回