Coupling relationship of structure and tree diversity between upper and lower canopy layer based on structural equation model.
-
摘要: 为探讨林分上下层间结构与树木多样性的关系,以阿什河流域天然次生杂木林为对象,构建了立地条件-林分上层结构-林分上层树木多样性-林分下层结构与树木多样性的结构方程模型。结果表明:立地条件(ξ1)对林分上层结构(ξ2)具有直接正影响,影响系数为0.59;对林分上层树木多样性(ξ3)具有正影响,总影响系数为0.75,直接影响系数为0.43;对林分下层结构与树木多样性(ξ4)具有负影响,总影响系数为-0.58,直接影响系数为-0.12。林分上层结构(ξ2)对林分上层树木多样性(ξ3)具有直接正影响,影响系数为0.55;对林分下层结构与树木多样性(ξ4)具有负影响,总影响系数为-0.55,直接影响系数为-0.38。林分上层树木多样性(ξ3)对林分下层结构与树木多样性(ξ4)具有直接负影响,影响系数为-0.31。对林分下层密度(x11)影响最大的林分上层观测变量为林分上层树冠面积(x7),总影响系数为-0.19,直接影响系数为-0.12。对林分下层平均树高(x12)影响最大的林分上层观测变量为林分上层平均树高(x6),总影响系数为-0.28,直接影响系数为-0.13。林分上层树冠面积(x7)和树高多样性(x10)对林分下层树种多样性(x14)影响较大,影响系数分别为-0.38和-0.36。树冠面积(x7)的影响全为直接影响;树高多样性(x10)的直接影响大于间接影响;林分上层结构(ξ2)与树木多样性(ξ3)中的观测变量对林分下层树冠面积(x13)影响不明显。Abstract: In order to clarify the relationship of structure and tree diversity between upper and lower canopy layers, we built the structural equation model of the site condition-structure of upper canopy layer-tree diversity of upper canopy layer-structure and tree diversity of lower canopy layer based on the secondary multiple species forest beside the Ashi River in southern Heilongjiang Province. The results showed that site condition (ξ1) had a positive impact on structure (ξ2) and tree diversity (ξ3) of the upper canopy layer with the total path coefficients of 0.59 and 0.75, and the direct path coefficients of 0.59 and 0.43, respectively. Site condition (ξ1) had a negative impact on structure and tree diversity of the lower canopy layer (ξ4) with the total path coefficients of -0.58, and the direct path coefficient of -0.12. Structure of the upper canopy layer (ξ2) had a positive impact on tree diversity of the upper canopy layer (ξ3) and a negative impact on structure and tree diversity of the lower canopy layer (ξ4), with the total path coefficients of 0.55 and -0.55, and the direct path coefficient of 0.55 and -0.38, respectively. Trees diversity of upper canopy layer (ξ3) had a directly negative impact on structure and tree diversity of the lower canopy layer (ξ4), with the path coefficient of -0.31. Of all the observation variables of structure and tree diversity for the upper canopy layer, canopy area (x7) was the most important factor affecting density of the lower canopy layer (x11), with the total path coefficient of -0.19 and the direct path coefficient of -0.12. Average height (x6) was the most important factor affecting average height of the lower canopy layer (x12), with the total path coefficient of -0.28 and the direct path coefficient of -0.13. Canopy area (x7) and height diversity (x10) were the most important factors affecting tree species diversity of the lower canopy layer (x14), with the total path coefficients of -0.38 and -0.36, respectively. The impact of structure (ξ2) and tree diversity (ξ3) of the upper canopy layer on the canopy area of the lower canopy layer (x13) was not obvious.
-
Keywords:
- structural equation model /
- secondary forest /
- site conditions /
- stand structure /
- tree diversity
-
-
[1] 黄忠良,孔国辉,何道泉. 鼎湖山植物群落多样性的研究[J]. 生态学报, 2000, 20(2): 193-198. [1] HUANG Z L, KONG G H, HE D Q.Plant community diversity in Dinghushan Nature Reserve[J]. Acta Ecologica Sinica, 2000, 20(2): 193-198.
[2] MESSIER C, PARENT S, BERGERON Y. Effects of overstory and understory vegetation on the understory light environment in mixed boreal forests[J]. Journal of Vegetation Science, 1998, 9(4): 511-520.
[2] LI X R. Interspecific association and correlation of shrub layer in the coniferous-broad leaved mixed geobotanical zone of Russia plain[J]. Acta Ecologica Sinica, 1999, 19(1): 57-62.
[3] ZHAO Z H, ZU Y G, YANG F J, et al. Study on the sampling technique of interspecific association of ligneous plant Quercus liaotungensis forest in dongling mountain[J]. Acta Phytoecologica Sinica, 2003,27(3): 396-403.
[3] AUGUSTO L, DUPOUEY J L, RANGER J. Effects of tree species on understory vegetation and environmental conditions in temperate forests[J]. Annals of Forest Science, 2003, 60(8): 823-831.
[4] ZHOU X Y, WANG B S, LI M G, et al. An analysis of interspecific associations in secondary succession forest communities in Heishiding Natural Reserve,Guangdong Province[J]. Acta Phytoecologica Sinica, 2000, 24(3): 332-339.
[4] 李新荣. 俄罗斯平原针阔混交林群落的灌木层植物种间相关研究[J]. 生态学报, 1999, 19(1): 57-62. [5] 赵则海,祖元刚,杨逢建,等. 东灵山辽东栎林木本植物种间联结取样技术的研究[J]. 植物生态学报, 2003,27(3): 396-403. [5] KANG B, LIU S R, CAI D X, et al. Species composition and correlation of understorey woody plants in Chinese fir plantation in the lower subtropical area[J]. Acta Ecologica Sinica, 2005, 25(9): 2173-2179.
[6] 周先叶,王伯荪,李鸣光,等. 广东黑石顶自然保护区森林次生演替过程中群落的种间联结性分析[J]. 植物生态学报, 2000, 24(3): 332-339. [6] LI S F, LIU W D, SU J R, et al. Niches and interspecific associations of dominant tree populations at different restoration stages of monsoonal broad-leaved evergreen forest[J]. Chinese Journal of Ecology, 2011, 30(3): 508-515.
[7] WANG H L, L G H, YANG X D. Interspecific associations of main plants in Ebinur Lake wetland of Xinjiang, Northwest China[J]. Chinese Journal of Ecology, 2011, 30(12): 2713-2718.
[7] 康冰,刘世荣,蔡道雄,等. 南亚热带人工杉木林灌木层物种组成及主要木本种间联结性[J]. 生态学报, 2005, 25(9): 2173-2179. [8] WANG Y S, CU C J. A brief introduction of structural equation model and its application in ecology[J]. Chinese Journal of Plant Ecology, 2011, 35(3): 337-344.
[8] 李帅锋,刘万德,苏建荣,等. 季风常绿阔叶林不同恢复阶段乔木优势种群生态位和种间联结[J]. 生态学杂志, 2011, 30(3): 508-515. [9] WANG S L, ZHOU J P. Coupling relationship between stand growth and impacting factors based on structural equation model[J]. Journal of Beijing Forestry University, 2014, 36(5): 7-12.
[9] 王合玲,吕光辉,杨晓东. 新疆艾比湖湿地主要植物的种间关联分析[J]. 生态学杂志, 2011, 30(12): 2713-2718. [10] 王酉石,储诚进. 结构方程模型及其在生态学中的应用[J]. 植物生态学报, 2011, 35(3): 337-344. [10] YANG H X, MENG K H, MENG X N, et al. Water retentivity of litter of different types of stand in Ashihe valley[J].Potection Forest Science and Technology, 2005, 68(5): 14-17.
[11] DONG T S, ZHAO Y S, DANG H Z. Water conservation function of Fraxinus mandshurica Rupr. natural forests in the eastern region of Heilongjiang[J]. Journal of Northeast Forestry University, 2004, 32(5): 1-3.
[11] GRACE J B. Structural equation modeling and natural systems [M]. Cambridge: Cambridge University Press, 2006.
[12] 王树力,周健平. 基于结构方程模型的林分生长与影响因子耦合关系分析[J]. 北京林业大学学报, 2014, 36(5): 7-12. [12] JIA Z K. Research progress of maintenancetechnology of long-term productivity of plantation in China[J]. World Forestry Research, 2012, 25(1): 49-54.
[13] YAN S Y, XI Q H,TIE N. Forest health assessment of Ledum-Larix gmelinii in cold-temperate zone[J]. Journal of Nanjing Forestry University: Natural Science Edition, 2010, 34(6):81-86.
[13] IRIONDO J M, ALBERT M J, ESCUDERO A. Structural equation modelling: an alternative for assessing causal relationships in threatened plant populations[J]. Biological Conservation, 2003, 113(3), 367-377.
[14] FANG S Z, TIAN Y. The relationship between biodiversity and productivity in the artificial plantation ecosystem[J]. Journal ofNanjing Forestry University: Natural Science Edition, 2012, 36 (4): 1-6.
[14] LAUGHLIN D C, ABELLA S R, COVINGTON W W, et al. Species richness and soil properties in Pinus ponderosa forests: a structural equation modeling analysis[J]. Journal of Vegetation Science, 2007, 18(2): 231-242.
[15] JONSSON M, WARDLE D A. Structural equation modelling reveals plant-community drivers of carbon storage in boreal forest ecosystems[J]. Biology Letters, 2010, 6(1): 116-119.
[15] MA J L, XUAN L F, LIU D J. Site quality estimation for natural Korean pine forest using total height and diameter of dominant tree[J]. Journal of Northeast Forestry University, 1995, 13(2): 20-27.
[16] WU M L. Structural equation model[M].Chongqing: Chongqing University Press, 2009.
[16] SPITALE D, PETRAGLIA A, TOMASELLI M. Structural equation modelling detects unexpected differences between bryophyte and vascular plant richness along multiple environmental gradients[J]. Journal of Biogeography, 2009, 36(4): 745-755.
[17] LIANG J, WANG J Y. Ecotourist motivation analysis based on structural equation model:a case study in Mao’er Mountain national reserve in Guangxi[J]. Journal of Northwest Forestry University, 2013, 28(5): 227-233.
[17] 杨洪学,蒙宽宏,孟祥楠,等. 阿什河流域不同林分类型枯落物持水能力研究[J]. 防护林科技, 2005, 68(5): 14-17. [18] QIAN X Y, HOU J B, QUAN C Y, et al. A study onsite quality evaluation of the natural secondary forest[J]. Protection Forest Science and Technology, 2001, 1(1): 21-22,71.
[18] 董铁狮,赵雨森,党宏忠. 黑龙江省东部地区水曲柳天然林水源涵养功能[J]. 东北林业大学学报, 2004, 32(5): 1-3. [19] XIA F C, PAN C F, ZHAO X H, et al. Influence of overstory on seasonal variability of understory herbs in primary broad-leaved Korean pine forest of Changbai Mountain[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(2): 370-376.
[19] WANG S L, CHEN H Y H. Diversity of northern plantations peaks at intermediate management intensity[J].Forest Ecology and Management, 2010, 259(3): 360-366.
[20] HE Y L. Understory in different stands of Phyllostachys pubescens and its relationship with soil nutrients[D]. Beijing: Chinese Academy of Forestry, 2000.
[20] BARTELS S F, CHEN H Y H. Interactions between overstorey and understorey vegetation along an overstorey compositional gradient[J]. Journal of Vegetation Science, 2013, 24(3): 543-552.
[21] HART S A, Chen H Y H. Fire, logging, and overstory affect understory abundance, diversity, and composition in boreal forest[J]. Ecological Monographs, 2008, 78: 123-140.
[21] LIU J F, HONG W, LI J Q, et al. Gap edge effect of Castanopsis kawakamii community[J]. Chinese Journal of Applied Ecology, 2003, 14(9): 1421-1426.
[22] 贾忠奎. 我国人工林长期生产力维持技术研究进展[J]. 世界林业研究, 2012, 25(1): 49-54. [23] 闫淑英,席青虎,铁牛. 寒温带杜香兴安落叶松林林分健康评价研究[J]. 南京林业大学学报: 自然科学版, 2010, 34(6):81-86. [24] 方升佐,田野. 人工林生态系统生物多样性与生产力的关系[J]. 南京林业大学学报: 自然科学版, 2012, 36 (4): 1-6. [25] 马建路,宣立峰,刘德君. 用优势树全高和胸径的关系评价红松林的立地质量[J]. 东北林业大学学报, 1995, 13(2): 20-27. [26] 吴明隆.结构方程模型[M]. 重庆:重庆大学出版社, 2009. [27] 梁佳,王金叶. 基于结构方程模型的猫儿山国家级自然保护区生态旅游者动机研究[J]. 西北林学院学报, 2013, 28(5): 227-233. [28] 钱喜友,侯静波,权崇义,等. 天然次生林立地质量评价的研究[J]. 防护林科技, 2001, 1(1): 21-22,71. [29] KIRBY K J. Changes in the ground flora under plantations on ancient woodland sites[J]. Forestry, 1988, 61(4): 317-338.
[30] JENNINGS S B, BROWN N D, SHEIL D. Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures[J]. Forestry, 1999, 72(1): 59-73.
[31] 夏富才,潘春芳,赵秀海,等. 长白山原始阔叶红松林林下草本植物多样性格局及其影响因素[J]. 西北植物学报, 2012, 32(2): 370-376. [32] PORTE A, HUARD F, DREYFUS P. Microclimate beneath pine plantation, semi-mature pine plantation and mixed broadleaved-pine forest[J]. Agricultural andForest Meteorology, 2004, 126(1-2): 175-182.
[33] 何艺玲. 不同类型毛竹林林下植被的发育状况及其与土壤养分关系的研究[D]. 北京: 中国林业科学研究院, 2000. [34] 刘金福,洪伟,李俊清,等. 格氏栲群落林窗边缘效应研究[J]. 应用生态学报, 2003, 14(9): 1421-1426. -
期刊类型引用(3)
1. 曹现富,王晓丽,邹广权,李艳,曹子林. 不同坡向对尾巨桉人工林林下草本植物多样性的影响. 林业科技通讯. 2023(08): 93-96 . 百度学术
2. 叶森土,许艳,张川英,吴初平,袁位高,江波,朱锦茹,王志高. 浙江省松阳县公益林乔木层生物量影响因素分析. 安徽农业科学. 2022(09): 108-110+113 . 百度学术
3. 王磊,崔明,刘玉国,周梦玲,武建宏,周桃龙. 岩溶区林分生长与影响因子的关系. 浙江农林大学学报. 2020(06): 1036-1044 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 1811
- HTML全文浏览量: 258
- PDF下载量: 34
- 被引次数: 7