Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

张广才岭南段不同林分天牛科昆虫物种多样性比较

刘生冬, 高文韬, 李燕, 施莹, 孟庆繁

刘生冬, 高文韬, 李燕, 施莹, 孟庆繁. 张广才岭南段不同林分天牛科昆虫物种多样性比较[J]. 北京林业大学学报, 2015, 37(5): 110-118. DOI: 10.13332/j.1000-1522.20140287
引用本文: 刘生冬, 高文韬, 李燕, 施莹, 孟庆繁. 张广才岭南段不同林分天牛科昆虫物种多样性比较[J]. 北京林业大学学报, 2015, 37(5): 110-118. DOI: 10.13332/j.1000-1522.20140287
LIU Sheng-dong, GAO Wen-tao, LI Yan, SHI Ying, MENG Qing-fan. Comparative study of Cerambycidae species diversity in different forest stands of southern Zhangguangcai Mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2015, 37(5): 110-118. DOI: 10.13332/j.1000-1522.20140287
Citation: LIU Sheng-dong, GAO Wen-tao, LI Yan, SHI Ying, MENG Qing-fan. Comparative study of Cerambycidae species diversity in different forest stands of southern Zhangguangcai Mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2015, 37(5): 110-118. DOI: 10.13332/j.1000-1522.20140287

张广才岭南段不同林分天牛科昆虫物种多样性比较

基金项目: 

“十二五”国家科技支撑计划项目(2012BAC01B03)。

详细信息
    作者简介:

    刘生冬,博士生,工程师。主要研究方向:森林保护、森林调查规划。Email:shengdongliu@163.com 地址:130022 吉林省长春市亚泰大街3968号吉林省林业调查规划院。责任作者: 孟庆繁,教授,博士生导师。主要研究方向:昆虫群落生态学。Email:qingfanmeng@sina.com 地址:132021 吉林省吉林市滨江东路3999号北华大学林学院。

    刘生冬,博士生,工程师。主要研究方向:森林保护、森林调查规划。Email:shengdongliu@163.com 地址:130022 吉林省长春市亚泰大街3968号吉林省林业调查规划院。责任作者: 孟庆繁,教授,博士生导师。主要研究方向:昆虫群落生态学。Email:qingfanmeng@sina.com 地址:132021 吉林省吉林市滨江东路3999号北华大学林学院。

Comparative study of Cerambycidae species diversity in different forest stands of southern Zhangguangcai Mountains, northeastern China.

  • 摘要: 2012—2013年,在张广才岭南段蛟河林业实验区管理局,采用拦截式诱捕器系统地调查了5个林分中天牛科昆虫的物种多样性,比较了各林分中天牛物种组成的差异,探讨了天牛科昆虫对森林环境变化的响应及其在森林监测中的应用潜力。共记录到天牛科昆虫 64种,隶属于7个亚科41属。其中,棍腿纹虎天牛和凹缘金花天牛为优势种,花天牛亚科、沟胫天牛亚科和天牛亚科为优势类群。3个优势类群的物种数量和个体数量在不同林分中具有较大的差异。在未经采伐的阔叶红松林(Ⅲ和Ⅳ)中,花天牛亚科的物种数、个体数量高于其他优势类群,同时也高于其他林分;在新采伐过的阔叶红松林Ⅴ中,沟胫天牛亚科物种数、个体数量高于其他优势类群;沟胫天牛亚科和天牛亚科物种数和个体数量高于其他林分。个体数量较多的13种天牛对林分的选择倾向不同,在新采伐的阔叶红松林Ⅴ中天牛科昆虫物种多样性最高,杨桦林和水胡林中最低。各林分中物种数量与个体数量呈极显著正相关(r=0.932,P0.001)。未经采伐过的阔叶红松林间相似性处于中等相似水平,相似性系数为0.62。
    Abstract: We systematically surveyed the species diversity of Cerambycidae at five forest stands in Jiaohe Forestry Experimental Region Administration of Jilin Province in southern Zhangguangcai Mountains with flying intercepted traps from 2012 to 2013, compared species composition among the five stands, and discussed the responses of Cerambycidae species to the change of stand habitat and their potential in forest monitoring. A total of 64 species of Cerambycidae, belonging to 7 subfamilies, 41 genera, were recorded. Among them Anaglyptus colobotheoidae and Gaurotes ussuriensis are the dominant species, and subfamilies of Lepturinae, Lamiinae and Cerambycinae are the dominant groups. The numbers of species and individuals of these three groups differ obviously among five stands (plots). In the uncut mixed broadleaved and Korean pine forest stands (KHL-Ⅲ and KHL-Ⅳ), the numbers of species and individuals of Lepturinae are higher than those of Lamiinae and Cerambycinae in the same stands, and also higher than those in other stands (YHL-Ⅰ, SHL-II and KHL-V). In the partially harvested mixed broadleaved and Korean pine forest stand (KHL-Ⅴ), the numbers of species and individuals of Lamiinae are higher than those of Lepturinae and Cerambycinae, and the numbers of species and individuals of Lamiinae and Cerambycinae are higher than those of other stands. Meanwhile, 13 species of Cerambycidae with more individuals show an obviously different tendency in selecting stand habitats; the species diversity is the highest in the partially harvested mixed broadleaved and Korean pine forest stand (KHL-Ⅴ), and the lowest in poplar-birch forest stand and ash-walnut forest stand (YHL-Ⅰ and SHL-Ⅱ). The numbers of species and individuals of Cerambycidae in each stand show a significantly positive correlation(r=0.932, P0.001). Similarity between uncut mixed broadleaved and Korean pine forest stands (KHL-Ⅲ and KHL-Ⅳ) reaches a moderate level with the similarity coefficient of 0.62.
  • 阔叶树木质部中的导管及其间壁的纹孔作为水分运输的主要通道,是水力结构的主要组成部分,对于树木水分传导起关键作用[1-2]。目前关于木质部水力阻力在树木高度方向是否恒定尚存争议[3-4],明确导管及其相关解剖特征的轴向变化规律,有助于理解树木水力结构特征与其导水功能的协同效应。前人通过研究不同树种水力结构特征的轴向变化规律揭示树木输导水分的最优化模式[5-6],但总体而言,所研究的树木种类非常有限。已有研究表明,导管分子的轴向变化规律在不同木本植物间有许多相似之处[7],并且其在个体发育期间基本稳定[8]。树木茎部的导管在树顶处非常狭窄,而在树顶以下,导管则自上而下逐渐变宽[9]。并且这种变化通常作用于树木顶端几米处,如果树木很高,则其基部导管直径的变化可以忽略不计[10-11]。同时导管频率与导管直径呈现负相关关系,即随树高增加,导管直径减小,导管频率增大[8]。理论上,木质部导管的理论导水率与导管直径的4次方(D4)成正比(源于Hagen-Poiseuille方程),因此,相较于导管频率,导管直径对导水效率的影响更大[12-13]。由于一般树木基部的导管大顶部的导管小,所以理论上树木导管的输水效率会随着树高增加而降低。

    除导管及其相关特征外,影响树木导水效率的还包括边材特征。相较于心材,木质部边材是“活着”的部分,其内含有活细胞和贮存物质,并具有输导水分和无机盐的作用[14]。树冠的供水受边材面积和边材导水率的影响,如果水分运输长度一定,那么树木通过增加边材面积或改变影响导水率的解剖结构,如导管直径和导管频率,均可以提高树冠供水量[15]。WBE管道模型假说(Fractal-like networks model)认为,高大树木通常会最大限度地提高边材的导水效率,同时最大限度地减少横截面积以降低栓塞风险[4, 16]。一些关于针叶树的研究支持了这个假说,即边材导水率随着树木年龄和高度的增加而增加[17-18]。然而对于一些阔叶树种如桉树(Eucalyptus robusta)、栎属(Quercus)的研究结果则不支持这个假说,如边材导水率与树木高度并没有显著的相关性[5, 8, 15],或边材导水率随树高呈现驼峰状变化[14]。因此,木质部边材特征也是研究树木导水功能的重要方面。

    楸树(Catalpa bungei)是紫葳科(Bignoniaceae)梓属小乔木,是我国温带特有的珍贵阔叶环孔材树种,国内对其木材结构方面的研究鲜有出现,而前人对木质部结构特征轴向变化的研究大多针对针叶树或常绿阔叶树种[19-20],因而研究楸树水力结构特征的轴向变化可为相关领域提供有益补充。本文分析楸树木质部边材面积、导管腔直径、导管密度、纹孔膜直径等多种导管相关解剖特征随树高的变化规律,以期为深入理解树木水力传导的结构和功能提供参考,并为楸树的保护及人工林培育技术研究提供依据。

    本文的楸树样本采自河南省洛阳市洛宁县的丘陵山谷(34°21′10″ ~ 34°22′20″ N、111°30′10″ ~ 111°33′50″ E,海拔620 m)楸树人工林。该地属于暖温带大陆性季风气候,植被类型为落叶阔叶林、针阔混交林,年平均气温13.9 ℃,最低气温− 12.8 ℃,年日照时长2 006 h,年降雨量560 mm,集中降雨月份在6—9月,无霜期213 d,土壤类型为褐土。

    随机取生长正常、无明显缺陷的楸树(胸径大于25 cm)共3株作为实验样木。取基部到胸高1.3 m及以上各2.5 m处圆盘至顶部,即0、1.3、3.8、6.3、8.8、11.3 m(表1)。

    表  1  样木基本信息
    Table  1.  Sample wood information
    样木号
    Tree No.
    树龄/a
    Tree age/year
    树高
    Tree height/m
    胸径
    DBH/cm
    圆盘数
    Disk number
    13314.926.36
    24420.330.46
    33615.825.56
    下载: 导出CSV 
    | 显示表格

    将18个圆盘带回实验室后,将圆盘一面抛光,采用树木年轮测定仪(LINTAB TM6)分析其心边材宽度。之后取南北向宽度为5 cm的中心条,选取年轮生长较平均的一侧,在边材中部相同年轮处弦向选取体积为1 cm3的样品块1个,采用Leica滑走切片机(SM 2010R)制备横切面、弦切面切片,切片厚度为20 µm。采用2%番红染液将切片染色1 ~ 2 min,之后经梯度酒精脱水、二甲苯透明剂冲洗,最后采用加拿大树胶永久封片。采用光学显微镜(奥林巴斯BX50)观察并拍照,采用ImageJ软件对每个样品测量如下与导管相关的特征指标[21]。(1)导管腔直径(vessel lumen diameter,DV(μm)):早材部分的观测倍数为40倍,晚材的观测倍数为100倍,早、晚材分别在视野中随机测量100个导管,最大导管腔直径(maximum vessel lumen diameter,DMAX(μm))为所测导管腔直径的最大值。(2) 导管密度(vessel density,VD(个/mm2)):早、晚材的观测倍数均为40倍,选取5个视野测量其面积,并记录视野中所有导管的个数。(3)纹孔膜直径(pit membrane diameter,DPM(μm)):在400倍镜下观察样品选切面切片,随机测量50个纹孔膜。

    根据圆面积公式计算单个导管的直径:DV=2A/π,导管密度(VD)=n/Am,式中:n为测量区域内导管总个数,Am为测量区域的面积(mm2)。边材面积(As)=π(R2r2),式中:R为圆盘半径(mm),r为心材半径(mm)。

    按照Sperry 等[22]的方法计算导管水力直径(μm):

    DH=D5D4

    式中:D为导管直径(μm)。

    采用Shapiro检验解剖指标的数据正态性,采用单因素方差分析检验取样高度间的差异显著性,采用皮尔森相关性分析检验各指标的相关性。使用R 3.5.2对数据进行统计分析,采用Origin 2015作图。

    楸树为环孔材,生长轮明显,早、晚材导管腔直径差异较大(图1)。早材导管腔直径为22 ~ 368 μm,相比较小的导管,100 ~ 300 μm的导管占比最多,且整体分布偏左,总的来说早材导管腔直径变异幅度大。晚材导管腔直径为7 ~ 60 μm,与早材不同,晚材导管腔直径变异幅度较小,多集中在20 μm左右,而大于40 μm的导管很少,整体分布偏右(图2)。

    图  1  楸树基部木质部横切面图
    Figure  1.  Transversal section of C. Bungei xylem at a tree bottom
    图  2  楸树导管腔直径径级分布图
    Figure  2.  Frequency distribution of vessel lumen diameter bins of C. bungei

    表2图3可知,早材导管腔直径与取样高度没有显著相关性,但有随树木取样高度增加而减小的趋势。其在0 m处的平均早材导管腔直径为200 μm,在11.3 m处为178 μm,最大值在3.8 ~ 6.3 m处,且在不同高度间没有显著性差异。晚材导管腔直径与取样高度呈显著负相关(P < 0.01),其在0 m处的平均晚材导管腔直径为27 μm,在11.3 m处为20 μm,且在0 m处与11.3 m处有显著差异,中间4个高度间没有显著差异,即随树木高度增加,晚材导管腔直径呈减小趋势。早材最大导管腔直径与取样高度呈显著负相关(P < 0.001),其在0 m处的平均早材最大导管腔直径为332 μm,在11.3 m处为264 μm,且在胸径处有起伏为357 μm。方差分析显示高度的变化对其有显著影响,0 m处与8.8 m和11.3 m处有显著差异,且随树木高度增加,最大早材导管腔直径呈减小趋势。晚材最大导管腔直径与取样高度呈显著负相关(P < 0.05),其在0 m处的平均晚材最大导管腔直径为52 μm,在11.3 m处为39 μm,在胸径处出现最大值为56 μm。方差分析显示高度的变化对其无显著影响,但其中各高度间有部分差异,如1.3 m处与3.8、6.3及11.3 m处。早材导管分布密度与取样高度没有显著相关性,但随树高增加其有增加的趋势。其在0 m处的平均早材导管分布密度为9 个/mm2,在11.3 m处为14 个/mm2,方差分析显示高度的变化对其无显著影响,仅0 m处与11.3 m处有显著差异。晚材导管分布密度与取样高度没有显著相关性,但随树高增加其有增加的趋势,其在0 m处的平均晚材导管分布密度为347 个/mm2,在11.3 m处为436个 /mm2,取样高度间没有显著差异性。

    表  2  木质部解剖指标高度间的差异显著性分析(ANOVA)
    Table  2.  Significance test of xylem anatomical traits at different tree heights by ANOVA
    高度
    Height/
    m
    导管水力
    直径
    Vessel hydraulic diameter/μm
    边材面积
    Sapwood
    area/mm2
    早材导管
    腔直径
    Earlywood vessel lumen diameter/μm
    晚材导管
    腔直径
    Latewood vessel lumen diameter/μm
    早材最大导管
    腔直径
    Earlywood max. vessel lumen diameter/μm
    晚材最大导管
    腔直径
    Latewood max. vessel lumen diameter/μm
    早材导管密度/
    (个·mm− 2
    Earlywood
    vessel density/
    (number·mm− 2)
    晚材导管密度/
    (个·mm− 2
    Latewood
    vessel density/
    (number·mm− 2)
    纹孔膜直径
    Pit membrane diameter/
    μm
    0 277 ± 18a 10 566 ± 1 298a 200 ± 46a 27 ± 3a 332 ± 15ab 52 ± 9ab 9 ± 1b 347 ± 133a 9 ± 1ab
    1.3 282 ± 14a 8 497 ± 489ab 200 ± 27a 26 ± 3ab 357 ± 10a 56 ± 4a 13 ± 3ab 309 ± 79a 9 ± 1a
    3.8 252 ± 17bc 6 330 ± 901bc 212 ± 14a 24 ± 3ab 315 ± 19bc 40 ± 8b 10 ± 2ab 298 ± 94a 8 ± 0.5ab
    6.3 264 ± 10ab 4 713 ± 2 331cd 218 ± 14a 22 ± 2ab 336 ± 9ab 38 ± 7b 11 ± 1ab 325 ± 83a 8 ± 0.4ab
    8.8 234 ± 5c 3 616 ± 1 052de 201 ± 16a 22 ± 5ab 294 ± 7c 45 ± 8ab 13 ± 1ab 418 ± 55a 8 ± 0.4ab
    11.3 209 ± 17d 1 993 ± 1 026e 178 ± 10a 20 ± 3b 264 ± 25d 39 ± 8b 14 ± 3a 436 ± 157a 8 ± 0.5b
    注:表中数据为“平均值 ± 标准差”。同列不同字母表示差异显著(P < 0.05)。Notes: the data in the table is “average ± standard deviation”. Different letters in each column indicate significant difference (P < 0.05).
    下载: 导出CSV 
    | 显示表格
    图  3  木质部导管解剖特征随树木高度的变化趋势
    Figure  3.  Trend of xylem vessel anatomical features with tree height

    由表2和图4可知,导管水力直径与取样高度呈显著负相关(P < 0.001),其在0 m处的平均水力直径为277 μm,在11.3 m处为209 μm,最大值在胸径处为282 μm。方差分析显示高度的变化对其有显著影响(P < 0.001),且0、1.3 m处与8.8、11.3 m处有显著差异,即随树木高度增加,导管水力直径呈减小趋势。边材面积与取样高度呈显著负相关(P < 0.001),在0 m处的平均边材面积为10 566 mm2,11.3 m处为1 993 mm2,即随树木高度增加,边材面积呈减小趋势。方差分析结果显示,高度的变化对其有显著影响,基部、中部与上部均有显著差异。纹孔膜直径与取样高度呈显著负相关(P < 0.01),其在0 m处的平均纹孔膜直径为9 μm,在11.3 m处为8 μm,即随高度增加,纹孔膜直径呈减小趋势。方差分析显示高度的变化对其无显著影响,但1.3 m处与11.3 m处有显著差异。

    图  4  其他指标的轴向变化
    Figure  4.  Axial variation of other indicators

    图5可知,导管水力直径与边材面积呈显著正相关(P < 0.001),随边材面积的增加,导管水力直径呈增加趋势。纹孔膜直径与导管水力直径呈显著正相关(P < 0.001),随导管水力直径的增加,纹孔膜直径呈增加趋势。

    图  5  指标间的相关关系
    Figure  5.  Correlations between indicators

    在本研究中,早材导管腔直径随高度的变化不明显,晚材导管腔直径则随高度增加而减小,同时,早、晚材导管密度都有增大趋势但并不显著(图3)。随树高的增加导管水力直径呈显著减小的趋势(P < 0.001),而最大早、晚材导管腔直径则呈现不同的结果,最大早材导管腔直径随树高增加呈显著减小趋势(P < 0.001),最大晚材导管腔直径随树高增加呈显著减小趋势(P < 0.05)。虽然早晚材导管腔直径的变化趋势略有不同,但本结果与我们的假设基本相符合,即随树高增大导管水力直径减小。综合来看,树基部的导管直径大而数量少,树顶处导管直径小而数量多。其中早晚材导管直径都有不同程度的减小趋势,晚材导管直径的减小趋势比早材导管明显一些,但同时因早材导管整体都较大,尤其200 ~ 300 μm区间很多,而大的导管可以直接导致导水效率的改变,与大导管同时存在的小导管所支配的导水效率相对很小,所以我们认为采用早材最大导管直径来衡量早材导管导水能力的变化比早材平均导管直径要更合理一些。导管直径的变化趋势结果与前人的研究相符[6, 11, 19, 23-30]。大而疏的导管一定程度上可促进水分运输的效率,但同时木质部导水效率的提高是以增加空穴化风险作为代价的,因此大的导管更容易受到栓塞的伤害[20]。而上部小而密集的导管能够承受较大的水力张力,使得其在更大的水势差下也能维持正常的水分运输。

    通常认为宽的导管代表着高效的水力传导,反之窄的导管代表低效的水力传导,在一些干旱的地区,树木的导管直径相对较小,虽然在一定程度上水分运输效率降低,但其导管壁加厚导致植物坍塌和被破坏的几率降低,同时导管频率的增加补偿了一部分的水分运输的有效性[31]。能够解释导管的这种变化最重要的影响因素是输水路径的长度[29]。木质部导管大小和导管密度决定了植物水分传输能力[32],导管直径越大,长度越长,水分运输效率越高[33-34]。关于幼龄桉树(Eucalyptus regnans)(8年生)的研究发现导管水力直径随树高减小,但导水率与树高之间没有显著的相关性[15]。而Pfautsch等[8]研究了树高约20 m的成年桉树,发现水力直径同理论导水率的变化在整个输水路径上的变化都是呈现驼峰形,树顶最小。范泽鑫等[20]的研究表明,6种12株常绿阔叶树的理论导水率(KS)有4株随树高增加呈线性降低,而剩余的树木在树冠以下的理论导水率无显著变化趋势,理论导水率的变化与导管水力直径变化基本一致。虽然水力直径在一定程度上影响树木的导水率,但其并不一定是全部决定因素,例如,树木的导水率还可能受到边材面积的影响。

    关于边材面积的轴向变化,本研究中边材面积随树高增加而减小(图4),与我们的假设相符,同时边材面积与水力直径呈显著正相关关系(图5)。这一结果的可能解释是,随树高增加水力阻力增大,边材减少可以降低栓塞风险。而Aparecido等 [35]对26种热带树种的研究表明,边材面积随着树木总高度增加呈现指数增长趋势,但边材面积与导管直径并无显著相关性。本研究与其差异的原因可能是本研究只是单一树种,应有种间差异。边材面积与树高的关系显著说明边材生长在一定程度上与树高有关,例如可以提供给树木垂直生长时的横向扩张和支撑[3637]。同时,边材面积随树高减小的原因可能是树木需要通过减小边材面积以避免水分流失,且树木高处易受干旱问题影响,导致空穴化和栓塞,因此树木也会保持较小的边材以避免栓塞等问题。

    边材面积大小影响水分运输的流量大小,从而影响边材内的液流变化情况。Pfautsch等[8]的研究表明,桉树的边材面积随树高增加而减小,边材理论导水率呈驼峰状变化,并在树冠处达到峰值。同时,树干液流是随树高增加逐渐减小的,而叶片液流是从分枝处开始至树顶逐渐增加。可能的原因是在树冠处有部分水流向了侧枝,从而供给叶片的水分需求。同步减小的边材面积和理论导水率使得叶片液流体积增加的原因可能是:顶部阳光照射的树叶比基部的树叶需求的水更多,所以树干液流随树高增加而减小。关于桉树的研究结果也可说明,边材面积在一定程度上影响和适应树木由主干至叶片的木质部水分传导网络的功能需求,且边材面积的变化与水分流动的规律基本一致[38]。未来研究可深入探讨是否楸树边材面积的变化规律与其树干、侧枝与叶片的液流需求及变化规律具有一致性。

    木质部在传导水分的同时需要再降低栓塞扩散的风险[9, 39]。导管上的纹孔对木质部水力效率和安全有着至关重要的作用,因为它们不仅可以使水分在相邻管道间流动,而且是阻挡气泡在管道间流通的屏障。纹孔膜上的微孔越少,气泡在扩散时的阻力越大[40-42]。本研究中纹孔膜直径随树高增加而呈现减小趋势(图4P < 0.01),且纹孔膜直径与水力直径呈显著正相关关系(图5P < 0.01)。可能的原因是纹孔膜直径随树高的变化规律与导管直径相似,大的导管倾向于具有大的纹孔膜,树干上部的导管小,所以此处的纹孔膜直径也小,同时树干上部小的纹孔膜也在一定程度上减小了树顶发生水力失效的概率。

    纹孔结构与导水率的关系比较复杂,例如对柽柳(Tamarix chinensis)的研究表明,纹孔膜直径与木质部导水率无显著相关关系,而与外纹孔口面积则有显著正相关关系[43]。纹孔结构对树木导水效率的影响主要包括纹孔膜总面积、导管上的纹孔密度、纹孔膜厚度等。纹孔膜面积越大、数量越多,导水效率就越大,但同时会降低木质部输水安全性。纹孔面积假说[13, 44]和稀有纹孔假说[13, 45]分别解释了导管中的栓塞概率随着其上纹孔膜总面积和数量的增加而增加。本研究仅是初步探索,纹孔膜部分未能测量导管上纹孔膜总面积和密度等指标,尚不足以解释纹孔结构与树木水力效率的关系。

    楸树木质部水分疏导组织构造特征的轴向变化主要表现在边材面积、导管特征和纹孔膜特征3个方面。楸树生长轮明显,早晚材导管腔直径差异较大,早材比晚材变异幅度更大。最大导管腔直径的轴向变化显著,导管密度的轴向变化不显著,边材面积和纹孔膜直径的轴向变化显著。综合来看,楸树基部导管相对大而疏,边材面积大,上部导管相对小而多,边材面积小,这是楸树木质部结构适应长距离输水功能的一种优化设计,以降低树木栓塞化风险,提高水分运输的效率和安全性。

    致谢 感谢中国林业科学研究院的姜笑梅老师、张永刚老师和赵荣军老师对实验开展和文章撰写提供的指导与帮助。

  • [1]

    JI B Z, WEI Y, HUANG Z Y. Present situations and prospects of researches on adult's behavior of longicorn beetles[J].Journal of Nanjing Forestry University:Natural Sciences Edition, 2002,26(2):79-83.

    [1] 嵇保中,魏勇,黄振裕.天牛成虫行为研究的现状与展望[J].南京林业大学学报:自然科学版,2002,26(2):79-83.
    [2] 蒋书楠,陈力.中国动物志:昆虫纲(21):鞘翅目:天牛科:花天牛亚科[M].北京:科学出版社, 2001:1-223.
    [2]

    JIANG S N, CHEN L. China fauna: Insects(21): Coleoptera: Cerambycidae: Lepturinae[M].Beijing: Science Press, 2001:1-223.

    [3] 高文韬,孟庆繁,郑兴波,等. 长白山北坡访花天牛区系研究[J]. 昆虫知识, 2005,42(6): 691-694.
    [3]

    GAO W T, MENG Q F, ZHENG X B, et al. Fauna of flower-visiting longicorn beetles in north slope of Changbai Mountain[J]. Chinese Bulletin of Entomology, 2005,42(6): 691-694.

    [4] 郭彦林,孟庆繁,高文韬.长白山高山草甸植物-传粉昆虫相互作用网络可视化及格局分析[J].林业科学,2012,48(12):141-147.
    [4]

    GUO Y L, MENG Q F, GAO W T. Visulization and pattern analysis of plant-insect pollinator interaction networks in subalpine meadow in Changbai Mountain[J]. Scientia Silvae Sinicae, 2012,48(12):141-147.

    [5]

    GAO W T, SUN W C, WANG X D, et al. A preliminary analysis on the Cerambycidae insect fauna in Jilin Province[J].Journal of Jilin Forestry Institute, 1994,10(1):25-33.

    [5] 高文韬,孙万才,王旭东,等.吉林省天牛科(Cerambycidae)昆虫区系初析[J].吉林林学院学报,1994,10(1):25-33.
    [6] 高文韬,张德君,张生,等.吉林林学院实验林场森林昆虫区系研究[J].吉林林学院学报,1995,11(3):181-184.
    [6]

    GAO W T, ZHANG D J, ZHANG S, et al. Study on forest insect fauna in experimental forest farm of Jilin Forestry University[J]. Journal of Jilin Forestry Institute, 1995, 11(3):181-184.

    [7] 张健.吉林省天牛科昆虫分类学研究[D].长春:东北师范大学,2011:13-26.
    [7]

    ZHANG J. Taxonomic study on the Cerambycidae in Jilin Province[D].Changchun: Northeast Normal University,2011: 13-26.

    [8]

    GE F. Principle and methods of insect ecology[M]. Beijing: Higher Education Press, 2008: 254-255.

    [8]

    NOGUERA F A, ZARAGOZA-CABALLERO S, CHEMSAK J A, et al. Diversity of the family Cerambycidae (Coleoptera) of the tropical dry forest of Mexico(I): Sierra de Huautla, Morelos[J]. Annals of the Entomological Society of America, 2002,95(5):617-627.

    [9]

    XU H X, XIN Z Y, WANG H J, et al. Community diversity of longhorn beetles in Baishuijiang Nature Reserve [J]. Scientia Silvae Sinicae, 2011, 47(8): 182-187.

    [9]

    TOLEDO V H, NOGUERA F A, CHEMSAK J A, et al. The cerambycid fauna of the tropical dry forest of “El Aguacero,” Chiapas, México (Coleoptera: Cerambycidae) [J]. The Coleopterists Bulletin, 2002, 56(4):515-532.

    [10]

    JIA Y Z, ZHANG C Y, ZHAO X H, et al. Diversity and composition of moths in broadleaved forest with Korean pine at different recovery stages in the Changbai Mountains, China[J]. Chin J Appl Environ Biol, 2008,14(5): 630-634.

    [10]

    OHSAWA M. Species richness of Cerambycidae in larch plantations and natural broadleaved forests of the central mountainous region of Japan[J]. Forest Ecology and Management, 2004, 189:375-385.

    [11]

    LASSAUCE A, LARRIEU L, PAILLET Y, et al. The effects of forest age on saproxylic beetle biodiversity: implications of shortened and extended rotation lengths in a French oak high forest[J]. Insect Conservation and Diversity, 2013, 6:396-410.

    [12]

    MCGEOCH M A, SCHROEDER M, EKBOM B, et al. Saproxylic beetle diversity in a managed boreal forest: importance of stand characteristics and forestry conservation measures[J]. Diversity and Distributions, 2007, 13: 418-429.

    [13]

    BOUCHER J, AZERIA E T, IBARZABAL J, et al. Saproxylic beetles in disturbed boreal forests: temporal dynamics, habitat associations, and community Structure[J]. Ecoscience, 2012, 19(4):328-343.

    [14]

    GROVE S J. The influence of forest management history on the integrity of the saproxylic beetle fauna in an Australian lowland tropical rainforest[J]. Biological Conservation, 2002, 104:149-171.

    [15]

    SAINT-GERMAIN M, BUDDLE C M, DRAPEAU P. Sampling saproxylic Coleoptera: scale issues and the importance of behavior[J]. Environmental Entomology, 2006, 35(2):478-487.

    [16]

    GRAHAM E E, POLAND T M, MCCULLOUGH D G, et al. A comparison of trap type and height for capturing cerambycid beetles (Coleoptera)[J]. Journal of Economic Entomology, 2006, 105(3):837-846.

    [17]

    LAMARRE G P A, MOLTO Q, FINE P V A, et al. A comparison of two common flight interception traps to survey tropical arthropods[J]. ZooKeys, 2012, 216: 43-55.

    [18]

    HANKS L M , MILLAR J G, MONGOLD-DIERS J A, et al. Using blends of cerambycid beetle pheromones and host plant volatiles to simultaneously attract a diversity of cerambycid species[J]. Canadian Journal Forest Research, 2012, 42: 1050-1059.

    [19]

    HANKS L M, MILLAR J G. Field bioassays of cerambycid pheromones reveal widespread parsimony of pheromone structures, enhancement by host plant volatiles, and antagonism by components from heterospecifics[J]. Chemoecology, 2013, 23: 21-44.

    [20]

    HANKS L M, REAGEL P F, MITCHELL R F, et al. Seasonal phenology of the cerambycid beetles of east central Illinois[J]. Conservation Biology and Biodiversity, 2014, 107:211-218.

    [21] 戈峰.昆虫生态学原理与方法[M].北京:高等教育出版社,2008:254-255.
    [22] 徐红霞,辛中尧,王洪建,等.甘肃白水江自然保护区的天牛群落多样性[J].林业科学,2011,47(8): 182-187.
    [23] 贾玉珍,张春雨,赵秀海,等. 长白山红松阔叶林不同恢复阶段蛾类组成和多样性研究[J].应用与环境生物学报,2008,14(5): 630-634.
  • 期刊类型引用(6)

    1. 于子涵,郑子成,王永东,李廷轩. 川西低山丘陵区植茶土壤团聚体矿质氮分布特征. 水土保持学报. 2022(01): 263-267 . 百度学术
    2. 石新竹,魏建兵,刘景琦,吴尚遇. 基于质量平衡方程的浑河上游清原流域氮素时空变化. 安徽农业科学. 2022(09): 72-77 . 百度学术
    3. 张宏伟,崔晓阳,郭亚芬. 寒温带林区不同林型土壤酶活性和微生物生物量的变化特征. 东北林业大学学报. 2021(08): 64-69 . 百度学术
    4. 左倩倩,王邵军,王平,曹乾斌,赵爽,杨波. 蚂蚁筑巢对西双版纳热带森林土壤有机氮矿化的影响. 生态学报. 2021(18): 7339-7347 . 百度学术
    5. 冯奥哲,孔涛,孙溥璠,刘紫薇,任曦玥,郑爽. 沙地不同密度樟子松人工林土壤矿化氮质量分数与矿化特征. 东北林业大学学报. 2021(10): 96-103 . 百度学术
    6. 王世佳,郭亚芬,崔晓阳. 寒温带林区不同林型下冻融土壤活性有机碳的变化. 北京林业大学学报. 2021(12): 65-72 . 本站查看

    其他类型引用(6)

计量
  • 文章访问数:  1847
  • HTML全文浏览量:  311
  • PDF下载量:  27
  • 被引次数: 12
出版历程
  • 收稿日期:  2014-08-28

目录

/

返回文章
返回